Ubiquiti UniFi – Backups and Migration

Types of Backups

There are UniFi OS backups and also application-specific backups. We strongly recommend using a UniFi OS backup for UniFi OS Hosts (i.e., Dream products, Cloud Key Gen2 Plus, and Network Video Recorders) because they capture backups for UniFi applications as well.

UniFi OS Backups

UniFi OS backups contain your entire system configuration, including settings for your UniFi OS Console, users, and applications. If Remote Access is enabled, UniFi OS Cloud backups are created weekly by default. You can also create additional Cloud backups or download localized backups at any time. 

UniFi OS backups are useful when:

  • Restoring a prior system configuration after making network changes.
  • Migrating all applications to a new UniFi OS Console that is the same model as the original.

Note: Backups do not include data stored on an HDD, such as recorded Protect camera footage.

Application Backups

Each UniFi application allows you to back up and export its configuration. Application backups contain settings and device configurations specific to the that application.

Application backups are useful when:

  • You want to restore a prior application configuration without affecting your other applications.
  • You want to migrate a Self-Hosted Network Server application to a UniFi OS Console.
  • You want to migrate your devices between two different UniFi OS Console models.
  • You need to back up a self-hosted Network application.

Note: Backups do not include data stored on an HDD, such as recorded Protect camera footage.

UniFi OS Console Migration

UniFi OS backups also allow you to restore your system configuration should you ever need to replace your console with one of the same model.

To do so:

  1. Create a Cloud backup or download a local backup. This can be done in your UniFi OS Settings.
  2. Replace your old UniFi OS Console with the new one. All other network connections should remain unchanged.
  3. Restore your system configuration on the new UniFi OS Console using the backup file. This can be done either during the initial setup or afterwards in your UniFi OS settings.

Note: Currently, UniFi OS backups cannot be used to perform cross-console migrations, but this capability will be added in a future update.

If you are migrating between two different console models, you will need to restore each application’s configuration with their individual backups. These file application backups will not include UniFi OS users or settings. 

See below for more information on using the configuration backups during migrations.

Migrating UniFi Network

Before migrating, we recommend reviewing your Device Authentication Credentials found in your Network application’s System Settings. These can be used to recover adopted device(s) if the migration is unsuccessful. 

Standard Migration

This is used when all devices are on the same Layer 2 network (i.e., all devices are on the same network/VLAN as the management application’s host device). 

Note: If you are a home user managing devices in a single location and have not used the set-inform command or other advanced Layer 3 adoption methods, this is most likely the method for you.

  1. Download the desired backup file (*.unf) from your original Network application’s System Settings
  2. Ensure that your new Network application is up to date. Backups cannot be used to restore older application versions.
  3. Replace your old UniFi OS Console with the new one. All other network connections should remain unchanged.
  4. Restore the backup file in the Network application’s System Settings.
  5. Ensure that all devices appear as online in the new application. If they do not, you can try Layer 3 adoption, or factory-reset and readopt your device(s) to the new Network application.

If a device appears as Managed by Other, click on it to open its properties panel, then use its Device Authentication Credentials (from the original Network application’s host device) to perform an Advanced Adoption.

Migrating Applications That Manage Layer 3 Devices

This method is for users that have performed Layer 3 device adoption (e.g., devices are on a different network/VLAN than the application’s host device). This may also be useful when migrating to a Network application host that is not also a gateway.

  1. Download the desired backup file (*.unf) from your original Network application’s System Settings
  2. Enable the Override Inform Host field on the original Network application’s host device, then enter the IP address of the new host device. This will tell your devices where they should establish a connection in order to be managed. Once entered, all devices in the old application should appear as Managed by Other.
    • When migrating to a Cloud Console, you can copy the Inform URL from the Cloud Console’s dashboard. You will need to remove the initial http:// and the ending :8080/inform
  3. Ensure that your new Network application is up to date. Backups cannot be used to restore older application versions.
  4. Restore the backup file in the Network application’s System Settings.
  5. Ensure that all devices appear as online in the new application. If they do not, you can try Layer 3 adoption, or factory reset and readopt your device(s) to the new application.

If a device appears as Managed by Other, click on it to open its properties panel, then use its Device Authentication Credentials (from the original Network application’s host) to perform an Advanced Adoption.

Exporting Individual Sites from a Multi-Site Host

Certain Network application hosts (e.g., Cloud Key, Cloud Console, self-hosted Network Server) can manage multiple sites. Site exportation allows you to migrate specific sites from one multi-site host to another. To do so:

  1. Click Export Site in your Network application’s System Settings to begin the guided walkthrough.
  2. Select the device(s) you wish to migrate to your new Network application.
  3. Enter the Inform URL of your new host. This will tell your devices where they should establish a connection in order to be managed. Once entered, all devices in the old application should appear as Managed by Other in the new one.
    • When migrating to a Cloud Console, you can copy the Inform URL from the Cloud Console’s dashboard. You will need to remove the initial http:// and the ending :8080/inform.
  4. Go to your new Network application and select Import Site from the site switcher located in the upper-left corner of your dashboard.
    • Note: You may need to enable Multi-Site Management in your System Settings.
  5. Ensure that all devices appear as online in the new application. If they do not, you try Layer 3 adoption, or factory reset and readopt your device(s) to the new application.

If a device appears as Managed by Other, click on it to open its properties panel, then use its Device Authentication Credentials (from the original Network application’s host) to perform an Advanced Adoption.

Migrating UniFi Protect

We recommend saving your footage with the Export Clips function before migrating. Although we provide HDD migration instructions, it is not an officially supported procedure due to nuances in the RAID array architecture. 

Standard Migration

  1. Download the desired backup file (*.zip) from the original Protect application’s settings. 
  2. Ensure that your new Protect application is up to date. Backups cannot be used to restore older application firmware.
  3. Replace your old UniFi OS Console with the new one. All other camera connections should remain unchanged.
  4. Restore the backup file in the Protect application’s settings.

HDD Migration

Full HDD migration is not officially supported; however, some users have been able to perform successful migrations by ensuring consistent ordering when ejecting and reinstalling drives into their new console to preserve RAID arrays.

Note: This is only possible if both UniFi OS Consoles are the same model.

  1. Remove the HDDs from the old console. Record which bay each one was installed in, but do not install them in the new console yet.
  2. Turn on the new console and complete the initial setup wizard. Do not restore a Protect application or Cloud backup during initial setup.
  3. Upgrade the new console and its Protect application to a version that is either the same or newer than the original console.
  4. Shut down the new console, and then install the HDDs in the same bays as the original console.
  5. Turn on the new console again. The Protect application should start with its current configuration intact, and all exported footage should be accessible.


Source :
https://help.ui.com/hc/en-us/articles/360008976393

Ubiquiti UniFi – Storage Replacement (HDD/SSD/SD Cards)

You may need to replace a storage disk when upgrading to a larger storage capacity, or if your current disk has naturally degraded over time, as discussed in our article on Disk Health. UniFi OS makes this process incredibly simple.

Before Replacing a Disk

  1. Back up your UniFi OS Host.
  2. Obtain a compatible disk.
  3. Export any recordings you want to keep (all recordings on the disk will be lost).

How to Replace a Disk

All UniFi Hosts with removable disks can be opened and the disks swapped with ease.

  • Hosts with HDDs and SSDs (i.e., Dream Machines & Video Recorders): Simply press the disk tray to open it. Then take out and replace the disk in the same orientation.
  • Hosts with microSD cards (i.e., Dream Router & Dream Wall): Carefully pull the tray out of its slot, then replace the card in the same orientation.

Cloud Key Gen2 Plus and Devices “Managed by Other”

The Cloud Key Gen2 Plus is unique, because it operates entirely off its external storage. Replacing this disk will result in a new database. Any connected devices (i.e., Cameras & Access Points) will still be associated with the old database, and will appear as “Managed by Other.”

In this case, restoring from a backup will resync the devices with your Cloud Key. If you did not make a backup before replacing the storage, you will need to factory reset and readopt your device(s).

Ensure the following when replacing a disk in your CK G2 Plus:

  • No security devices are connected to the security slot on the side.
  • Your Cloud Key has been shut down from UniFi OS > Console Settings and is unplugged.
    • The HDD should not be removed or installed while the CK is powered on.

Replacing a Disk in an Array

The Network Video Recorder and Network Video Recorder Pro can maximize data protection by creating storage arrays across multiple disks. For more information, see Storage Protect and Data Redundancy

Remember:

  • Always replace a failed disk first before replacing an at-risk disk.
  • Replace one disk at a time, allowing storage to fully repair before replacing the next disk.
  • Repairing a disk takes significant work, and will impact overall performance.

Source :
https://help.ui.com/hc/en-us/articles/12257010646679-UniFi-Storage-Replacement-HDD-SSD-SD-Cards-

NIST Password Guidelines

Joe Dibley

Published: November 14, 2022

Updated: March 17, 2023

What are NIST Password Guidelines?

Since 2014, the National Institute of Standards and Technology (NIST), a U.S. federal agency, has issued  guidelines for managing digital identities via Special Publication 800-63B. The latest revision (rev. 3) was released in 2017, and has been updated as recently as 2019. Revision 4 was made available for comment and review; however, revision 3 is still the standard as of the time of this blog post.

Section 5.1.1 – Memorized Secrets provides recommendations for requirements around how users may create new passwords or make password changes, including guidelines around issues such as password strength. Special Publication 800-63B also covers verifiers (software, websites, network directory services, etc.) that validate and handle passwords during authentication and other processes.

Handpicked related content:

Not all organizations must adhere to NIST guidelines. However, many follow NIST password policy recommendations even if it’s not required because they provide a good foundation for sound digital identity management. Indeed, strong password security helps companies block many cybersecurity attacks, including  hackers, brute force attacks like credential stuffing and dictionary attacks. In addition, mitigating identity-related security risks helps organizations ensure compliance with a wide range of regulations, such as HIPAA, FISMA and SOX.

Quick List of NIST Password Guidelines

This blog explain many NIST password guidelines in detail, but here’s a quick list:

  • User-generated passwords should be at least 8 characters in length.
  • Machine-generated passwords should be at least 6 characters in length.
  • Users should be able to create passwords at least 64 characters in length.
  • All ASCII/Unicode characters should be allowed, including emojis and spaces.
  • Stored passwords should be hashed and salted, and never truncated.
  • Prospective passwords should be compared against password breach databases and rejected if there’s a match.
  • Passwords should not expire.
  • Users should be prevented from using sequential characters (e.g., “1234”) or repeated characters (e.g., “aaaa”).
  • Two-factor authentication (2FA) should not use SMS for codes.
  • Knowledge-based authentication (KBA), such as “What was the name of your first pet?”, should not be used.
  • Users should be allowed 10 failed password attempts before being locked out of a system or service.
  • Passwords should not have hints.
  • Complexity requirements — like requiring special characters, numbers or uppercase letters — should not be used.
  • Context-specific words, such as the name of the service or the individual’s username, should not be permitted.

You probably notice that some of these recommendations represent a departure from previous assumptions and standards. For example, NIST has removed complexity requirements like special characters in passwords; this change was made in part because users find ways to circumvent stringent complexity requirements. Instead of struggling to remember complex passwords and risking getting locked out, they may write their passwords down and leave them near physical computers or servers. Or they simply recycle old passwords based on dictionary words by making minimal changes during password creation, such as incrementing a number at the end.

NIST Guidelines

Now let’s explore the NIST guidelines in more detail.

Password length & processing

Length has long been considered a crucial factor for password security. NIST now recommends a password policy that requires all user-created passwords to be at least 8 characters in length, and all machine-generated passwords to be at least 6 characters in length. Additionally, it’s recommended to allow passwords to be at least 64 characters as a maximum length.

Verifiers should no longer truncate any passwords during processing. Passwords should be hashed and salted, with the full password hash stored.

Also the recommended NIST account lockout policy is to allow users at least 10 attempts at entering their password before being locked out.

Accepted characters

All ASCII characters, including the space character, should be supported in passwords. NIST specifies that Unicode characters, such as emojis, should be accepted as well.

Users should be prevented from using sequential characters (e.g., “1234”), repeated characters (e.g., “aaaa”) and simple dictionary words.

Commonly used & breached passwords

Passwords that are known to be commonly used or compromised should not be permitted. For example, you should disallow passwords in lists from breaches (such as the Have I Been Pwned? database, which contains 570+ million passwords from breaches), previously used passwords, well-known commonly used passwords, and context-specific passwords (e.g., the name of the service).

When a user attempts to use a password that fails this check, a message should be displayed asking them for a different password and providing an explanation for why their previous entry was rejected.

Reduced complexity & password expiration

As explained earlier in the blog, previous password complexity requirements have led to less secure human behavior, instead of the intended effect of tightening security. With that in mind, NIST recommends reduced complexity requirements, which includes removing requirements for special characters, numbers, uppercase characters, etc.

A related recommendation for reducing insecure human behavior is to eliminate password expiration.

No more hints or knowledge-based authentication (KBA)

Although password hints were intended to help users to create more complex passwords, users often choose hints that practically give away their passwords. Accordingly, NIST recommends not allowing password hints.

NIST also recommends not using knowledge-based authentication (KBA), such as questions like “What was the name of your first pet?”

Password managers & two-factor authentication (2FA)

To account for the growing popularity of password managers, users should be able to paste passwords.

SMS is no longer considered a secure option for 2FA. Instead, one-time code provider, such as Google Authenticator or Okta Verify, should be used.

How Netwrix Can Help

Netwrix offers several solutions specifically designed to streamline and strengthen access and password management:

  • Netwrix Password Policy Enforcer makes it easy to create strong yet flexible password policies that enhance security and compliance without hurting user productivity or burdening helpdesk and IT teams.
  • Netwrix Password Reset enables users to safely unlock their own accounts and reset or change their own passwords, right from their web browser. This self-service functionality dramatically reduces user frustration and productivity losses while slashing helpdesk call volume.

FAQ

What is NIST Special Publication 800-63B?

NIST’s Digital Identity Guidelines (Special Publication 800-63B) provides reliable recommendations for identity and access management, including effective password policies.

Why does NIST recommend reducing password complexity requirements?

While requiring complex passwords makes them more difficult for attackers to crack, it also makes passwords harder for users to remember. To avoid frustrating lockouts, users tend to respond with behaviors like writing down their credentials on a sticky note by their desk or choosing to periodically reuse the same (or nearly the same) password — which increase security risks. Accordingly, NIST now recommends less stringent complexity requirements.

Source :
https://blog.netwrix.com/2022/11/14/nist-password-guidelines/

Top Strategies to Harden Your Active Directory Infrastructure

Joe Dibley

Published: April 28, 2023

Microsoft Active Directory (AD) is the central credential store for 90% of organizations worldwide. As the gatekeeper to business applications and data, it’s not just everywhere, it’s everything! Managing AD is a never-ending task, and securing it is even harder. At Netwrix, we talk to a lot of customers who are using our tools to manage and secure AD, and over the years, key strategies for tightening security and hardening AD to resist attacks have emerged. Here are 10 Active Directory security hardening tips that you can use in your environment:

Handpicked related content:

Tip #1: Clean up stale objects.

Active Directory includes thousands of items and many moving elements to safeguard. A core method for increasing security is to decrease clutter by removing unused users, groups and machines. Stale AD objects may be abused by attackers, so deleting them reduces your attack surface.

You may also find seldom-used items. Use HR data and work with business stakeholders to determine their status; for example, for user accounts, determine the user’s manager. While this takes time, you’ll appreciate having it done during your next audit or compliance review.

Tip #2: Make it easy for users to choose secure passwords.

To prevent adversaries from compromising user credentials to enter your network and move laterally, passwords need to be hard to crack. But users simply cannot remember and manage multiple complex passwords on their own, so they resort to practices that weaken security, such as writing their passwords on sticky notes or simply incrementing a number at the end when they need to change them. That led security experts to weaken their recommendations concerning password complexity and resets.

However, with an enterprise password management solution, you can make it easy for users to create unique and highly secure passwords and manage them effectively, so you do not have to compromise on strong password requirements. A user needs to memorize just one strong password, and the tool manages all the others for them.

Tip #3: Don’t let employees have admin privileges on their workstations.

If an attacker gains control of a user account (which we all know happens quite a bit), their next step is often to install hacking software on the user’s workstation to help them move laterally and take over other accounts. If the compromised account has local admin rights, that task is easy.

But most business users do not actually need to install software or change settings very often, so you can reduce your risk by not giving them admin permissions. If they do need an additional application, they can ask the helpdesk to install it. Don’t forget to use Microsoft LAPS ensure all remaining local admin accounts have strong passwords and change them on a regular schedule.

Tip #4: Lock down service accounts.

Service accounts are used by applications to authenticate to AD. They are frequently targeted by attackers because they are rarely monitored, have elevated privileges and typically have passwords with no expirations. Accordingly, take a good look at your service accounts and restrict their permissions as much as possible. Sometimes service accounts are members of the Domain Admin’s group, but typically don’t need all of that access to function — you may need to check with the application vendor to find out the exact privileges needed.

It’s also important to change service account passwords periodically to make it even more difficult for attackers to exploit them. Doing this manually is difficult, so consider using the group managed service account (gMSA) feature, introduced in Windows Server 2016. When you use gMSAs, the operating system will automatically handle the password management of service accounts for you.

Tip #5: Eliminate permanent membership in security groups.

The Enterprise Admin, Schema Admin and Domain Admin security groups are the crown jewels of Active Directory, and attackers will do everything they can to get membership in them. If your admins have permanent membership in these groups, an attacker who compromises one of their accounts will have permanent elevated access in your domain.

To reduce this risk, strictly limit membership in all of these highly privileged group and, furthermore, make membership temporary. The Enterprise Admin and Schema Admin groups are not frequently used, so for these, this won’t be an issue. Domain Admin is needed much more, so a system for granting temporary membership will have to be set up.

Tip #6: Eliminate elevated permissions wherever possible.

There are three fairly common permissions that attackers need to execute attacks against AD: Reset Password, Change Group Membership and Replication. These permissions are harder to secure since they are so frequently used in daily operations.

Accordingly, you should monitor all changes to security group permissions or membership that would grant these rights to additional users. Even better, implement a privileged access management (PAM) solution that enables just-in-time temporary provisioning of these privileges.

Tip #7: Implement multifactor authentication (MFA)

MFA adds an extra layer of security by requiring users to verify their identity by providing at least two of the following types of authentication factors:

  • Something they know, such as a password, PIN or answer to a security question
  • Something they have, such as a code from a physical token or a smart card
  • Something they are, which means biometrics like a fingerprint, iris or face scan

Tip #8: Closely audit your Active Directory.

It is important to audit Active Directory for both non-secure settings and suspicious activity. In particular, you should perform regular risk assessment to mitigate security gaps, monitor for anomalous user activity, and promptly identify configuration drift in critical system files. It’s ideal to invest in tools that will automatically alert you to suspicious events and even respond automatically to block threats.

Tip #9: Secure DNS.

Securing DNS can help you to block a variety of attacks, including as domain hijacking and DNS spoofing. Steps to take include implementing DNSSEC, using a secure DNS server and regularly reviewing DNS settings.

Tip #10: Regularly back up Active Directory.

Having a recent backup of your Active Directory is crucial for recovery from cyber incidents, including ransomware attacks and natural disasters. Backups should be stored securely, tested regularly and be readily accessible to ensure your critical AD settings are recoverable in the event of a disaster.

Conclusion

Active Directory is an amazing system for controlling access. However, it’s only secure when it’s clean, understood, properly configured, closely monitored and tightly controlled. These tips are practical ways that you can tighten security and harden your Active Directory.

Frequently Asked Questions

What is hardening in Active Directory?

Hardening in Active Directory is the process of securing and strengthening the directory service to reduce the risk of data breaches and downtime. It involves controlling access to sensitive data, removing unnecessary objects, enforcing password policies and monitoring for suspicious activity.

What is domain controller hardening?

Domain controller hardening is the process of strengthening the servers that run Active Directory to reduce the risk of unauthorized access, data breaches and service disruption. It includes deactivating superfluous services, deploying security patches and updates, establishing firewall rules, and enforcing strong password practices.

What happens if a domain controller is compromised?

An adversary who compromises a domain controller can do significant damage, from accessing sensitive data to creating, modifying and deleting user accounts and other critical AD objects.

How do I secure Active Directory?

Securing Active Directory is an ongoing process that involves multiple layers of security controls. In particular, organizations need to  implement strong password policies, limit user access, monitor for suspicious activity, keep machines patched and updated, secure domain controllers, use multifactor authentication (MFA) to add extra security, and educate employees on cybersecurity best practices and potential threats.

Source :
https://blog.netwrix.com/2023/04/28/harden-active-directory/

Active Directory Security Groups Best Practices

Kevin Joyce

Published: May 4, 2023

Active Directory security groups are used to grant users permissions to IT resources. Each security group is assigned a set of access rights, and then users are made members of the appropriate groups. Done right, this approach enables an accurate, role-based approach to user management and reduces IT workload.

Why should Security Groups Stay Secure?

Security groups should always be protected with clear security protocols because they govern user and computer access to resources that could be highly confidential, sensitive, and critical to the organization. Any oversight may result in security breaches and data theft with lasting consequences. Hence, you need to establish some best practices for using and managing security groups.

Key Best Practices

The following best practices can help you use security groups effectively.

  • Use Group Nesting to Simplify Access Management
  • Give each security group a unique, descriptive name
  • Limit each group’s permissions to the bare minimum
  • Make each user a member of only the required groups
  • Track group activity and changes to security groups
  • Pay attention to service accounts
  • Have group owners review their groups regularly, and remove groups that are no longer needed
  • Use privileged accounts only when required
  • Always create a recovery plan

Use Group Nesting to Simplify Access Management.

When we talk about group nesting, we refer to making an AD group a member of another group. This strategy enables us to give permissions across domains through universal groups. It works this way:

Use Group Nesting to Simplify Access Management.

Give each security group a unique, descriptive name.

When security groups have unclear names, or multiple groups have similar names, such as ‘Sales Group 1’ and ‘Sales Group 2’, it’s difficult to ensure that they have the correct permissions and membership. To reduce risk, establish group naming standards that ensure consistency and uniqueness.

Limit each group’s permissions to the bare minimum.

The least privilege principle is the cornerstone of security. Make sure each security group is assigned only the permissions that its members need to complete their tasks. Granting excessive permissions to a group enables any group member — or an adversary who compromises their account — to abuse those rights.

Make each user a member of only the required groups.

Never add users to groups they do not need to be a part of. Moreover, remove them promptly from groups they no longer need to belong to, such as when they change roles within the organization. For example, when users change departments, remove them from the previous department’s groups and add them to the new department’s groups. That way, each user has access only to the resources they need, which reduces your organization’s attack surface area.

Track group activity and changes to security groups.

Any improper change to the permissions or membership of a security group puts the organization at increased risk of security incidents and business disruptions. Be especially vigilant about monitoring changes to highly privileged groups like Domain Admins and Enterprise Admins.

Look out for the following to detect suspicious behavior:

  • Unauthorized permission and membership changes
  • Unnecessary or unusual use of admin accounts
  • Failed password attempts
  • Locked out accounts
  • Disabled or removed antivirus software

At a minimum, log the events and regularly run reports to spot suspicious activity. Even better, use a tool that will alert you in real time to changes to critical security groups, or block those changes from happening in the first place.

Pay attention to service accounts.

A service account is a special user account created to run a particular application or service. Best practices for service accounts include the following:

  • Set secure passwords.
  • Do not make service accounts members of built-in privileged groups like Domain Admins.
  • Enforce least privilege by granting each service account the minimum access required to accomplish its tasks.

Have group owners review their groups regularly, and remove groups that are no longer needed.

Security groups are usually set up to provide access to resources for a particular project team— but when the project is over, the group is often not deleted. By requiring group owners to regularly review their groups, you can improve security by removing groups that are no longer needed.

As a best practice, disable or delete dormant accounts after about 45 days of inactivity. Set up a system to distinguish inactive accounts from active accounts, which would help in removing inactive accounts from security groups. Hackers can easily target unused accounts since no one keeps track of the account’s activities. And if that unused account is a member of multiple security groups, the implications could be devastating.

Use privileged accounts only when required.

Accounts that are members of privileged groups should be used only for performing administrative tasks that require elevated rights. For all other tasks, admins should use their regular user accounts. This strategy reduces the risk of attackers gaining control of an account that is a member of security groups with access to sensitive systems and data.

Always create a recovery plan.

Despite keeping security intact, data breaches may happen at times due to an error. As a proactive measure, have a recovery plan in place with due attention to recovering security groups. IT teams must be trained to handle such a situation with quick and intelligent decision-making.

Simplifying Security Group Management

Netwrix GroupID can help you effectively manage your Active Directory security groups. Here are some of the ways it can help you implement the best practices described above.

  • Establish and enforce standards for naming groups
  • Ensure the membership of security groups is accurate
  • Establish an attestation process for security groups
  • Set security groups to expire automatically
  • Set a default group approver

Establish and enforce standards for naming groups.

Netwrix GroupID helps you implement consistency and convention in group names with the following features:

  • Group name prefixes
  • Regular expressions
  • Templates for naming nested groups
  • Lists of blocked words

Ensure the membership of security groups is accurate.

Netwrix GroupID enables you to manage group membership with LDAP queries as an alternative to manually adding and removing users, thus ensuring that membership is always up to date.

Establish an attestation process for security groups.

Netwrix GroupID makes it easy for group owners to regularly review the attributes, membership, and permissions of their security groups, as well as whether the groups are still needed. This process helps maintain a check on groups.

Set security groups to expire automatically.

You can set an expiry date for a security group, such as a group created for a specific project. Netwrix GroupID sends an email notification to a group’s owner 30 days, 7 days and 1 day before the expiration date. If the group is not renewed, it is automatically deleted. Expired groups that have been deleted can be quickly restored if necessary.

You can easily exempt any security group from expiration, including the default security groups in Active Directory.

Set a default group approver.

You can designate a default approver for groups, who will receive expiry notifications for groups without owners.

Conclusion

Properly managing your Active Directory security groups is vital to protecting your IT systems and data. A solution like Netwrix GroupID can make it easy to implement the best practices detailed here.

Source :
https://blog.netwrix.com/2023/05/04/active-directory-security-groups/

RSA Report: Cybersecurity is National Security

The role of government in stopping supply chain attacks and other threats to our way of life.

By Amber Wolff
April 26, 2023

How governments play a vital role in developing regulations, stopping supply chain attacks, and diminishing other threats to our way of life.

While new issues are always emerging in the world of cybersecurity, some have been present since the beginning, such as what role cybersecurity should play in government operations and, conversely, what role government should play in cybersecurity. The answer to this question continues to shift and evolve over time, but each new leap in technology introduces additional considerations. As we move into the AI era, how can government best keep citizens safe without constraining innovation and the free market — and how can the government use its defensive capabilities to retain an edge in the conflicts of tomorrow?

The day’s first session, “Cybersecurity and Military Defense in an Increasingly Digital World,” offered a deep dive into the latter question. Over the past 20 years, military conflicts have moved from involving just Land, Air and Sea to also being fought in Space and Cyber. While superior technology has given us an upper hand in previous conflicts, in some areas our allies — and our adversaries — are catching up or even surpassing us. In each great technological leap, companies and countries alike ascend and recede, and to keep our edge in the conflicts of the future, the U.S. will need to shed complacency, develop the right policies, move toward greater infrastructure security and tap the capabilities of the private sector.

SonicWall in particular is well-positioned to work with the federal government and the military. For years, we’ve helped secure federal agencies and defense deployments against enemies foreign and domestic, and have woked to shorten and simplify the acquisition and procurement process. Our list of certifications includes FIPS 140-2, Common Criteria, DoDIN APL, Commercial Solutions for Classified (CSfC), USGv6, IPv6 and TAA and others. And our wide range of certified solutions have been used in a number of government use cases, such as globally distributed networks in military deployments and federal agenciestip-of-the-spearhub-and-spokedefense in-depth layered firewall strategies and more.

Because Zero Trust is just as important for federal agencies as it is for private sector organizations, SonicWall offers the SMA 1000, which offers Zero Trust Network Architecture that complies with federal guidelines, including the DoDIN APL, FIPS and CSfC, as well as the U.S. National Cybersecurity Strategy.

This new strategy was at the center of the day’s next session. In “The National Cyber Strategy as Roadmap to a Secure Cyber Future,” panelists outlined this strategic guidance, which was released just two months ago and offered a roadmap for how the U.S. should protect its digital ecosystem against malicious criminal and nation-state actors. The guidance consists of five pillars, all of which SonicWall is in accord with:

  • Pillar One: Defend Critical Infrastructure
    SonicWall offers several security solutions that align with Pillar One, including firewalls, intrusion prevention, VPN, advanced threat protection, email security, Zero-Trust network access and more. We’re also working to align with and conform to NIST SSDF and NIST Zero Trust Architecture standards.
  • Pillar Two: Disrupt and Dismantle Threat Actors

SonicWall uses its Email Security to disrupt and mitigate the most common ransomware vector: Phishing. And in 2022 alone, we helped defend against 493.3 million ransomware attacks.

  • Pillar Three: Shape Market Forces to Drive Security and Resilience

This pillar shifts liability from end users to software providers that ignore best practices, ship insecure or vulnerable products or integrate unvetted or unsafe third-party software. And as part of our efforts to aign with the NIST SSDF, we’re implementing a Software Bill of Materials (SBOM).

  • Pillar Four: Invest in a Resilient Future

Given CISA’s prominence in this guidance, any regulations created will likely include threat emulation testing, and will likely be mapped to threat techniques, such as MITRE ATT&CKSonicWall Capture Client (our EDR solution) is powered by SentinelOne, which has been a participant in the MITRE ATT&CK evaluations since 2018 and was a top performer in the 2022 Evaluations.

  • Pillar Five: Forge International Partnerships to Pursue Shared Goals

An international company, SonicWall recognizes the importance of international partnerships and works to comply with global regulations such as GDPR, HIPAA, PCI-DSS and more. By sharing threat intelligence and collaborating no mitigation strategies, we work with governments and the rest of the cybersecurity community to pursue shared cybersecurity goals.

And with the continued rise in cybercrime, realizing these goals has never been more important. In “The State of Cybersecurity: Year in Review,” Mandiant CEO Kevin Mandia summarized findings from the 1,163 intrusions his company investigated in 2022. The good news, Mandia said, is that we’re detecting threats faster. In just ten years, we’ve gone from averaging 200 days to notice there’s a problem, to just 16 days currently — but at the same time, an increase in the global median dwell time for ransomware shows there’s still work to be done.

Mandia also outined the evolution of how cybercriminals are entering networks, from Unix platforms, to Windows-based attacks, and from phishing, to spearphishing to vulnerabilities — bringing patch management once again to the fore.

Deep within the RSAC Sandbox, where today’s defenders learn, play and test their skills, panelists convened to discuss how to stop attackers’ relentless attempts to shift left. “Software Supply Chain: Panel on Threat Intel, Trends, Mitigation Strategies” explained that while the use of third-party components increases agility, it comes with tremendous risk. More than 96% of software organizations rely on third-party code, 90% of which consists of open source—but the developers of this software are frequently single individuals or small groups who may not have time to incorporate proper security, or even know how. Our current strategy of signing at the end isn’t enough, panelists argued—to truly ensure safety, signing should be done throughout the process (otherwise known as “sign at the station”).

Israel provides an example of how a country can approach the issue of software supply chain vulnerability — among other things, the country has created a GitHub and browser extension allowing developers to check packages for malicious code — but much work would need to be done to implement the Israel model in the U.S. AI also provides some hope, but given its current inability to reliably detect malicious code, we’re still a long way from being able to rely on it. In the meantime, organizations will need to rely on tried-and-true solutions such as SBOMs to help guard against supply chain attacks in the near future.

But while AI has tremendous potential to help defenders, it also has terrible potential to aid attackers. In “ChatGPT: A New Generation of Dynamic Machine-Based Attacks,” the speakers highlighted ways that attackers are using the new generation of AI technology to dramatically improve social engineering attempts, expand their efforts to targets in new areas, and even write ransomware and other malicious code. In real time, the speakers demonstrated the difference between previous phishing emails and phishing generated by ChatGPT, including the use of more natural language, the ability to instantly access details about the target and the ability to imitate a leader or colleague trusted by the victim with a minimum of effort. These advancements will lead to a sharp increase in victims of phishing attacks, as well as things like Business Email Compromise.

And while there are guardrails in place to help prevent ChatGPT from being used maliciously, they can be circumvented with breathtaking ease. With the simple adjustment of a prompt, the speakers demonstrated, ransomware and other malicious code can be generated. While this code isn’t functional on its own, it’s just one or two simple adjustments away — and this capability could be used to rapidly increase the speed with which attacks are launched.

These capabilities are especially concerning given the rise in state-sponsored attacks. In “State of the Hack 2023: NSA’s Perspective,” NSA Director of Cybersecurity Rob Joyce addressed a packed house regarding the NSA’s work to prevent the increasing wave of nation-state threats. The two biggest nation-state threats to U.S. cybersecurity continue to be Russia and China, with much of the Russian effort centering around the U.S.’ assistance in the Russia/Ukraine conflict.

As we detailed in our SonicWall 2023 Cyber Threat Report, since the beginning of the conflict, attacks by Russia’s military and associated groups have driven a massive spike in cybercrime in Ukraine. The good news, Joyce said, is that Russia is currently in intelligence-gathering mode when it comes to the U.S., and is specifically taking care not to release large-scale NotPetya-type attacks. But Russia also appears to be playing the long game, and is showing no signs of slowing or scaling back their efforts.

China also appears to be biding its time — but unlike Russia, whose efforts appear to be focused around traditional military dominance, China is seeking technological dominance. Exploitation by China has increased so much that we’ve become numb to it, Joyce argued. And since these nation-state sponsored attackers don’t incur much reputational damage for their misdeeds, they’ve become increasingly brazen in their attacks, going so far as to require any citizen who finds a zero-day to pass details to the government and hosting competitions for building exploits and finding vulnerabilities. And the country is also making efforts to influence international tech standards in an attempt to tip scales in their favor for years to come.

The 2023 RSA Conference has offered a wealth of information on a wide variety of topics, but it will soon draw to a close. Thursday is the last day to visit the SonicWall booth (#N-5585 in Moscone North) and enjoy demos and presentations on all of our latest technology. Don’t head home without stopping by — and don’t forget to check back for the conclusion of our RSAC 2023 coverage!

Source :
https://blog.sonicwall.com/en-us/2023/04/rsa-report-cybersecurity-is-national-security/

Preventing and Detecting Attacks Involving 3CX Desktop App

In this blog entry, we provide technical details and analysis on the 3CX attacks as they happen. We also discuss available solutions which security teams can maximize for early detection and mitigate the impact of 3CX attacks.

By: Trend Micro Research
March 30, 2023
Read time: 7 min (1870 words)

Updated on:

  • April 5, 2:39 a.m. EDT: We added Windows, Mac, and network commands to the Trend Micro Vision One™️ guide in the linked PDF.
  • April 4, 3:29 a.m. EDT: We added Trend Micro XDR filters to the solutions.
  • April 3, 2:33 a.m. EDT: We added details on d3dcompiler_47.dll‘s abuse of CVE-2013-3900 to make it appear legitimately signed.
  • April 1, 1:50 a.m. EDT: We added a guide on how Vision One can be used to search for potential threats associated with the 3CX desktop app. 
  • March 31, 11:07 p.m. EDT: We added technical details, an analysis of the info-stealer payload, and information on Trend Micro XDR capabilities for investigating and mitigating risks associated with the 3CX desktop app.
  • March 31, 3:00 a.m. EDT: We added the execution flow diagram, a link to Trend Micro support page, and a list of Mac IOCs and detection names.
  •  

In late March 2023, security researchers revealed that threat actors abused a popular business communication software from 3CX — in particular, the reports mention that a version of the 3CX VoIP (Voice over Internet Protocol) desktop client was being employed to target 3CX’s customers as part of an attack.

On its forums, 3CX has posted an update that recommends uninstalling the desktop app and using the Progressive Web App (PWA) client instead. The company also mentioned that they are working on an update to the desktop app.

For a more comprehensive scope of protection against possible attacks associated with the 3CX Desktop App, the Trend Micro XDR platform can help organizations mitigate the impact by collecting and analyzing extensive activity data from various sources. By applying XDR analytics to the data gathered from its native products, Trend Micro XDR generates correlated and actionable alerts.  

Trend Micro customers can also take advantage of Trend Micro Vision One™ to search for and monitor potential threats associated with the 3CX Desktop App, and to better understand observed attack vectors. For more information on how to utilize Trend Micro Vision One features, you may download the PDF guide here.

Additional guidance for Trend Micro customers including help with protection and detection can be found on our support page.

What is the compromised application?

The 3CX app is a private automatic branch exchange (PABX) software that provides several communication functions for its users, including video conferencing, live chat, and call management. The app is available on most major operating systems, including Windows, macOS, and Linux. Additionally, the client is available as a mobile application for both Android and iOS devices, while a Chrome extension and the PWA version of the client allow users to access the software through their browsers.

The issue was said to be limited to the Electron (non-web versions) of their Windows package (versions 18.12.407 and 18.12.416) and macOS clients (versions 18.11.1213, 18.12.402, 18.12.407 and 18.12.416).

According to the company’s website, more than 600,000 businesses and over 12 million daily users around the world use 3CX’s VoIP IPBX software.

How does the attack work?

The attack is reportedly a multi-stage chain in which the initial step involves a compromised version of the 3CX desktop app. Based on initial analysis, the MSI package (detected by Trend Micro as Trojan.Win64.DEEFFACE.A and Trojan.Win64.DEEFFACE.SMA) is the one that is compromised with possible trojanized DLLs, since the .exe file has the same name.

The infection chain begins with 3CXDesktopApp.exe loading ffmpeg.dll (detected as Trojan.Win64.DEEFFACE.A andTrojan.Win64.DEEFFACE.SMA). Next, ffmpeg.dll reads and decrypts the encrypted code from d3dcompiler_47.dll (detected as Trojan.Win64.DEEFFACE.A and Trojan.Wind64.DEEFACE.SMD3D).

The decrypted code seems to be the backdoor payload that tries to access the IconStorages GiHub page to access an ICO file (detected as Trojan.Win32.DEEFFACE.ICO) containing the encrypted C&C server that the backdoor connects to in order to retrieve the possible final payload. In addition, d3dcompiler_47.dll also abuses CVE-2013-3900 to make it appear that it is legitimately signed.

Figure 1. The detailed execution flow and Trend Micro detections of the malicious files. The MSI installer contains the .exe and two .dll files. The main source of the detection in the MSI installer is "ffmpeg.dll," which is the trojanized DLL.
Figure 1. The detailed execution flow and Trend Micro detections of the malicious files. The MSI installer contains the .exe and two .dll files. The main source of the detection in the MSI installer is “ffmpeg.dll,” which is the trojanized DLL.

As part of its attack routine, it contacts the servers noted in the list of indicators of compromise (IOCs) at the end of this blog entry. These domains are blocked by the Trend Micro Web Reputation Services (WRS).

Execution flow

Upon execution, the MSI package installer will drop the following files that are related to malicious behavior. Trend Micro Smart Scan Pattern (cloud-based) TBL 21474.300.40 can detect these files as Trojan.Win64.DEEFFACE.A.

  • 3CXDesktopApp.exe: A normal file that is abused to load the trojanized DLL
  • ffmpeg.dll: A trojanized DLL used to read, load, and execute a malicious shellcode from d3dcompiler_47.dll
  • d3dcompiler_47.dll: A DLL appended with an encrypted shellcode after the fe ed fa ce hex string

Some conditions are necessary for execution. For example, the sleep timestamp varies depending on the following conditions: First, it checks if the manifest file is present, as well as if it is using a specified date. If the file is not present or if it is using the specified date, the timestamp will generate a random number and use the formula rand() % 1800000 + current date + 604800 (604,800 is seven days).  After the date is computed, the malware will continue its routine.

Upon execution of 3CXDesktopApp.exeffmpeg.dll, which seems to be a trojanized or patched DLL, will be loaded. It will still contain its normal functionalities, but it will have an added malicious function that reads d3dcompiler_47.dll to locate an encrypted shellcode after the fe ed fa ce hex strings.

Figure 2
Figure 2. Reading "d3dcompiler_47.dll" and locating the “fe ed fa ce” hex string
Figure 2. Reading “d3dcompiler_47.dll” and locating the “fe ed fa ce” hex string

Upon decryption of the malicious shellcode using RC4 with the key, 3jB(2bsG#@c7, the shellcode will then try to access the GitHub repository that houses the ICO files containing the encrypted C&C strings that use Base64 encoding and AES + GCM encryption at the end of the image.

These B64 strings seem to be C&C domains that the shellcode tries to connect to for downloading other possible payloads. However, we were unable to confirm the exact nature of these payloads since the GitHub repository (raw.githubusercontent[.]com/IconStorages/images/main/) had already been taken down at the time of this writing. Note that the process exits when the page is inaccessible.

Figure 3. Code snippet showing the hard-coded GitHub repository
Figure 3. Code snippet showing the hard-coded GitHub repository
Figure 4. An ICO file from the GitHub repository
Figure 4. An ICO file from the GitHub repository

The above description applies to the Windows version. The behaviour of the Mac version is broadly similar, although it only uses a subset of the Windows C&C domains.

Info-stealer payload analysis

Based on our ongoing analysis of attacks on 3CX and the behaviors observed, the following section details what we know so far about the payload’s attack vector. 

Payloads in investigated 3CX attacks are detected as TrojanSpy.Win64.ICONICSTEALER.THCCABC. Upon analysis of the payload named ICONIC Stealer, we discovered that if it is executed using regsvr32.exe as the DLL loader, it will display the following system error:

Figure 5. Error displayed upon executing the sample using "regsvr32.exe"
Figure 5. Error displayed upon executing the sample using “regsvr32.exe”

Meanwhile, if rundll32.exe is used as the DLL loader, it encounters a WerFault error and displays the following pop-up message:

Figure 6. Error displayed if "rundll32.exe" is used as the DLL loader
Figure 6. Error displayed if “rundll32.exe” is used as the DLL loader

This indicates that the sample must be loaded by a specific application to proceed to its malicious routine.

ICONIC Stealer then checks for a file named config.json under the folder “3CXDesktopApp.”

Figure 7. Checking for "config.json"
Figure 7. Checking for “config.json”

ICONIC Stealer was then observed to steal the following system information:

  • HostName
  • DomainName
  • OsVersion

The gathered data will then be converted into a text-string format.

Figure 8. Converting gathered data into a text-string format
Figure 8. Converting gathered data into a text-string format

ICONIC Stealer then proceeds to its last behavior, which steals browser data. It uses the function shown in Figure 9 to traverse the infected system using predefined directories related to the browser’s history and other browser-related information.

Figure 9. Function for traversing the infected system
Figure 9. Function for traversing the infected system

The following figure shows a list of predefined strings:

Figure 10. List of predefined strings
Figure 10. List of predefined strings

The system directories on the following list compose the targets identified in the partial analysis of the ICONIC Stealer’s behavior. More information will be provided as this blog is updated. 

  • AppData\Local\Google\Chrome\User Data
  •  
  • AppData\Local\Microsoft\Edge\User Data
  •  
  • AppData\Local\BraveSoftware\Brave-Browser\User Data
  •  
  • AppData\Roaming\Mozilla\Firefox\Profiles
BrowserTarget information
ChromeHistory
EdgeHistory
BraveHistory
Firefoxplaces.sqlite

Table 1. The targeted section of each browser. Note that “places.sqlite” stores the annotations, bookmarks, favorite icons, input history, keywords, and the browsing history of visited pages for Mozilla Firefox.

ICONIC Stealer was also found with the capability to limit the retrieved data to the first five hundred entries to ensure that the most recent browser activity is the data that is retrieved:

Figure 11. Limiting data to the first 500 entries
Figure 11. Limiting data to the first 500 entries

“UTF-16LE”, ‘SELECT url, title FROM urls ORDER BY id DESC LIMIT

“UTF-16LE”, ‘500’,0

“UTF-16LE”, ‘SELECT url, title FROM moz_places ORDER BY id DESC

“UTF-16LE”, ‘LIMIT 500’,0

Figure 12. Retrieved results stored on an allocated buffer
Figure 12. Retrieved results stored on an allocated buffer

The gathered data will be passed to the main loader module to POST then back to the C&C server embedded in the main module.

What is its potential impact?

Due to its widespread use and its importance in an organization’s communication system, threat actors can cause major damage (for example, by monitoring or rerouting both internal and external communication) to businesses that use this software.

What can organizations do about it?

Organizations that are potentially affected should stop using the vulnerable version if possible and apply the patches or mitigation workarounds if these are available. IT and security teams should also scan for confirmed compromised binaries and builds and monitor for anomalous behavior in 3CX processes, with a particular focus on C&C traffic. 

Meanwhile, enabling behavioral monitoring in security products can help detect the presence of the attack within the system.

Indicators of Compromise (IOCs)

SHA256File name / detailsDetection name
dde03348075512796241389dfea5560c20a3d2a2eac95c894e7bbed5e85a0acc
Installer: aa124a4b4df12b34e74ee7f6c683b2ebec4ce9a8edcf9be345823b4fdcf5d868
3cxdesktopapp-18.12.407.msi (Windows)Trojan.Win64.DEEFFACE.A
fad482ded2e25ce9e1dd3d3ecc3227af714bdfbbde04347dbc1b21d6a3670405
Installer: 59e1edf4d82fae4978e97512b0331b7eb21dd4b838b850ba46794d9c7a2c0983
(Windows)Trojan.Win64.DEEFFACE.A
c485674ee63ec8d4e8fde9800788175a8b02d3f9416d0e763360fff7f8eb4e02ffmpeg.dll Trojan.Win64.DEEFFACE.A
7986bbaee8940da11ce089383521ab420c443ab7b15ed42aed91fd31ce833896ffmpeg.dll Trojan.Win64.DEEFFACE.A
11be1803e2e307b647a8a7e02d128335c448ff741bf06bf52b332e0bbf423b03d3dcompiler.dllTrojan.Win64.DEEFFACE.A
4e08e4ffc699e0a1de4a5225a0b4920933fbb9cf123cde33e1674fde6d61444f Trojan.Win32.DEEFFACE.ICO
8ab3a5eaaf8c296080fadf56b265194681d7da5da7c02562953a4cb60e147423 StealerTrojanSpy.Win64.ICONICSTEALER.THCCABC

Here is the list of IOCs for Mac users: 

SHA256File nameDetection name
5a017652531eebfcef7011c37a04f11621d89084f8f9507201f071ce359bea3f3CX Desktop App-darwin-x64-18.11.1213.zipTrojan.MacOS.FAKE3L3CTRON.A
5407cda7d3a75e7b1e030b1f33337a56f293578ffa8b3ae19c671051ed3142903CXDesktopApp-18.11.1213.dmgTrojan.MacOS.FAKE3L3CTRON.A
fee4f9dabc094df24d83ec1a8c4e4ff573e5d9973caa676f58086c99561382d7libffmpeg.dylibTrojan.MacOS.FAKE3L3CTRON.A
5009c7d1590c1f8c05827122172583ddf924c53b55a46826abf66da46725505achild macho file of libffmpeg.dylibTrojan.MacOS.FAKE3L3CTRON.A
e6bbc33815b9f20b0cf832d7401dd893fbc467c800728b5891336706da0dbcec3CXDesktopApp-18.12.416.dmgTrojan.MacOS.FAKE3L3CTRON.A
a64fa9f1c76457ecc58402142a8728ce34ccba378c17318b3340083eeb7acc67libffmpeg.dylibTrojan.MacOS.FAKE3L3CTRON.A
87c5d0c93b80acf61d24e7aaf0faae231ab507ca45483ad3d441b5d1acebc43cchild macho file of libffmpeg.dylibTrojan.MacOS.FAKE3L3CTRON.A


The following domains are blocked by Trend Micro Web Reputation Services (WRS)

  • akamaicontainer[.]com
  • akamaitechcloudservices[.]com
  • azuredeploystore[.]com
  • azureonlinecloud[.]com
  • azureonlinestorage[.]com
  • dunamistrd[.]com
  • glcloudservice[.]com
  • journalide[.]org
  • msedgepackageinfo[.]com
  • msstorageazure[.]com
  • msstorageboxes[.]com
  • officeaddons[.]com
  • officestoragebox[.]com
  • pbxcloudeservices[.]com
  • pbxphonenetwork[.]com
  • pbxsources[.]com
  • qwepoi123098[.]com
  • sbmsa[.]wiki
  • sourceslabs[.]com
  • visualstudiofactory[.]com
  • zacharryblogs[.]com

Trend Micro XDR uses the following filters to protect customers from 3CX-related attacks:

FilterIDOS
Compromised 3CX Application File IndicatorsF6669macOS, Windows
DLL Sideloading of 3CX ApplicationF6668Windows
Web Reputation Services Detection for Compromised 3CX ApplicationF6670macOS, Windows
Suspicious Web Access of Possible Compromised 3CX ApplicationF6673Windows
Suspicious DNS Query of Possible Compromised 3CX ApplicationF6672Windows

Trend Micro Malware Detection Patterns for Endpoint, Servers (Apex One, Worry-Free Business Security Services, Worry-Free Business Security Standard/Advanced, Deep Security with anti-malware, among others), Mail, and Gateway (Cloud App Security, ScanMail for Exchange, IMSVA):

  • Starting with Trend Micro Smart Scan Pattern (cloud-based) TBL 21474.200.40, known trojanized versions of this application are being detected as Trojan Win64.DEEFFACE.A. 
  • The Mac version of this threat is detected as Trojan.MacOS.FAKE3L3CTRON.A.

Source :
https://www.trendmicro.com/en_us/research/23/c/information-on-attacks-involving-3cx-desktop-app.html

UniFi Network – 802.1X Control (Advanced)

This article describes how to configure 802.1X Control on UniFi switches to authenticate wired client devices. 

Requirements & Notes

  • A UniFi gateway or UniFi OS Console with a built-in gateway is required to run RADIUS.
  • A third-party RADIUS server can be used by creating a new RADIUS profile.
  • 802.1X Control mode ‘Auto’ requires the usage of a third-party RADIUS server.
  • The fallback VLAN is used when a client device fails to authenticate.

Configuring MAC-Based Authentication

1. Enable 802.1X Control for all or individual UniFi switches and optionally specify the Fallback VLAN.

  • All – Settings > Networks > Global Switch Settings > 802.1X Control
  • Individual – UniFi Devices > select switch > Settings > Advanced > 802.1X Control

2. Select the Default RADIUS profile when using a UniFi gateway or Create New RADIUS profile when using a third-party RADIUS server.

3. Create the RADIUS users that match the MAC addresses of the wired clients.

Settings > Profiles > RADIUS > Default > Create New RADIUS User

  • Username – Mac address in capital letters without any dashes or colons, for example ABCDEF123456.
  • Password – Mac Address in capital letters without any dashes or colons, for example ABCDEF123456.
  • VLAN ID – 0
  • Tunnel Type – None
  • Tunnel Medium Type – None
mceclip0.png

4. Create a new Port Profile and select MAC-based under the Advanced settings.

Settings > Profiles > Switch Ports > Create New Port Profile

  • Native Network – Default or specific network
  • Allowed Networks – None
  • Voice Network – None
  • 802.1X Control (Advanced) – MAC-based
mceclip0.png

5. Apply the 802.1X Control profile to the port(s) on the UniFi switch where a wired client device is connected.

UniFi Devices > select switch > Ports > Port Manager > select port(s) > Port Profile 

Source :
https://help.ui.com/hc/en-us/articles/115004589707-UniFi-Network-802-1X-Control-Advanced-

Patch CVE-2023-23397 Immediately: What You Need To Know and Do

We break down the basic information of CVE-2023-23397, the zero-day, zero-touch vulnerability that was rated 9.8 on the Common Vulnerability Scoring System (CVSS) scale.

Update as of 03/22/3023 2:50PM PHT: Updated the prevention and mitigation section for an additional step.

CVE-2023-23397 is a critical privilege elevation/authentication bypass vulnerability in Outlook, released as part of the March Patch Tuesday set of fixes. The vulnerability, which affects all versions of Windows Outlook, was given a 9.8 CVSS rating and is one of two zero-day exploits disclosed on March 14. We summarize the points that security teams need to know about this vulnerability and how they can mitigate the risks of this gap.

What is it?

CVE-2023-23397 is an elevation of privilege (EoP) vulnerability in Microsoft Outlook. It is a zero-touch exploit, meaning the security gap requires low complexity to abuse and requires no user interaction.

fig1-patch-cve-2023-23397-immeditaely-what-you-need-to-know-do-faq
Figure 1. General exploitation routine of CVE-2023-23397

How is CVE-2023-23397 exploited?

The attacker sends a message to the victim with an extended Message Application Program Interface (MAPI) property with a Universal Naming Convention (UNC) path to a remote attacker-controlled Server Message Block (SMB, via TCP 445). Share-hosted on a server controlled by the attacker, the vulnerability is exploited whether the recipient has seen the message or not. The attacker remotely sends a malicious calendar invite represented by .msg — the message format that supports reminders in Outlook — to trigger the vulnerable API endpoint PlayReminderSound using “PidLidReminderFileParameter” (the custom alert sound option for reminders).

When the victim connects to the attacker’s SMB server, the connection to the remote server sends the user’s New Technology LAN Manager (NTLM) negotiation message automatically, which the attacker can use for authentication against other systems that support NTLM authentication.

NTLMv2 hashes are the latest protocol Windows uses for authentication, and it is used for a number of services with each response containing a hashed representation of users’ information, such as the username and password. As such, threat actors can attempt a NTLM relay attack to gain access to other services, or a full compromise of domains if the compromised users are admins. While online services such as Microsoft 365 are not susceptible to this attack because they do not support NTLM authentication, the Microsoft 365 Windows Outlook app is still vulnerable.

How easy is it to exploit?

User interaction is not necessary to trigger (even before message preview) it, nor does it require high privileges. CVE-2023-23397 is a zero-touch vulnerability that is triggered when the victim client is prompted and notified (e.g., when an appointment or task prompts five minutes before the designated time). It is difficult to block outbound SMB traffic for remote users. The attacker could use the same credentials to gain access to other resources. We elaborate on this example in our webinar (at 04:23 of the video).

Is it in the wild? What versions and operating systems (OS) are affected?

There have been reports of limited attacks abusing this gap. Microsoft has been coordinating with the affected victims to remediate this concern. All supported versions of Microsoft Outlook for Windows are affected. Other versions of Microsoft Outlook, such as Android, iOS, Mac, as well as Outlook on the web and other M365 services, are not affected.

What are the possible attack scenarios?

fig2-patch-cve-2023-23397-immeditaely-what-you-need-to-know-do-faq
Figure 2. Beyond the exploit use scenario 1: Data and information theft via NTLM relay attack

1. Lateral movement, malicious navigation using the relayed NTLM hashes

Relay attacks gained notoriety as a use case for Mimikatz using the NTLM credential dumping routine via the sekurlsa module. In addition, pass-the-hat (PtH) (or pass-the hash) attacks and variations of data and information theft can be done. Once attackers are in the system, they can use the network for lateral movement and navigate the organization’s lines over SMB. 

fig1-patch-cve-2023-23397-immeditaely-what-you-need-to-know-do-faq
Figure 3. Beyond the exploit use scenario 2: WebDAV directory traversal for remote code execution (RCE)

2. WebDAV directory traversal for payload attacker routines

It’s possible for an attacker to leverage WebDAV services in cases where no valid SMB service for Outlook exists (i.e., is not configured) in the client. This is an alternative to the Web/HTTP service that can also be read as a UNC path by .msg and/or Outlook Calendar items. Attackers can set up a malicious WebDAV server to respond to affected victim clients with malicious pages. These pages may contain code that can range from leveraging a directory traversal technique similar to the Microsoft vulnerability CVE-2022-34713 (dubbed as DogWalk) to push any form of payload for remote code execution such as webshells.

What can I do to prevent and mitigate the risk of exploitation of CVE-2023-23397?

Here are some steps that security administrators can perform to reduce the risk of exploitation of CVE-2023-23397:

  • Apply the vendor patches immediately. Microsoft has released a patch as part of their March 2023 Monthly Security Update.
  • Block TCP 445/SMB outbound from your network. This will prevent the sending of NTLM authentication messages to remote file shares. If this cannot be done, we recommend monitoring outbound traffic over port 445 for unknown external IP addresses, then identifying and blocking them.
  • Customers can disable the WebClient service. Note that this will block all WebDAV connections, including intranet.
  • Add users to the Protected Users Security Group. This prevents the use of NTLM as an authentication mechanism, but note that this could impact applications that rely on NTLM in your environment.
  • Enforce SMB signing on clients and servers to prevent a relay attack.
  • Other researchers have noted that disabling the “Show reminders” setting in Outlook can prevent the leak of NTLM credentials.

How can I check if I’m affected?

Microsoft has provided a PowerShell script as a solution to the issue. The script is designed to scan emails, calendar entries, and task items, and to verify if they have the “PidLidReminderFileParameter” property. By running the script, administrators can locate problematic items that have this property and subsequently remove them or delete them permanently. Download the script here: https://github.com/microsoft/CSS-Exchange/blob/a4c096e8b6e6eddeba2f42910f165681ed64adf7/docs/Security/CVE-2023-23397.md.

Which Trend Micro solutions can address this vulnerability?

  • Trend Micro Malware Detection Patterns (VSAPI, Predictive Learning, Behavioral Monitoring and Web Reputation Service) for Endpoint, Servers, Mail, and Gateway (e.g., Apex One, Worry-Free Business Security Services, Worry-Free Business Security Standard/Advanced, Deep Security with anti-malware, etc.):
    • Starting with Trend Micro Smart Scan Pattern version 21474.296.07, known exploits associated with this vulnerability are being detected as Trojan.Win32.CVE202323397.
  • Trend Micro Vision One: Use this solution as an investigation tool. In the “Search App,” select “Endpoint Activity Data” and enter the following query: – dpt: 445 AND eventSubId: 204 AND processCmd: *OUTLOOK*. This can be saved and added to a watchlist if desired.
  • Cloud One Workload Security and Deep Security: IPS Rule 1009058, which will need to be changed to Prevent. 
  • TippingPoint Filters:
    • 28471 SMB: SMBv1 Successful Protocol Negotiation
    • 28472 SMB: SMBv2 Successful Protocol Negotiation
    • Please note: Enabling these filters in Block mode will interrupt legitimate SMB traffic. Customers are advised to add exceptions for their Private IP address space.
  • Trend Micro Deep Discovery Inspector: Rule 4479 NTLM v1 Authentication – SMB (Request).
    • If NTLM v1 is configured by default, customers can use this rule to monitor attempts for outgoing NTLM handshakes. Please note this rule only detects and does not block, so it is best used as an investigative tool for follow-up.

Details for all available Trend Micro solutions are available here: https://success.trendmicro.com/dcx/s/solution/000292525?language=en_US.

To learn more about this vulnerability, you may view our technical webinar here: https://www.youtube.com/watch?v=j44vIhklTp4

Source :
https://www.trendmicro.com/en_us/research/23/c/patch-cve-2023-23397-immediately-what-you-need-to-know-and-do.html

General Remote Desktop connection troubleshooting

Use these steps when a Remote Desktop client can’t connect to a remote desktop but doesn’t provide messages or other symptoms that would help identify the cause.

Check the status of the RDP protocol

Check the status of the RDP protocol on a local computer

To check and change the status of the RDP protocol on a local computer, see How to enable Remote Desktop.

 Note

If the remote desktop options are not available, see Check whether a Group Policy Object is blocking RDP.

Check the status of the RDP protocol on a remote computer

 Important

Follow this section’s instructions carefully. Serious problems can occur if the registry is modified incorrectly. Before you start modifying the registry, back up the registry so you can restore it in case something goes wrong.

To check and change the status of the RDP protocol on a remote computer, use a network registry connection:

  1. First, go to the Start menu, then select Run. In the text box that appears, enter regedt32.
  2. In the Registry Editor, select File, then select Connect Network Registry.
  3. In the Select Computer dialog box, enter the name of the remote computer, select Check Names, and then select OK.
  4. Navigate to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server and to HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows NT\Terminal Services.
    Registry Editor, showing the fDenyTSConnections entry
    • If the value of the fDenyTSConnections key is 0, then RDP is enabled.
    • If the value of the fDenyTSConnections key is 1, then RDP is disabled.
  5. To enable RDP, change the value of fDenyTSConnections from 1 to 0.

Check whether a Group Policy Object (GPO) is blocking RDP on a local computer

If you can’t turn on RDP in the user interface or the value of fDenyTSConnections reverts to 1 after you’ve changed it, a GPO may be overriding the computer-level settings.

To check the group policy configuration on a local computer, open a Command Prompt window as an administrator, and enter the following command:

Windows Command PromptCopy

gpresult /H c:\gpresult.html

After this command finishes, open gpresult.html. In Computer Configuration\Administrative Templates\Windows Components\Remote Desktop Services\Remote Desktop Session Host\Connections, find the Allow users to connect remotely by using Remote Desktop Services policy.

  • If the setting for this policy is Enabled, Group Policy is not blocking RDP connections.
  • If the setting for this policy is Disabled, check Winning GPO. This is the GPO that is blocking RDP connections. An example segment of gpresult.html, in which the domain-level GPO Block RDP is disabling RDP.An example segment of gpresult.html, in which Local Group Policy is disabling RDP.

Check whether a GPO is blocking RDP on a remote computer

To check the Group Policy configuration on a remote computer, the command is almost the same as for a local computer:

Windows Command PromptCopy

gpresult /S <computer name> /H c:\gpresult-<computer name>.html

The file that this command produces (gpresult-<computer name>.html) uses the same information format as the local computer version (gpresult.html) uses.

Modifying a blocking GPO

You can modify these settings in the Group Policy Object Editor (GPE) and Group Policy Management Console (GPM). For more information about how to use Group Policy, see Advanced Group Policy Management.

To modify the blocking policy, use one of the following methods:

  • In GPE, access the appropriate level of GPO (such as local or domain), and navigate to Computer Configuration > Administrative Templates > Windows Components > Remote Desktop Services > Remote Desktop Session Host > Connections > Allow users to connect remotely by using Remote Desktop Services.
    1. Set the policy to either Enabled or Not configured.
    2. On the affected computers, open a command prompt window as an administrator, and run the gpupdate /force command.
  • In GPM, navigate to the organizational unit (OU) in which the blocking policy is applied to the affected computers and delete the policy from the OU.

Check the status of the RDP services

On both the local (client) computer and the remote (target) computer, the following services should be running:

  • Remote Desktop Services (TermService)
  • Remote Desktop Services UserMode Port Redirector (UmRdpService)

You can use the Services MMC snap-in to manage the services locally or remotely. You can also use PowerShell to manage the services locally or remotely (if the remote computer is configured to accept remote PowerShell cmdlets).

Remote Desktop services in the Services MMC snap-in. Do not modify the default service settings.

On either computer, if one or both services are not running, start them.

 Note

If you start the Remote Desktop Services service, click Yes to automatically restart the Remote Desktop Services UserMode Port Redirector service.

Check that the RDP listener is functioning

 Important

Follow this section’s instructions carefully. Serious problems can occur if the registry is modified incorrectly. Before you starty modifying the registry, back up the registry so you can restore it in case something goes wrong.

Check the status of the RDP listener

For this procedure, use a PowerShell instance that has administrative permissions. For a local computer, you can also use a command prompt that has administrative permissions. However, this procedure uses PowerShell because the same cmdlets work both locally and remotely.

  1. To connect to a remote computer, run the following cmdlet:PowerShellCopyEnter-PSSession -ComputerName <computer name>
  2. Enter qwinstaThe qwinsta command lists the processes listening on the computer's ports.
  3. If the list includes rdp-tcp with a status of Listen, the RDP listener is working. Proceed to Check the RDP listener port. Otherwise, continue at step 4.
  4. Export the RDP listener configuration from a working computer.
    1. Sign in to a computer that has the same operating system version as the affected computer has, and access that computer’s registry (for example, by using Registry Editor).
    2. Navigate to the following registry entry:
      HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp
    3. Export the entry to a .reg file. For example, in Registry Editor, right-click the entry, select Export, and then enter a filename for the exported settings.
    4. Copy the exported .reg file to the affected computer.
  5. To import the RDP listener configuration, open a PowerShell window that has administrative permissions on the affected computer (or open the PowerShell window and connect to the affected computer remotely).
    1. To back up the existing registry entry, enter the following cmdlet:PowerShellCopycmd /c 'reg export "HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server\WinStations\RDP-tcp" C:\Rdp-tcp-backup.reg'
    2. To remove the existing registry entry, enter the following cmdlets:PowerShellCopyRemove-Item -path 'HKLM:\SYSTEM\CurrentControlSet\Control\Terminal Server\WinStations\RDP-tcp' -Recurse -Force
    3. To import the new registry entry and then restart the service, enter the following cmdlets:PowerShellCopycmd /c 'regedit /s c:\<filename>.reg' Restart-Service TermService -Force Replace <filename> with the name of the exported .reg file.
  6. Test the configuration by trying the remote desktop connection again. If you still can’t connect, restart the affected computer.
  7. If you still can’t connect, check the status of the RDP self-signed certificate.

Check the status of the RDP self-signed certificate

  1. If you still can’t connect, open the Certificates MMC snap-in. When you are prompted to select the certificate store to manage, select Computer account, and then select the affected computer.
  2. In the Certificates folder under Remote Desktop, delete the RDP self-signed certificate. Remote Desktop certificates in the MMC Certificates snap-in.
  3. On the affected computer, restart the Remote Desktop Services service.
  4. Refresh the Certificates snap-in.
  5. If the RDP self-signed certificate has not been recreated, check the permissions of the MachineKeys folder.

Check the permissions of the MachineKeys folder

  1. On the affected computer, open Explorer, and then navigate to C:\ProgramData\Microsoft\Crypto\RSA\.
  2. Right-click MachineKeys, select Properties, select Security, and then select Advanced.
  3. Make sure that the following permissions are configured:
    • Builtin\Administrators: Full control
    • Everyone: Read, Write

Check the RDP listener port

On both the local (client) computer and the remote (target) computer, the RDP listener should be listening on port 3389. No other applications should be using this port.

 Important

Follow this section’s instructions carefully. Serious problems can occur if the registry is modified incorrectly. Before you starty modifying the registry, back up the registry so you can restore it in case something goes wrong.

To check or change the RDP port, use the Registry Editor:

  1. Go to the Start menu, select Run, then enter regedt32 into the text box that appears.
    • To connect to a remote computer, select File, and then select Connect Network Registry.
    • In the Select Computer dialog box, enter the name of the remote computer, select Check Names, and then select OK.
  2. Open the registry and navigate to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server\WinStations\<listener>The PortNumber subkey for the RDP protocol.
  3. If PortNumber has a value other than 3389, change it to 3389. ImportantYou can operate Remote Desktop services using another port. However, we don’t recommend you do this. This article doesn’t cover how to troubleshoot that type of configuration.
  4. After you change the port number, restart the Remote Desktop Services service.

Check that another application isn’t trying to use the same port

For this procedure, use a PowerShell instance that has administrative permissions. For a local computer, you can also use a command prompt that has administrative permissions. However, this procedure uses PowerShell because the same cmdlets work locally and remotely.

  1. Open a PowerShell window. To connect to a remote computer, enter Enter-PSSession -ComputerName <computer name>.
  2. Enter the following command:PowerShellCopycmd /c 'netstat -ano | find "3389"' The netstat command produces a list of ports and the services listening to them.
  3. Look for an entry for TCP port 3389 (or the assigned RDP port) with a status of Listening. NoteThe process identifier (PID) for the process or service using that port appears under the PID column.
  4. To determine which application is using port 3389 (or the assigned RDP port), enter the following command:PowerShellCopycmd /c 'tasklist /svc | find "<pid listening on 3389>"' The tasklist command reports details of a specific process.
  5. Look for an entry for the PID number that is associated with the port (from the netstat output). The services or processes that are associated with that PID appear on the right column.
  6. If an application or service other than Remote Desktop Services (TermServ.exe) is using the port, you can resolve the conflict by using one of the following methods:
    • Configure the other application or service to use a different port (recommended).
    • Uninstall the other application or service.
    • Configure RDP to use a different port, and then restart the Remote Desktop Services service (not recommended).

Check whether a firewall is blocking the RDP port

Use the psping tool to test whether you can reach the affected computer by using port 3389.

  1. Go to a different computer that isn’t affected and download psping from https://live.sysinternals.com/psping.exe.
  2. Open a command prompt window as an administrator, change to the directory in which you installed psping, and then enter the following command:Copypsping -accepteula <computer IP>:3389
  3. Check the output of the psping command for results such as the following:
    • Connecting to <computer IP>: The remote computer is reachable.
    • (0% loss): All attempts to connect succeeded.
    • The remote computer refused the network connection: The remote computer is not reachable.
    • (100% loss): All attempts to connect failed.
  4. Run psping on multiple computers to test their ability to connect to the affected computer.
  5. Note whether the affected computer blocks connections from all other computers, some other computers, or only one other computer.
  6. Recommended next steps:
    • Engage your network administrators to verify that the network allows RDP traffic to the affected computer.
    • Investigate the configurations of any firewalls between the source computers and the affected computer (including Windows Firewall on the affected computer) to determine whether a firewall is blocking the RDP port.

Source :
https://learn.microsoft.com/en-us/windows-server/remote/remote-desktop-services/troubleshoot/rdp-error-general-troubleshooting

Exit mobile version