Cybersecurity and Social Responsibility: Ethical Considerations

Kyle Chin
updated Aug 21, 2023

Cybersecurity is necessary to protect data from criminals. However, the world of cybersecurity is not so simple. Therefore, a discussion of cybersecurity ethics needs to examine the morality of businesses collecting, processing, using, and storing data.

How cybersecurity professionals affect security measures is also worth exploring. Businesses and individuals should ask themselves whether the ends justify the means and to what extent they are willing to sacrifice data privacy for data protection.

This post underlines the ethical concerns and cybersecurity issues surrounding information security policies, procedures, systems, and teams and how they ought to contribute to the well-being of consumers.

What Are Ethics in Cybersecurity?

Ethics can be described as ideals and values that determine how people live and, increasingly, how businesses and their employees work.

While it is far from the technical specifications of networks and device configurations, it is an increasingly important part of business operations. It can be codified and included in an organization’s framework, determining acceptable behavior throughout the company in any scenario.

One of the main benefits of a strong ethical foundation for a business is that it will have a moral compass to help make ethical decisions in a rapidly changing business environment. The world is experiencing massive changes in information technology with advancements in artificial intelligence, machine learning algorithms, 5G, and data collection and processing.

The cyber threat landscape is also rapidly evolving, and businesses must make critical decisions about protecting themselves and their clients. With cybercrime on the rise and emerging threats driven by new technology such as AI, businesses need to elevate their cybersecurity. Doing so without sacrificing the customers or clients they set out to protect requires a strong ethical foundation and a written code of conduct.

The ACM Code of Ethics and Professional Conduct

In 1992, the Association for Computing Machinery (ACM) developed its Code of Ethics and Professional Conduct for computer systems workers. While it is not mandated, except for members of the ACM, it can be a useful starting point for Chief Information Security Officers (CISOs) and other stakeholders to think about and take a stance on ethical practices when tackling sensitive cybersecurity issues.

The Code of Ethics was revisited and revised in 2018. While the cloud stands to make more updates in the face of 5G, AI, and other advances in computing, it remains a valuable resource for anyone seeking to define ethical standards concerning computer systems and technology.

Having a clear set of ethical principles is helpful because it can clarify and speed up important decision-making in an increasingly complex, rapidly evolving cyber threat landscape.

The ACM Code of Ethics is divided into four categories:

  • General Ethical Principles
  • Professional Responsibilities
  • Professional Leadership Principles
  • Compliance with the Code

General Ethical Principles

The General Ethical Principles section makes the following assertions about the role of computing professionals. Computing professionals should:

  1. Use their skills to benefit society and people’s well-being, and note that everyone is a stakeholder in computing.
  2. Avoid negative and unjust consequences, noting that well-intended actions can result in harm that they should then mitigate.
  3. Fully disclose all pertinent computing issues and not misrepresent data while being transparent about their capabilities to perform necessary tasks.
  4. Demonstrate respect and tolerance for all people.
  5. Credit the creators of the resources they use.
  6. Respect privacy, using best cybersecurity practices, including data limitation.
  7. Honor confidentiality, including trade secrets, business strategies, and client data.

Professional Responsibilities

The Professional Responsibilities section also says that computing professionals must prioritize high-quality services, maintain competence and ethical practice, promote computing awareness, and perform their duties within authorized boundaries.

  1. Strive to achieve high quality in both the processes and products of professional work.
  2. Maintain high standards of professional competence, conduct, and ethical practice.
  3. Know and respect existing rules pertaining to professional work.
  4. Accept and provide an appropriate professional review.
  5. Give comprehensive and thorough evaluations of computer systems and their impacts, including analysis of possible risks.
  6. Perform work only in areas of competence.
  7. Foster public awareness and understanding of computing, related technologies, and their consequences.
  8. Access computing and communication resources only when authorized or when compelled by the public good.
  9. Design and implement systems that are robustly and usably secure.

Professional Leadership Principles

Professional Leadership pertains to any position within an organization that has influence or managerial responsibilities over other members and has increased responsibilities to uphold certain values set by the organization.

  1. Ensure that the public good is the central concern during all professional computing work.
  2. Articulate, encourage acceptance of, and evaluate fulfillment of social responsibilities by the organization or group members.
  3. Manage personnel and resources to enhance the quality of working life.
  4. Articulate, apply, and support policies and processes that reflect the principles of the Code.
  5. Create opportunities for members of the organization or group to grow as professionals.
  6. Use care when modifying or retiring systems.
  7. Recognize and take special care of systems that become integrated into the infrastructure of society.

Compliance with the Code

Of course, compliance with the Code of Ethics is the only way to ensure cybersecurity professionals uphold certain ethical standards. Without enforcement of the Code of Ethics or similar ethical considerations, it is impossible to document and recognize adherence to ethics and social responsibility.

  1. Uphold, promote, and respect the principles of the Code.
  2. Treat violations of the Code as inconsistent with membership in the ACM.

Corporate Social Responsibility and Cybersecurity

To compete with other businesses and delivery the user experiences that consumers expect, modern businesses are obligated to collect and process increasing amounts of data. This particular genie is already out of the bottle, so the question is not really whether big data should exist but how businesses use and protect data.

Cybersecurity helps prevent and mitigate data breaches and attacks that threaten information security, so it is crucial for public safety and well-being, as well as helping to ensure the longevity of businesses. There is so much at stake that cybersecurity professionals should be willing to come under scrutiny by those in and outside the field.

Cyber ethics encapsulates common courtesy, trust, and legal considerations. Acting ethically should protect individuals, organizations, and the wider economy. So it’s vital for cyber professionals and the organizations that employ them. The following considerations will explore what makes effective cybersecurity and explain how poor cybersecurity is not only ineffective but also potentially unethical.

Information Security

Businesses have a moral obligation to protect their customers and business partners. They benefit from data that allows them to operate and can give them a competitive advantage, but they need to protect that information from hackers and accidental leaks.

Unfortunately, businesses that are hacked are often at fault. While nobody deserves to be hacked, a business’s moral obligations to consumers are such that they are expected to have adequate cybersecurity for their computer systems and respond promptly and decisively in the event of a cyber incident.

Equifax’s 2017 cyber attack is a prime example of a business that damaged its reputation due to inadequate cybersecurity and poor response to attacks. It was hacked around May 2017 but did not disclose the breach until September.

While Equifax’s president for Europe said that protecting consumer and client data was always its top priority, it failed to follow through with patching a software security vulnerability it knew about in March and failed to let affected customers know so that they could take steps to protect themselves from phishing, identity theft, and other kinds of fraud.

Equifax’s human and technological failures compromised 14.5 million sensitive data records, including addresses, birth dates, driver’s licenses, and social security numbers. It also puts the firm’s morality into question, as it processes sensitive information and purports to help customers with their financial security, but its ineffective cybersecurity procedures put those people at risk.

Transparency

Ethically, businesses should be prepared to disclose the risks inherent to the business if they could substantially affect people, whether customers, business partners, or their supply chain.

Data breach reporting is a significant part of a business’s transparency. While reporting a breach highlights a business in crisis, failing to report promptly can lead to a more significant loss of trust, criticism from industry professionals, and sometimes, as in Equifax’s case, action from investigators.

Even if a business operates in an unregulated industry or a cyber attack does not cause business disruption or affect clients, reporting all data breaches is a worthwhile ethical consideration. The more businesses report cyber attacks, the more information there is for cybersecurity experts and industry professionals to share and learn from. This protects other businesses and their clients from emerging threats.

While revealing a vulnerability or data breach according to applicable regulations may not be necessary, there is a moral question as to whether this information should be shared regardless. Being transparent about discovering vulnerabilities can help all businesses protect their information systems and clients.

Cyber incidents are varied, and cybercriminals are continually researching new methods to apply and vulnerabilities to exploit. So how businesses respond to threats and potential threats needs to change on a case-by-case basis. However, they can base their decision-making on an explicit, underlying ethical framework that guides the business according to its values and corporate social responsibility.

While some businesses reject revealing data breaches “unnecessarily” for fear of losing trust or business, disclosing data breaches late can cause more damage and even harsh penalties. Handling a crisis professionally and ethically can even be good for a firm’s reputation, as in the case of Norsk Hydro’s handling of the fallout from its 2017 ransomware attack, which impressed industry professionals and cybersecurity experts.

Organizations and their cybersecurity teams can reap rewards from being proactive and enacting policies and procedures according to a defined, documented code of ethics.

Security vs. Privacy Protection

A prime ethical dilemma in cybersecurity concerns cybersecurity experts’ privileged access to sensitive information. In effect, they must understand how cybercriminals operate and be able theoretically to perform the same feats without crossing the line into the territory of black hat hackers.

Cybersecurity professionals set access privileges, monitor network activity, and can read people’s emails. They can scan machines and therefore can compromise and protect people’s personal lives.

Collecting data leads to ethical questions but so does protecting it. Ethically, everyone deserves dignity, which is tied in with privacy. But how do businesses achieve privacy when they collect customer data, and that data must be protected?

Social engineering and identity theft are among the biggest cyber risks to the public. This is partly because it can affect people beyond those whose data is stored. With stolen data, a cybercriminal can launch phishing attacks against the victim and their associates.

Keeping personally identifiable information (PII) secure, therefore, is paramount. However, that requires personnel to access and in some ways manipulate that data. Anyone working in cybersecurity is walking a tightrope of ethical issues every day. It’s helpful to acknowledge this so that grey areas can be defined and clients are reassured.

Confidentiality

Excellent cybersecurity is not just about technical standards. Cybersecurity professionals need to demonstrate their moral standards when handling sensitive data. During daily duties, cybersecurity professionals will have access to confidential data and files. This could include sensitive data such as payroll details, private emails, and medical records.

Intellectual property theft is one of the most costly cybercrime, as stealing a business’s product designs and concepts can give opponents an unfair advantage while saving them the massive cost and time investment of product development. Nation-states may sponsor cyber espionage to achieve this advantage, risking destabilizing the affected nation’s market and economy. Intellectual property theft can be a serious risk to human life in a critical infrastructure industry, such as defense or healthcare.

It almost goes without saying that cybersecurity staff shouldn’t say anything to the public about the confidential data and intellectual property they see, nor should they store or transmit it in any way that is not aligned with the business’s goals to protect data. “Almost” because ethical debates often involve bringing things out of the shadows and into the light.

An implicit understanding may not be enough to ensure the confidentiality of sensitive data. It’s better to have documented policies and procedures regarding confidentiality and the organization’s attitude to how cybersecurity interacts with personal data.

On April 13, 2023, federal investigators arrested Jake Teixeira, an air national guardsman, concerning the unauthorized transmission of classified US intelligence documents. Teixeira’s role in the Massachusetts Air National Guard was as a Cyber Transport Systems Journeyman responsible for maintaining communication networks.

While there are some claims that he acted as a whistleblower, he shared the documents in a small private group on a social media platform, not seeming to have intended to share it with a wider audience.

Nonetheless, this massive data security breach calls into question cybersecurity professionals’ commitment to upholding the law when faced with tempting confidential information. Cybersecurity teams must be continuously committed and engaged to perform their duties honorably, within the law, and according to the expectations of their employers.

Although The Association for Computing Machinery (ACM) developed a Code of Ethics and Professional Conduct for computer systems workers, ethics in cybersecurity is not regulated. Ethics can’t be ensured by law enforcement.

Having said that, unethical behavior can lead to fines, loss of revenue, and loss of customers, so businesses and cybersecurity professionals will benefit from addressing ethics seriously.

While there’s no handy accreditation that cybersecurity staff can achieve to attest to their honesty, hiring organizations should look at a cybersecurity firm’s history and culture for evidence of its ethical stance on cybersecurity.

Security

Cybersecurity professionals cannot have a lapse of concentration or a couple of days where they’re off their game and let things slide. Responsibility for others’ information security is a massive contractual and ethical responsibility. Almost no matter what the individual does, scrutiny will be on any assigned cybersecurity team or professional in the event of a cyber incident.

Cybersecurity professionals must maintain their competence level, respect sensitive information privacy, and uphold the well-being of those they serve. It requires honesty for these team members to evaluate their skills, abilities, and alertness and ensure that they take the appropriate action to stay on top of their game.

Ethical Hacking

Ethical hacking refers to sanctioned hacking by businesses onto their own systems to discover vulnerabilities and security gaps. Ethical hackers attempt to find vulnerabilities to exploit and break into information systems to fix those issues before cybercriminals find them.

But now imagine an ethical break-in, in which an ethical burglar break into people’s homes and then advises them on which locks they should have used and where to hide their laptops. Ethical hackers use illegal means to achieve positive results.

To protect data from hackers, particularly when they are using increasingly sophisticated methods and rapidly advancing technologies, cybersecurity professionals must use the same techniques. Cybersecurity programmers need to know how to commit crimes by black hat hackers, such as stealing credit card data. What stops them from doing this, however, is that ethical principles separate them.

Cyber professionals must be aware of computer ethics since what they do gives them access to privileged information. This is especially true for professionals working in critical infrastructure, including defense, healthcare, finance, and manufacturing, where the consequences of unethical actions regarding sensitive data could cause serious harm to individuals, organizations, and the economy.

Cybersecurity professionals and businesses that need them must understand cyber ethics and insist that a moral code is always evident in their attitude and behavior.

Whistleblowing

Before the dark web became known as a haven for hackers and cybercriminals to extort money, purchase malware, and prepare to commit multiple kinds of cybercrime, it existed in large part to protect whistleblowers.

Whistleblowing refers to someone reporting their organization’s wrongdoing, typically an employee. A whistleblower’s objection might be that the organization or someone in it is acting illegally, fraudulently, immorally, or without proper regard for safety or human rights. Furthermore, the issue should be in the public interest.

Public sector whistleblowers are protected by the First Amendment. Even so, whistleblowing might be considered a grey area when considering cyber ethics.

If a cybersecurity expert reveals confidential information to stop a harmful practice, the objective is good, but how they achieved this breaks the ethical confidentiality essential to that employee-employer relationship.

Edward Snowden famously blew the whistle on the National Security Agency’s unethical, invasive surveillance of innocent US citizens. While the former computer intelligence consultant and CIA systems administrator is a hero to many, his actions were criminal. The US Department of Justice charged him with stealing government property and violating the Espionage Act of 1917.

Jesselyn Radack, from the Government Accountability Project, argued that Snowden’s contract with the Government was less important than the social contract of a democracy.

Security vs. Functionality

While organizations have a responsibility to society to protect data, they need to balance this requirement with maintaining functionality. A technically workable cybersecurity solution is not necessarily the best if it prevents the organization from operating. This is a moral debate because organizations won’t always use the most secure cybersecurity practices or systems. Operating a modern business means navigating such trade-offs daily.

Cybersecurity experts have a responsibility to balance securing information and keeping organizations running. Some businesses need to be able to work quickly, such as in healthcare where the most robust security system could slow daily operations and risk human life. A holistic approach to information security is required based on thorough risk management.

Source :
https://www.upguard.com/blog/cybersecurity-ethics

Exploring the ePrivacy Directive

Leah Sadoian
updated Sep 15, 2023

There are a variety of cybersecurity regulations in Europe, including the ePrivacy Directive, which focuses on enhancing data protection, processing personal data, and privacy in the digital age. This Directive, recently updated with the ePrivacy regulation, continues the European Union’s ongoing efforts to create cohesive and comprehensive European data protection and cybersecurity standards across all member states.

Upgrade your organization’s cybersecurity standards with UpGuard Breachsight >

What is the ePrivacy Directive?

The Privacy and Electronic Communications Directive 2002/58/EC, or the ePrivacy Directive, is a European Union cybersecurity directive on data protection and privacy protection. The current ePrivacy Directive addresses the growing landscape of new digital technologies and electronic communications services. The Directive aims to harmonize national protection of fundamental rights within the EU, including privacy, confidentiality, and free data movement.

The ePrivacy Directive was enacted in 2002. It required each EU Member State to pass its national data protection and privacy laws, regulating essential issues like consent, spam marketing, cookies, and confidentiality.

Key Components of the ePrivacy Directive

Since the ePrivacy Directive focuses on the protection of online privacy in the electronic communications sector, the Directive’s key components include standards around how people communicate with each other electronically, aligning them with recent technological advancements.

Cookies and Consent Mechanisms

A significant component of the ePrivacy Directive is cookies, which are small data files websites use to track user behavior. Specifically, the Directive states that websites must obtain informed user consent before storing or retrieving any information on their electronic devices, giving the ePrivacy Directive the nickname “cookie law.”

Gaining this consent includes providing end-users with information about the purpose of the data storage and an opportunity to accept or opt-out. Many websites utilize a cookie banner to obtain cookie consent for website visitors. However, cookies essential for site functionality or for delivering a service requested by a user (like tracking the items in an online shopping cart) are exempt from this requirement. Note that the Directive applies to both first-party and third-party cookies.

Protection of Personal Data in Communications

Concerning data protection, the Directive states that providers of electronic communication services must ensure that their services are secure—which in turn secures any personal data that may be shared through those services. Standard electronic communication services include email and instant messaging.

These providers must also inform their users whenever a risk, such as a data breach or ransomware attack, leaves their personal data vulnerable to misuse.

Data Retention

Data retention refers to how companies retain your data, and the ePrivacy Directive includes standards for this practice.

Specifically, the Directive states that when providers of services no longer need your data, they must erase or anonymize it. There are specific situations in which data retention is allowed, such as billing services or issues of national security.

Otherwise, data may only be retained if a user consents to it, and they must also be informed why the data is being processed and the length of time it will be stored.

Unsolicited Marketing Communications

The ePrivacy Directive includes strict restrictions on the use of digital marketing communications. Unsolicited communications for direct marketing purposes are not allowed without the recipient’s consent. This includes email and text message marketing.

Typically, this is done through opt-in or opt-out systems determined by individual EU member states. However, the overall rule is that marketing communications cannot be sent without explicit consent from the user.

Location Data

The ePrivacy Directive sets instructions for using location data obtained through electronic communications. Specifically, location data must be processed with informed consent and should be anonymized when no longer needed.

This provision is very relevant for mobile service providers and location-based services. Like the marketing communications provision, an opt-in or opt-out mechanism allows users to provide explicit consent before location data is provided.

Communications Confidentiality

Companies that provide electronic communication services must implement appropriate security measures to safeguard users’ data. They must also notify users and relevant authorities in case of any security breaches involving personal data. Additionally, the Directive governs how traffic data, which includes information about communication between individuals, can be processed and stored.

Even though the primary goal of the ePrivacy Directive is to protect confidentiality, it does allow for the retention of metadata for billing, service quality, and other purposes. Member states may require data retention under specific conditions, often related to national security or criminal investigations.

Member State Laws

The ePrivacy Directive is a directive that requires every EU Member State to establish national laws to accomplish the Directive’s goals. There is some variation in the regulations across different countries due to this, unlike the GDPR, which is a regulation and applies directly throughout the EU.

How the ePrivacy Directive Affects the GDPR

The General Data Protection Regulation (GDPR) is a mandatory regulation in Europe that protects the personal data of its citizens. Since the GDPR and the ePrivacy directive both concern data privacy, they work in tandem across various components.

  • Scope: The ePrivacy Directive focuses explicitly on the electronic communications sector, and the GDPR extends data privacy laws to other industries that process personal data.
  • Consent: Both the ePrivacy Directive and the GDPR focus on user consent, but the GDPR also outlines principles of lawful processing, including contractual necessity, legitimate interests, and legal obligation.
  • Confidentiality vs. Data Protection: The ePrivacy Directive is primarily concerned with the privacy and security of electronic communications, and the GDPR includes broader concepts of data protection like data minimization, accountability, and individuals’ rights to access, rectify, and erase personal data.
  • Security Measures: The ePrivacy Directive requires providers of electronic communication services to implement security measures to protect user information. At the same time, the GDPR mandates robust security measures and includes the concept of “data protection by design and default.”
  • Data Breach Notifications: Both require notification of data breaches to users and regulatory authorities. The ePrivacy Directive only requires communication service providers to provide notification, but the GDPR extends that requirement to all data controllers and processors.

Who Must Comply with the ePrivacy Directive?

The ePrivacy Directive applies to entities providing electronic communication services in the EU, including but not limited to:

  • Telecommunication Companies: Traditional telecom providers offer fixed or mobile telephony services.
  • Internet Service Providers (ISPs): Entities providing internet connectivity services.
  • Over-the-top (OTT) Providers: Companies that offer online communication services, such as instant messaging apps and VoIP services like Skype or WhatsApp.
  • Website Owners: Any website that uses cookies or similar technologies to track user behavior must comply with the Directive.
  • Email and SMS Marketers: Businesses that send marketing messages via email or SMS must adhere to the rules set by the Directive.
  • Location-Based Services: Services that use location data also fall under the Directive’s jurisdiction.

Penalties for Noncompliance

Penalties for failing to comply with the ePrivacy Directive may differ across EU Member States, as each country is responsible for incorporating the Directive into national law. As a result, penalties can vary from monetary fines to legal actions, and the severity of the consequences will depend on the nature of the breach and the location of the incident. Below are some typical types of penalties that may be enforced:

  • Financial Fines: These can vary widely from state to state but are generally designed to be dissuasive. Some countries have a cap on fines, while others may calculate them as a percentage of the annual turnover of the offending company.
  • Legal Sanctions: In some instances, severe or repeat violations may result in legal action, including the possibility of criminal charges.
  • Reputational Damage: Beyond legal penalties, companies that violate ePrivacy laws often suffer significant reputational damage, which can result in loss of customer trust and revenue.
  • Cease and Desist Orders: Regulatory bodies may require the violating entity to stop the offending action immediately, often at the cost of temporarily or permanently turning off a service or feature.
  • Data Audits: In some cases, the regulatory bodies may require a thorough audit of data protection practices within the offending organization.
  • Notification Requirements: Failing to notify the authorities and individuals affected by a data breach, as stipulated by the Directive, can lead to additional penalties.

In 2022, Google and Meta were both found to be in violation of the ePrivacy Directive and faced steep fines for their non-compliance. France’s Commission Nationale Informatique & Libertés (CNIL) fined Google €150M and Facebook another €60M for not offering an option for users to reject non-essential cookies in line with the option to accept all tracking. This violates the ePrivacy Directive’s requirements around cookies and consent mechanisms.

The Future: Introducing the ePrivacy Regulation

Since 2002, the digital communications industry has evolved rapidly, which means the ePrivacy Directive needed drastic updating. In 2017, The European Commission proposed the ePrivacy Regulation, which aims to replace the existing ePrivacy Directive and better align it with the General Data Protection Regulation (GDPR) data protection laws.

The regulation is still under discussion amongst the EU Council because of the scope of the rules and the impact it would have on big tech companies, large telecom providers, and even areas of online advertising, media, and national security.

This new legislation is a regulation of the European Parliament and Council of the European Union. It specifies and complements the ePrivacy Directive on privacy-related topics such as the confidentiality of communications, consumer privacy controls through electronic consent and browsers, and cookies.

Key Differences

  • Legal Form and Scope: As a directive, member states must achieve specific goals but have the authority to decide how to do so, which can lead to differences in implementation across countries. The ePrivacy Regulation is a directly applicable law that becomes enforceable across the European Union, creating greater consistency.
  • Cookies and Trackers: The ePrivacy Regulation expands on the requirement for user consent before utilizing cookies and tracking technologies but simplifies the rules around this requirement. This can include allowing users to consent through browser extensions and specific exceptions for cookies that improve user experience.
  • Consent: The ePrivacy Regulation aligns the ePrivacy Directive’s requirements for user consent with the GDPR’s more stringent standards. This also simplifies consent mechanisms.
  • Electronic Marketing: The ePrivacy Regulation extends the ePrivacy Directive’s restriction on unsolicited communications for marketing purposes to cover new marketing methods and forms of electronic communication, like marketing through social media platforms.
  • Data Protection and Security: The ePrivacy Directive requires service providers to utilize security measures and report data breaches. The ePrivacy Regulation aligns those requirements with the GDPR’s broader data protection framework, which has stricter data breach notification timelines.
  • Penalties: Instead of allowing individual member states to determine penalties for noncompliance, the ePrivacy Regulation adopts a penalty framework similar to the GDPR, with fines based on a company’s global turnover, up to 4% or up to €20 million, whichever is higher. It also gives more power to Data Protection Authorities, aligning it with the GDPR.
  • International Impact: The ePrivacy Regulation’s alignment with the GDPR means data protection standards are not just primarily focused on EU member states but now affect any company that offers services or data transfers to EU residents (even if they are not located within the EU).

UpGuard Helps Your Organization Stay Compliant with Privacy Regulations

Enhance your organization’s data privacy standards with UpGuard. Whether you’re looking to stay compliant with the EU’s ePrivacy Regulation or the CCPA in the states, our all-in-one attack surface management platform, BreachSight, helps you understand the risks impacting your external security posture and know that your assets are constantly monitored and protected.

UpGuard BreachSight features include:

  • Security Ratings: Use our security ratings for a data-driven, objective, and dynamic measurement of your organization’s security posture. Our security ratings are generated by analyzing trusted commercial, open-source, and proprietary threat intelligence feeds and non-intrusive data collection methods.
  • Continuous Security Monitoring: Get real-time information about misconfigurations, understand your risk profile, and get started in minutes, not weeks, with our fully integrated solution and API. Because we use externally verifiable information, you won’t have to lift a finger to get started.
  • Attack Surface Reduction: Reduce your attack surface by discovering exploitable vulnerabilities and permutations of your domains at risk of typosquatting.
  • Data Protection: UpGuard’s proprietary Data Leak Search Engine scans every corner of the Internet and identifies data that presents a risk. It monitors your Internet presence and doesn’t check every website where we can find cloud storage buckets and source code repos.
  • Workflows and Waivers: Simplify and accelerate how you remediate issues, waive risks, and respond to security queries. Use our real-time data to get information about risks, rely on our workflows to track progress, and know precisely when issues are fixed.
  • Security Profile: Eliminate security questionnaires and stop answering the same questions repeatedly. Create an UpGuard security profile and share it before being asked.
  • Reporting and Insights: The Reports Library makes accessing tailor-made reports for different stakeholders in one centralized location easier and faster. See all risks–across various domains, IPs, and categories–in the UpGuard platform or extract the data directly from the API.
  • Business Operation Management: Share access to your UpGuard account with other team members with confidence. Each user gets an individual account with fine-grained access control.
  • Third-Party Integrations: Integrate and extend the UpGuard platform with other tools with our easy-to-use API that can save hours of human time.

    Source :
    https://www.upguard.com/blog/eprivacy-directive

What is ISO 31000? An Effective Risk Management Strategy

Edward Kost
updated Sep 14, 2023

ISO 31000 was specifically developed to help organizations effectively cope with unexpected events while managing risks. Besides mitigating operational risks, ISO 31000 supports increased resilience across all risk management categories, including the most complicated group to manage effectively – digital threats.

Whether you’re considering implementing ISO 31000 or you’re not very familiar with this framework, this post provides a comprehensive overview of the standard.

Learn how UpGuard simplifies Vendor Risk Management >

What is ISO 31000?

ISO 31000 is an international standard outlining a risk management structure supporting effective risk management strategies. The standard is divided into three sections:

  1. Principles
  2. Framework
  3. Process
The three components of ISO 31000 - Principles, Framework, Process

Principles

The objective of all of the principles of ISO 31000 is to simultaneously increase the value and protection aspects of a management system.

The 11 principles of ISO 31000 are as follows:

  • Risk management creates and protects value – Risk management should support objective achievement and performance improvements across various sectors, including human health and safety, cybersecurity, regulatory compliance, environmental protection, governance, and reputation.
  • Risk management is an integral part of all organizational processes – Risk management shouldn’t be separated from the main body of a management system. It should be integrated into an organization’s processes to create a risk-aware culture. Management teams should champion this cultural change.
  • Risk management is systematic, structured, and timely – Risk management should cover the complete scope of systemic risk. It shouldn’t be focused on a single business component prone to risks, like the sales cycle.
  • Risk management is tailored – A risk management program should be tailored to your objectives within the context of internal and external risk profiles.
  • Risk management is transparent and inclusive – All appropriate stakeholders and decision-makers should be involved in ensuring risk management remains relevant and updated.
  • Risk management is dynamic, iterative, and responsive to change – A risk management program shouldn’t be based on a rigid template. It should be dynamic, capable of conforming to changing internal and external threat landscapes.
  • Risk management is based on the best available information – Risk management processes shouldn’t be limited to historical data, stakeholders’ feedback, forecasts, and expert judgments. It’s essential to consider the limitation of data sources and the likely possibility of divergent opinions among experts.
  • Risk management is part of decision-making – Risk management should help leadership teams make intelligent risk mitigation decisions by understanding which risks should be prioritized to maximize impact.
  • Risk management takes human and cultural factors into account – All risk management activities should be assigned to individuals with the most relevant competencies. Appropriate tools should be available to these individuals to support their efforts as much as possible.
  • Risk management facilitates continual improvement of the organization – Strategies should be developed to ensure risk management efforts are continuously improving.
  • Risk management explicitly addresses uncertainty – Risk management should directly address uncertainty by understanding its nature and finding ways to mitigate it.

Framework

The framework component of the ISO 31000 standard outlines the structure of a risk management framework, but not in a prescriptive way. The objective is to help organizations integrate risk management into their overall management system based on their unique risk exposure context. Businesses should implement the framework through the lens of their risk management objectives, prioritizing the most relevant aspect of the proposed framework. This flexibility makes any management system capable of mapping to ISO 31000, making the standard industry agnostic.

ISO 31000 can be implemented by any industry to reduce enterprise risk, regardless of size or existing risk management process.

The driving factor for the framework aspect of ISO 31000 is the management team’s commitment to embedding a risk management culture across all organizational levels.

Leadership and commitment branching out into 5 points - integration, design, implementation, evaluation, and improvement.

The five framework pillars of ISO 31000 are as follows:

  • Integration – The risk management framework should be integrated into all business processes, a change that follows the management team’s push for a cultural shift towards greater risk awareness.
  • Design – The design of the final risk management framework must consider the organization’s unique risk exposure and risk appetite.
  • Implementation – An implementation strategy should consider potential roadblocks, resources, timeframes, key personnel, and mechanisms for tracking the framework’s efficacy following implementation.
  • Evaluation  The evaluation components broaden the focus on measuring framework efficacy. This process could involve appealing to various data sources, such as customer complaints, the number of unexpected risk-related events, etc.
  • Improvement – This is the final step of the popular management system design model, Plan Do, Check Act (PDCA). Improvements should be made based on the insights gathered in the evaluation phase. The objective of each improvement interaction is to reduce the number of surprises caused by the risk management framework.

The design of the risk framework should be based on business objectives and a risk management policy within an organization’s unique risk context (the contextualization of risks is a recurring theme in ISO 31000).

Risk management policy feeding program design which is part of a cycle consissting of - program design, implementation, monitoring, improvement.

The Framework stage sets the broad risk management context, which is then refined in the Process stage, setting the foundation for more meaningful insights gathered through risk assessments.

Process

The process approach to ISO 31000 is represented graphically as follows:

Risk management process lifecycle.

Communication and Consultation

The first stage of this process approach is communication and consultation. The more cross-functional opinions that are heard, the more comprehensive your risk management efforts will be. This stage draws upon ISO 31000’s inclusivity and cultural factor principles.

Communications aren’t just limited to internal functions. External stakeholders should be involved in all decision-making processes. This will encourage stakeholder involvement in all stages of the risk management program’s development – which supports the primary objective of the Framework stage in ISO 31000:2018.

Scope, Context, and Criteria

Ideally, many of these mechanisms should already be established in your management system. The scope of all management activities is performed within the organization’s context, as defined in ISO 9001 Clause 4.1.

Contextual intelligence is a consideration of all internal and external issues impacting the achievement of business objectives. Contextualization can be achieved by gathering information from the following sources:

  • Risk assessment of internal and external risk factors
  • Internal audits
  • Organization policy statements
  • The use of a SWOT template (Strengths, Weaknesses, Opporitnies, Threats)
  • Strategy documents
  • Questionnaires (for internal and external process investigations)
  • Interviews (with stakeholders, senior management, cross-functional teams including finance, human resources, engineering, training, etc.).

Learn about UpGuard’s security questionnaires >

The criteria used to assess risk depends on the most appropriate initiative and objective methodology as outlined in the value creation principle of ISO 31000.

This could include

  • Strategic objectives
  • Operational objectives
  • Business objectives
  • Health and safety objectives
  • Cybersecurity objectives

Start by narrowing your focus to a single scope. Then, after the process has been proven to work, expand your scope into other regions.

Risk Assessment

After defining your scope, context, and criteria, the actual risk assessment process begins. There are three primary stages in the risk assessment lifecycle.

  • Risk Identification – Understanding the source of discovered risks and their classification (whether they originate from internal or external attack surfaces)
  • Risk Analysis – Understanding the impact of identified risks and potential risks and the efficacy of their associated security controls.
  • Risk Evaluation – A comparison of discovered risks against your risk register.
  • Deciding which risk should be addressed based on an acceptance criterion defined by your risk appetite.

Learn about UpGuard’s vendor risk assessment features >

Risk evaluation data will determine which actions need to take place. Any control adjustments or framework improvements will be relative to each unique scope, context, and criteria scenario.

Stakeholders should be involved in deciding how to best respond to risk evaluation insights.

Risk Treatment

The risk treatment stage is where you decide the best course of action. These decisions will depend on your risk appetite, which defines the threshold between the levels of risk that can be accepted and those that need to be addressed.

Different types of risk should be considered, including:

  • Strategic risks
  • Cybersecurity risks
  • Reputational risks
Security controls suppress cybersecurity inherent risks within acceptable risk appetite levels
Security controls suppress cybersecurity inherent risks within acceptable risk appetite levels

Your methodology for treating risks depends on the risk culture being developed by the management team. Some organizations have a very low-risk tolerance, while others (such as those in heavily regulatory industries like healthcare) have a very low tolerance to risk. These tolerance bands are decided during the calculation of your risk appeite. If your risk appetite has already been determined, revise it to ensure it’s clear enough to support the risk management standards of ISO 31000.

Learn how to calculate your risk appetite >

A risk matrix is helpful in the risk treatment phase as it indicates what risks should be prioritized in remediation efforts to minimize impact.

In the context of Vendor Risk Management, a risk matrix indicates which vendors pose the most significant risk to an organization’s security posture.

For a deep dive into Vendor Risk Management, read this post.

These insights, coupled with an ability to project the impact of selected 

remediation tasks, help response teams optimize their risk treatment efforts, supporting the continuous improvement objectives of ISO 3100

UpGuard’s vendor risk matrix.
Remediation impact projections on the UpGuard platform.

Another form of risk treatment is to outsource the responsibility to a third party. For example, third-party risk management, the process of managing security risks caused by third-party vendors, could be outsourced to a team of cybersecurity experts. Your organization will still be responsible for the outcome of detected risks but without the added burden of also having to manage them.

The benefit of reduced internal resources makes outsourcing third-party risk management a very economical choice for scaling businesses.

Watch this video to learn about UpGuard’s Third-Party Risk Management Service.

https://cdn.embedly.com/widgets/media.html?src=https%3A%2F%2Ffast.wistia.net%2Fembed%2Fiframe%2Fzi5w6pr0ay&display_name=Wistia%2C+Inc.&url=https%3A%2F%2Fupguard.wistia.com%2Fmedias%2Fzi5w6pr0ay&image=https%3A%2F%2Fembed-ssl.wistia.com%2Fdeliveries%2F09cd5e73ebe661e959c48e0fcca9a693.jpg%3Fimage_crop_resized%3D960x540&key=96f1f04c5f4143bcb0f2e68c87d65feb&type=text%2Fhtml&schema=wistia

Monitoring and Review

Evaluating the effectiveness of your implemented risk framework will determine whether or not your ISO 31000 risk management program was a profitable investment. During each review and iteration process, be sure to keep the human and cultural factor principle front of mind – don’t forget the people impacted by each iteration. 

Your risk mitigation objectives shouldn’t be so ambitious that you must handcuff your employees. You need to strike the perfect balance between risk management, risk acceptance, and employee well-being.

Recording and Reporting

Finally, all risk management activities should be recorded. Not only will this support stakeholders with their ongoing risk-based strategic decisions, but it will also provide you with a reference for tracking your management systems maturity throughout the ISO 31000 implementation lifecycle.

Source :
https://www.upguard.com/blog/what-is-iso-31000https://www.upguard.com/blog/what-is-iso-31000

The Windows Server Hardening Checklist 2023

UpGuard Team
updated Jan 08, 2023

Whether you’re deploying hundreds of Windows servers into the cloud, or handbuilding physical servers for a small business, having a proper method to ensure a secure, reliable environment is crucial to keeping your ecosystem safe from data breaches.

Everyone knows that an out-of-the-box Windows server may not have all the necessary security measures in place to go right into production, although Microsoft has been improving the default configuration in every server version. UpGuard presents this ten step checklist to ensure that your Windows servers have been sufficiently hardened against most cyber attacks.

Specific best practices differ depending on need, but addressing these ten areas before subjecting a server to the internet will protect against the most common exploits. Many of these are standard recommendations that apply to servers of any flavor, while some are Windows specific, delving into some of the ways you can tighten up the Microsoft server platform. Details on hardening Linux servers can be found in our article 10 Essential Steps to Configuring a New Server.

WhatWhy
1. User configurationProtect your credentials
2. Network configurationEstablish communications
3. Features and roles configurationAdd what you need, remove what you don’t
4. Update installationPatch vulnerabilities
5. NTP configurationPrevent clock drift
6. Firewall configurationMinimize your external footprint
7. Remove access configurationHarden remote administration sessions
8. Service configurationMinimize your attack surface
9. Further hardeningProtect the OS and other applications
10. Logging and monitoringKnow what’s happening on your system
11. Frequently asked questionsCommon questions about server hardening

1. User Configuration

Modern Windows Server editions force you to do this, but make sure the password for the local Administrator account is reset to something secure. Furthermore, disable the local administrator whenever possible. There are very few scenarios where this account is required and because it’s a popular target for attack, it should be disabled altogether to prevent it from being exploited.

With that account out of the way, you need to set up an admin account to use. You can either add an appropriate domain account, if your server is a member of an Active Directory (AD), or create a new local account and put it in the administrators group. Either way, you may want to consider using a non-administrator account to handle your business whenever possible, requesting elevation using Windows sudo equivalent, “Run As” and entering the password for the administrator account when prompted.

Verify that the local guest account is disabled where applicable. None of the built-in accounts are secure, guest perhaps least of all, so just close that door. Double check your security groups to make sure everyone is where they are supposed to be (adding domain accounts to the remote desktop users group, for example.)

Don’t forget to protect your passwords. Use a strong password policy to make sure accounts on the server can’t be compromised. If your server is a member of AD, the password policy will be set at the domain level in the Default Domain Policy. Stand alone servers can be set in the local policy editor. Either way, a good password policy will at least establish the following:

  • Complexity and length requirements – how strong the password must be
  • Password expiration – how long the password is valid
  • Password history – how long until previous passwords can be reused
  • Account lockout – how many failed password attempts before the account is suspended

Old passwords account for many successful hacks, so be sure to protect against these by requiring regular password changes.

2. Network Configuration

Production servers should have a static IP so clients can reliably find them. This IP should be in a protected segment, behind a firewall. Configure at least two DNS servers for redundancy and double check name resolution using nslookup from the command prompt. Ensure the server has a valid A record in DNS with the name you want, as well as a PTR record for reverse lookups. Note that it may take several hours for DNS changes to propagate across the internet, so production addresses should be established well before a go live window. Finally, disable any network services the server won’t be using, such as IPv6. This depends on your environment and any changes here should be well-tested before going into production.

3. Windows Features and Roles Configuration

Microsoft uses roles and features to manage OS packages. Roles are basically a collection of features designed for a specific purpose, so generally roles can be chosen if the server fits one, and then the features can be customized from there. Two equally important things to do are 1) make sure everything you need is installed. This might be a .NET framework version or IIS, but without the right pieces your applications won’t work. 2) Uninstall everything you don’t need. Extraneous packages unnecessarily extend the attack surface of the server and should be removed whenever possible. This is equally true for default applications installed on the server that won’t be used. Servers should be designed with necessity in mind and stripped lean to make the necessary parts function as smoothly and quickly as possible.

4. Update Installation

This may seem to go without saying, but the best way to keep your server secure is to keep it up to date. This doesn’t necessarily mean living on the cutting edge and applying updates as soon as they are released with little to no testing, but simply having a process to ensure updates do get applied within a reasonable window. Most exploited vulnerabilities are over a year old, though critical updates should be applied as soon as possible in testing and then in production if there are no problems. 

There are different kinds of updates: patches tend to address a single vulnerability; roll-ups are a group of packages that address several, perhaps related vulnerability, and service packs are updates to a wide range of vulnerabilities, comprised of dozens or hundreds of individual patches. Be sure to peek into the many Microsoft user forums after an update is released to find out what kind of experience other people are having with it. Keep in mind that the version of the OS is a type of update too, and using years-old server versions puts you well behind the security curve.

If your production schedule allows it, you should configure automatic updates on your server. Unfortunately, the manpower to review and test every patch is lacking from many IT shops and this can lead to stagnation when it comes to installing updates. It’s much more dangerous, however, to leave a production system unpatched than to automatically update it, at least for critical patches. If at all possible, the updates should be staggered so test environments receive them a week or so earlier, giving teams a chance to observe their behavior. Optional updates can be done manually, as they usually address minor issues.

Other MS software updates through Windows Update as well, so make sure to turn on updates for other products if you’re running Exchange, SQL or another MS server technology. Each application should be updated regularly and with testing.

5. NTP Configuration

A time difference of merely 5 minutes will completely break Windows logons and various other functions that rely on Kerberos authentication. Servers that are domain members will automatically have their time synched with a domain controller upon joining the domain, but stand alone servers need to have NTP set up to sync to an external source so the clock remains accurate. Domain controllers should also have their time synched to a time server, ensuring the entire domain remains within operational range of actual time.

6. Firewall Configuration

If you’re building a web server, for example, you’re only going to want web ports (80 and 443) open to that server from the internet. If anonymous internet clients can talk to the server on other ports, that opens a huge and unnecessary security risk. If the server has other functions such as remote desktop (RDP) for management, they should only be available over a VPN connection, ensuring that unauthorized people can’t exploit the port at will from the net.

The Windows firewall is a decent built-in software firewall that allows configuration of port-based traffic from within the OS. On a stand alone server, or any server without a hardware firewall in front of it, the Windows firewall will at least provide some protection against network based attacks by limiting the attack surface to the allowed ports. That said, a hardware firewall is always a better choice because it offloads the traffic to another device and offers more options on handling that traffic, leaving the server to perform its main duty. Whichever method you use, the key point is to restrict traffic to only necessary pathways.

7. Remote Access Configuration

As mentioned above, if you use RDP, be sure it is only accessible via VPN if at all possible. Leaving it open to the internet doesn’t guarantee you’ll get hacked, but it does offer potential hackers another inroad into your server.

Make sure RDP is only accessible by authorized users. By default, all administrators can use RDP once it is enabled on the server. Additional people can join the Remote Desktop Users group for access without becoming administrators.

In addition to RDP, various other remote access mechanisms such as Powershell and SSH should be carefully locked down if used and made accessible only within a VPN environment. Telnet should never be used at all, as it passes information in plain text and is woefully insecure in several ways. Same goes for FTP. Use SFTP or SSH (from a VPN) whenever possible and avoid any unencrypted communications altogether.

8. Service Configuration

Windows server has a set of default services that start automatically and run in the background. Many of these are required for the OS to function, but some are not and should be disabled if not in use. Following the same logic as the firewall, we want to minimize the attack surface of the server by disabling everything other than primary functionality. Older versions of MS server have more unneeded services than newer, so carefully check any 2008 or 2003 (!) servers.

Important services should be set to start automatically so that the server can recover without human interaction after failure. For more complex applications, take advantage of the Automatic (Delayed Start) option to give other services a chance to get going before launching intensive application services. You can also set up service dependencies in which a service will wait for another service or set of services to successfully start before starting. Dependencies also allow you to stop and start an entire chain at once, which can be helpful when timing is important.

Finally, every service runs in the security context of a specific user. For default Windows services, this is often as the Local System, Local Service or Network Service accounts. This configuration may work most of the time, but for application and user services, best practice dictates setting up service specific accounts, either locally or in AD, to handle these services with the minimum amount of access necessary. This keeps malicious actors who have compromised an application from extending that compromise into other areas of the server or domain.

9. Further Hardening

Microsoft provides best practices analyzers based on role and server version that can help you further harden your systems by scanning and making recommendations.

Although User Account Control (UAC) can get annoying, it serves the important purpose of abstracting executables from the security context of the logged in user. This means that even when you’re logged in as an admin, UAC will prevent applications from running as you without your consent. This prevents malware from running in the background and malicious websites from launching installers or other code. Leave UAC on whenever possible.

The tips in this guide help secure the Windows operating system, but every application you run should be hardened as well. Common Microsoft server applications such as MSSQL and Exchange have specific security mechanisms that can help protect them against attacks like ransomware such as WannaCry, be sure to research and tweak each application for maximum resilience. If you’re building a web server, you can also follow our hardening guide to improve its internet facing security.

10. Logging and Monitoring

Finally, you need to make sure that your logs and monitoring are configured and capturing the data you want so that in the event of a problem, you can quickly find what you need and remediate it. Logging works differently depending on whether your server is part of a domain. Domain logons are processed by domain controllers, and as such, they have the audit logs for that activity, not the local system. Stand alone servers will have security audits available and can be configured to show passes and/or failures.

Check the max size of your logs and scope them to an appropriate size. Log defaults are almost always far too small to monitor complex production applications. As such, disk space should be allocated during server builds for logging, especially for applications like MS Exchange. Logs should be backed up according to your organization’s retention policies and then cleared to make room for more current events.

Consider a centralized log management solution if handling logs individually on servers gets overwhelming. Like a syslog server in the Linux world, a centralized event viewer for Windows servers can help speed up troubleshooting and remediation times for medium to large environments.

Establish a performance baseline and set up notification thresholds for important metrics. Whether you use the built-in Windows performance monitor, or a third party solution that uses a client or SNMP to gather data, you need to be gathering performance info on every server. Things like available disk space, processor and memory use, network activity and even temperature should be constantly analyzed and recorded so anomalies can be easily identified and dealt with. This step is often skipped over due to the hectic nature of production schedules, but in the long run it will pay dividends because troubleshooting without established baselines is basically shooting in the dark.

11. Frequently Asked Questions About Windows Server Hardening

What is Server Hardening?

Hardening is a catch-all term for the changes made in configuration, access control, network settings and server environment, including applications, in order to improve the server security and overall security of an organization’s IT infrastructure. Different benchmarks exist for Windows server hardening, including Microsoft Security Benchmarks as well as CIS Benchmark hardening standards established by the Center For Internet Security. Benchmarks from CIS cover network security hardening for cloud platforms such as Microsoft Azure as well as application security policy for software such as Microsoft SharePoint, along with database hardening for Microsoft SQL Server, among others. 

How Do l Harden a Web Server?

It’s good practice to follow a standard web server hardening process for new servers before they go into production. Never attempt to harden web servers in use as this can affect your production workloads, with unpredictable disruptions, so instead, provision fresh servers for hardening, then migrate your applications after hardening and fully testing the setup. A good first step when hardening a Windows web server involves patching the server with the latest service packs from Microsoft before moving on to securing your web server software such as Microsoft IIS, Apache, PHP, or Nginx. 

Harden system access and configure network traffic controls, including setting minimum password length, configure Windows Firewall, which allows you to implement functionality similar to iptables using traffic policy, set up a hardware firewall if one is available, and configure your audit policy as well as log settings. Eliminate potential backdoors that can be used by an attacker, starting at the firmware level, by ensuring your servers have the latest BIOS firmware that is hardened against firmware attacks, all the way to IP address rules for limiting unauthorized access, and uninstalling unused services or unnecessary software. Make sure all file system volumes use the NTFS filesystem, and configure file permissions to limit user permission to least privilege access. You should also install anti-virus software as part of your standard server security configuration, ideally with daily updates and real-time protection.  

What is the Most Important Process in Windows Server Hardening?

To really secure your servers against the most common attacks, you must adopt something of the hacker mindset yourself, which means scanning for potential vulnerabilities from the viewpoint of how a malicious attacker might look for an opening. Inevitably, the largest hacks tend to occur when servers have poor or incorrect access control permissions, ranging from lax file system permissions to network and device permissions. In a statistical study of recent security breaches, poor access management to be the root cause behind an overwhelming majority of data breaches, with 74% of breaches involving the use of a privileged account in some capacity or the other. 

Perhaps the most dangerous but pervasive form of poor access control is granting of Everyone Write/Modify or Read permissions on files and folders with sensitive contents, which occurs so frequently as a natural offshoot of complex organizational collaborative team structures. To reduce exposure through access control, set group policy and permissions to the minimum privileges acceptable, and consider implementing strict protocols such as 2 Factor Authentication as well as zero trust privilege to ensure resources are only accessed by authenticated actors. 

Other common areas of vulnerability include social engineering and servers running with unpatched software, for which your team should undergo regular cybersecurity training and you should be regularly testing and applying the most recent security patches for software running on your servers. On this last one, you want to remove unnecessary services from your servers as these hurt the security of your IT infrastructure in two crucial ways, firstly by broadening the attacker’s potential target area, as well as by running old services in the background that might be several patches behind. These can be attractive targets for exploits. In reality, there is no system hardening silver bullet that will secure your Windows server against any and all attacks. The best hardening process follows information security best practices end to end, from hardening the operating system itself to application and database hardening.  

Which Windows Server Version is the Most Secure?

The latest versions of Windows Server tend to be the most secure since they use the most current server security best practices. For cutting edge server security, you should be looking at recent versions, including Windows Server 2008 R2, Windows Server 2012 R2, Windows Server 2016, and the most recent release, Windows Server 2019. Microsoft has added significantly to the security profile of its server OS in Windows Server 2019, with far-reaching security-focused updates that acknowledge the widespread impact of breaches and attacks. These new features make Windows Server 2019 the most formidable of the line from a security perspective. 

Windows Server 2019 features such as Windows Defender ATP Exploit Guard and Attack Surface Reduction(ASR) help to lock down your systems against intrusion and provide advanced tools for blocking malicious file access, scripts, ransomware, and other attacks. Network protection features in Windows Server 2019 provide protection against web attacks through IP blocking to eliminate outbound processes to untrusted hosts. Advanced audit policy settings in Windows Server 2019, including the Microsoft Defender Advanced Threat Protection Incidents queue help you get a granular event log for monitoring threats that require manual action or follow up.  

Final Thoughts

Defining your ideal state is an important first step for server management. Building new servers to meet that ideal takes it a step further. But creating a reliable and scalable server management process requires continuous testing of actual state against the expected ideal. This is because configurations drift over time: updates, changes made by IT, integration of new software– the causes are endless.

UpGuard provides both unparalleled visibility into your IT environment and the means to control configuration drift by checking it against your desired state and notifying you when assets fall out of compliance. Compare systems to one another or in a group to see how configurations differ, or compare a system to itself over time to discover historical trends.

Is your business at risk of a security breach?

UpGuard can protect your business from data breaches, identify all of your data leaks, and help you continuously monitor the security posture of all your vendors.

UpGuard also supports compliance across a myriad of security frameworks, including the new requirements set by Biden’s Cybersecurity Executive Order.

Test the security of your website, CLICK HERE to receive your instant security score now!

Source :
https://www.upguard.com/blog/the-windows-server-hardening-checklist

Initial and Advanced Firewall Setup for high security environments

Description

This article covers how to setup firewall initial and advanced configuration when configuring in environments that requires top security compliance, military environments and closed environments.

Resolution

Resolution for SonicOS 7.X

This release includes significant user interface changes and many new features that are different from the SonicOS 6.5 and earlier firmware. The below resolution is for customers using SonicOS 7.X firmware.

Interfaces Configuration:

After collecting all necessary infrastructure-related information such as the relevant service IP networks,addresses, and so on, you can begin the basic configuration. To complete the basic configuration, complete the following steps:

  1. Log in to the default LAN interface X0, using the default IP:192.168.168.168.
  2. Go to Network |System | Interfaces.

         

  3. Under the Interface Settings section, click the Configure icon and assign relevant IP addresses to the interfaces in the trusted and untrusted zones.

                           Image
  4. Based on the information previously collected, assign the IP address to the interfaces in the correct subnet, you can use the default network as well.
  5. Enable HTTPS management and user management on the interfaces.
  6. Enable the desired protocols on the LAN and WAN interfaces.
  7. Configure the management interface with the appropriate IP addresses, net masks, and gateways, This is used only for controlling traffic management to the firewall.
  8. Disable DHCP server: Uncheck ‘Enable DHCP Server’ under Network | System | DHCP Server > DHCPv4 Server Settings.

          

  9. Set Firewall Host and Domain Names, Navigate to Device | Settings | Administration with Firewall Administration
    i.  Enter the firewall Name in the ‘Firewall Name’ box
    ii. Enter the firewall Domain Name (i.e. mydomain.net) in the ‘Firewall’s Domain Name’ box and click Accept.

    Image

Admintrator Settings:

  1. Set Administrator Account Properties:
    a. Under Firewall Administrator| Administrator Name & Password: Verify Administrator Name and set the password.
    b. Under Device | Settings | Administration with Login/Multiple Administrators

    i. Check ‘Password Must be Changed Every (days)
    ii. Check ‘Bar repeated passwords for this many changes’ – set to ‘10’
    iii. Select ‘New password must contain 8 characters different from the old password’
    iv. Set ‘Enforce a minimum password length of:’ to ‘16’
    v. Set ‘Enforce password complexity’ to ‘Require alphabetic, numeric, and symbolic characters’ (from the drop-down box choices)
    vi. Set ‘Complexity Requirement’ to ‘2’ in each box
    vii. Check all ‘Apply the above password constraints for:’ boxes
    viii. Set the ‘Log out the administrator after inactivity of (minutes)’ timer to ‘10’
    ix. Check the ‘Enable the administrator/user lockout’ checkbox

    1. Set ‘Failed login attempts per minute before lockout’ to ‘3’
    2. Set ‘Lockout Period (minutes)’ to ‘30’
    x. Set ‘Max login attempts through CLI’ to ‘3’
    1. Click ‘Accept’ (may require a reboot).

               Image

    xi. Under ‘Multiple Administrators’ – Select ‘Enable Multiple Administrative Roles’

          Image

    xii. Under Audit/Sonic OS API, ‘Enhanced Audit Logging Support’ – Select ‘Enable Enhanced Audit Logging’, click Accept.

             Image


User Configuration:

Force a new login session after a password change and display user login information since last login:
Navigate to Device | Users | Settings and Select ‘Force Relogin After Password Change’, Select ‘Display User Login Info Since Last Login’ and Click ‘Accept’.

      Image

Advanced Configuration:

For Advanced configurations in the firewall, complete the following additional steps:

  1. If a closed system is necessary, go to the Backend Server Communication section 12 and disable the Prevent communication with Backend servers option after the licensing protocol synchronizes, See the SonicOS Administration Guide for more information on manually updating these signatures.
  2. Under Diag page settings,In internal settings:
    1. Go to the Security Services Settings section, click Apply IPS Signatures Bidirectionally.
    2. Go to the ICMP Settings section, disable both ICMP packet settings.
    3. Under the VPN Settings section, enable the Trust Built-in CA certificates for IKE authentication and Local certificate import option.
    4. Click Close.
  3. Navigate to Device>Diagnostics and deselect “Periodic Secure Diagnostic Reporting for Support Purposes” and “Automatic Secure Crash Analysis Reporting”, the click “Accept”.
  4. Restart the firewall.
  5. Disable Advanced Networking:
    a. In Network| System | Dynamic Routing and disable Advanced Routing.

           Image
  6. Change IKEv2 Dynamic Client Proposal in IPSec VPN Advanced Settings to require at least DH Group 14,AES-256 encryption, and SHA-256 authentication:
    a. In IPSec VPN / Advanced, navigate to ‘IKEv2 Settings’ and click the ‘IKEv2 Dynamic Client Proposal’ button
    b. Change ‘DH Group’ to ‘14’ as appropriate
    c. Change ‘Encryption’ to ‘AES-256’
    d. Change ‘Authentication’ to ‘SHA-256’
    e. Click ‘Accept’ and then ‘Accept’ again

                   Image

Setting configuration:

  1. Turn off SSH and SNMP Management (not allowed 1 in FIPS mode):
    a. Navigate to Network | System | Interfaces and select the configuration icon for X0 (this assumes it’ the only interface that SSH or SNMP management might be  enabled on; turn off for any others configured for SSH and/or SNMP management)
    b. Deselect SSH or SNMP as appropriate.
    c. Click  ‘Ok’.

           Image
  2. Set session quota for each management IP (NOTE: This applies to both IPv4 and IPv6):
    a. Using the browser, navigate to the diag.html page https://<IP address> /sonicui/7/m/Mgmt/settings to https://<IP address>/sonicui/7/m/Mgmt/settings/diag.
    b. Check the box labeled ‘Set Connection Limitation of Management Policies’ and accept and exit internal settings.

    i. NOTE: This will require an automatic reboot

           Image
  3. Enable “Drop and log network packets whose source or destination address is 3 reserved by RFC”
    a. In Network | Firewall | Advanced> IPV6 settings,  navigate to the ‘IPv6 Advanced Configuration’ section
    b. Check the option ‘Drop and log network packets whose source or destination address is reserved by RFC’ and accept it.

            Image

172220  Log alert when the log buffer is 75% full
Log -> Settings -> Log category -> General -> Logs at 75% of maximum:  set the priority to Alert

       Image

172218 Minimum number of characters changed for password should be eight (8)
Device>Settings> Administration > Login/Multiple Administrators:

Image

172221 Login history during a user defined time period
Diag settings, new checkbox to set the time interval for login history. Note: The system -> Status the login history is displayed. The text in the display still shows as “since system restart” but it is actually since the organizationally defined time period in the below setting.

         Image

Sample output:
• Last successful login timestamp 04/11/2016 17:30:32.000.
• Number of all user successful login attempts since system reset is 1.

Note: Login history for CAC user with LDAP

Login History for a CAC user with credentials imported from LDAP will be recorded only when the user accounts are imported from LDAP locally onto the firewall. In order for the firewall to track history of the account the user account information should be available locally on the firewall.
If using CAC with LDAP , import the LDAP user accounts locally by clicking the “Import Users” and clicking “save”.

172219 Minimum password lifetime
Device>Settings> Administration > Login/Multiple Administrators:

Image

172223 Password complexity requirements should be applicable to OTP
Device> User -> Settings -> checkbox to apply password constraints to OTP

        Image

171473 Indefinite lockout of a user for wrong password(Device>Settings> Administration > Login/Multiple Administrators:)
172217 Enforce a limit of number of invalid consecutive logons within a time period

Image

Resolution for SonicOS 6.5

This release includes significant user interface changes and many new features that are different from the SonicOS 6.2 and earlier firmware. The below resolution is for customers using SonicOS 6.5 firmware.

Interfaces Configuration:

After collecting all necessary infrastructure-related information such as the relevant service IP networks,addresses, and so on, you can begin the basic configuration. To complete the basic configuration, complete the following steps:

  1. Log in to the default LAN interface X0, using the default IP:192.168.168.168.
  2. Go to Manage |Network| Interfaces.

        
  3. Under the Interface Settings section, click the Configure icon and assign relevant IP addresses to the interfaces in the trusted and untrusted zones.

             Image
  4. Based on the information previously collected, assign the IP address to the interfaces in the correct subnet, you can use the default network as well.
  5. Enable HTTPS management and user management on the interfaces.
  6. Enable the desired protocols on the LAN and WAN interfaces.
  7. Configure the management interface with the appropriate IP addresses, net masks, and gateways, This is used only for controlling traffic management to the firewall.
  8. Disable DHCP server: Uncheck ‘Enable DHCP Server’ under Manage | Network| DHCP Server > DHCPv4 Server Leases Scopes.


  9. Set Firewall Host and Domain Names, Navigate to Manage| Appliance | Base Settings  with Firewall Administration
    i.  Enter the firewall Name in the ‘Firewall Name’ box
    ii. Enter the firewall Domain Name (i.e. mydomain.net) in the ‘Firewall’s Domain Name’ box and click Accept.

    Image

Admintrator Settings:

  1. Set Administrator Account Properties:
    a. Under Administrator Name & Password: Verify Administrator Name and set the password.
    b. Under Administration / Login Security with Login/Multiple Administrators

    i. Check ‘Password Must be Changed Every (days)
    ii. Check ‘Bar repeated passwords for this many changes’ – set to ‘10’
    iii. Select ‘New password must contain 8 characters different from the old password’
    iv. Set ‘Enforce a minimum password length of:’ to ‘16’
    v. Set ‘Enforce password complexity’ to ‘Require alphabetic, numeric, and symbolic characters’ (from the drop-down box choices)
    vi. Set ‘Complexity Requirement’ to ‘2’ in each box
    vii. Check all ‘Apply the above password constraints for:’ boxes
    viii. Set the ‘Log out the administrator after inactivity of (minutes)’ timer to ‘10’
    ix. Check the ‘Enable the administrator/user lockout’ checkbox

    1. Set ‘Failed login attempts per minute before lockout’ to ‘3’
    2. Set ‘Lockout Period (minutes)’ to ‘30’
    x. Set ‘Max login attempts through CLI’ to ‘3’
    1. Click ‘Accept’ (may require a reboot).

            Image

    xi. Under ‘Multiple Administrators’ – Select ‘Enable Multiple Administrative Roles’.

           Image

    xii. Under ‘Enhanced Audit Logging Support’ – Select ‘Enable Enhanced Audit Logging’, click Accept.

                       Image

User Configuration:

Force a new login session after a password change and display user login information since last login:
Navigate to Manage | Users | Settings and Select ‘Force Relogin After Password Change’, Select ‘Display User Login Info Since Last Login’ and Click ‘Accept’.

            Image

Advanced Configuration:

For Advanced configurations in the firewall, complete the following additional steps:

  1. If a closed system is necessary, go to the Backend Server Communication section 12 and disable the Prevent communication with Backend servers option after the licensing protocol synchronizes, See the SonicOS Administration Guide for more information on manually updating these signatures.
  2. Under Diag page settings, In internal settings:
    1. Go to the Security Services Settings section, click Apply IPS Signatures Bidirectionally.
    2. Go to the ICMP Settings section, disable both ICMP packet settings.
    3. Under the VPN Settings section, enable the Trust Built-in CA certificates for IKE authentication and Local certificate import option.
    4. Click Accept and exit the internal settings.
  3. Navigate to Device>Diagnostics and deselect “Periodic Secure Diagnostic Reporting for Support Purposes” and “Automatic Secure Crash Analysis Reporting”, the click “Accept”.
  4. Restart the firewall.
  5. Disable Advanced Networking:
    a.In Network / Routing, change ‘Advanced Routing’ to ‘Simple RIP Advertisement’

     Image
  6. Change IKEv2 Dynamic Client Proposal in IPSec VPN Advanced Settings to require at least DH Group 14,AES-256 encryption, and SHA-256 authentication:
    a. In IPSec VPN / Advanced, navigate to ‘IKEv2 Settings’ and click the ‘IKEv2 Dynamic Client Proposal’ button
    b. Change ‘DH Group’ to ‘14’ as appropriate
    c. Change ‘Encryption’ to ‘AES-256’
    d. Change ‘Authentication’ to ‘SHA-256’
    e. Click ‘Ok’ and then ‘Accept’ again.

          Image

Setting configuration:

  1. Turn off SSH and SNMP Management (not allowed 1 in FIPS mode):
    a. Navigate to Network | System | Interfaces and select the configuration icon for X0 (this assumes it’ the only interface that SSH or SNMP management might be  enabled on; turn off for any others configured for SSH and/or SNMP management)
    b. Deselect SSH or SNMP as appropriate.
    c. Click  ‘Ok’.

                 Image
  2. Set session quota for each management IP (NOTE: This applies to both IPv4 and IPv6):
    a. Using the browser, navigate to the diag.html page (<IP address of host>/diag.html)
    b. Check the box labeled ‘Set Connection Limitation of Management Policies’

    i. NOTE: This will require an automatic reboot

    Image
  3. Enable “Drop and log network packets whose source or destination address is 3 reserved by RFC”
    a. In Firewall Settings >Advanced Settings,  navigate to the ‘IPv6 Advanced Configuration’ section
    b. Check the option ‘Drop and log network packets whose source or destination address is reserved by RFC’ and accept it.

             Image

172220  Log alert when the log buffer is 75% full
Log -> Base setup -> Log category -> General -> Logs at 75% of maximum:  set the priority to Alert

               Image

172218 Minimum number of characters changed for password should be eight (8)
Manage>Appliance> Base settings > Login security:

Image

172221 Login history during a user defined time period
Diag settings, new checkbox to set the time interval for login history. Note: The system -> Status the login history is displayed. The text in the display still shows as “since system restart” but it is actually since the organizationally defined time period in the below setting.

Image

Sample output:
• Last successful login timestamp 04/11/2016 17:30:32.000.
• Number of all user successful login attempts since system reset is 1.

Note: Login history for CAC user with LDAP

Login History for a CAC user with credentials imported from LDAP will be recorded only when the user accounts are imported from LDAP locally onto the firewall. In order for the firewall to track history of the account the user account information should be available locally on the firewall.
If using CAC with LDAP , import the LDAP user accounts locally by clicking the “Import Users” and clicking “save”.

172219 Minimum password lifetime
Manage>Appliance> Base settings > Login security:

Image

172223 Password complexity requirements should be applicable to OTP
Manage> Users -> Settings -> checkbox to apply password constraints to OTP

Image

171473 Indefinite lockout of a user for wrong password(Manage>Appliance> Base settings > Login security:)
172217 Enforce a limit of number of invalid consecutive logons within a time period

Image

Related Articles

Categories

Source :
https://www.sonicwall.com/support/knowledge-base/initial-and-advanced-firewall-setup-for-high-security-environments/210714000203227/

Can Settings be Exported/Imported from one SonicWall to Another? (Support Matrix)

Description

While settings can be exported from one SonicWall to another, not every model of SonicWall is compatible with all others. Similarly, some firmware versions are not compatible with subsequent versions as new features were added or changes were made to existing features. This article details which settings files are supported to and from each SonicWall UTM device to help administrators avoid possible settings corruption from unsupported settings Imports.

Resolution

Support Matrix for Gen 7 Products

SonicOS 7 is only compatible with Gen 7 hardware such as the TZ570 and 670. SonicOS 6.5.1.3 is the minimum version supported for settings import to a TZ running SonicOS 7. Existing settings for Global Bandwidth Management, Virtual Assist and Content Filter Client Enforcement cannot be imported into SonicOS 7. Global Bandwidth Management is replaced by Advanced Bandwidth Management, and the other features are deprecated in SonicOS 7.

NOTE: Settings import from Gen6/6.5 is only supported with migration tool. For help with creating Gen7 settings file using migration tool, please follow: How to Create Gen 7 Settings File by Using the Online Migration Tool?. Once you have a Gen7 compatible configuration from Migration tool, settings can be imported into relevant Gen7 models as per the product matrix.

Image

Configuration Settings Import Support by Version

 CAUTION: Settings from a higher firmware version cannot be imported into a lower version of firmware. For example it is not supported to import 6.5.3.x settings into 6.5.1.x firmware.

How To Understand And Resolve Settings Corruption

The following matrix illustrates the supported source and destination versions of SonicOS when importing configuration settings from one appliance to another. SonicOS 6.5 and 7.0 are included.

Image

Configuration settings import to a TZ running SonicOS 7 from any SonicOS 6.x version prior to SonicOS 6.5.x is supported as a two-step process:

  1. Upgrade the TZ from SonicOS 6.x to SonicOS 6.5.1.3 or higher.
  2. Export settings from the upgraded TZ and then use the migration tool to  import them to the TZ running SonicOS 7.

Configuration Settings Import Support by Platform

The matrix in this section shows the SonicWall firewalls running SonicOS 6.5 or 7.0 whose configuration settings can be imported to SonicWall platforms running SonicOS 7.0.

In the matrix, the source firewalls are in the left column, and the destination firewalls are listed across the top.

Image
Image

The legend for the above table is:

Image

 NOTE: Settings import is supported form SOHO running SonicOS 5.9 to SonicWall platforms running SonicOS 7.0. This is a special case, as SOHO cannot run SonicOS6.5.


Support Matrix for Importing Preferences from Gen 5 to Gen 6 Products

 NOTE: Upgrading from SonicOS 5.9.0.x to SonicOS 6.1.x.x is NOT supported at this time.

 NOTE: SonicOS running on NSv does NOT support settings import from a physical to virtual NSv

Failing to follow the guidelines as provided in this article may result in a failed upgrade and/or corruption of the configuration file, which would then require a manual configuration of the firewall settings.

 TIP: When importing settings to a TZ Series Firewall, make sure to disable Portshield on the destination Firewall beforehand to ensure the interface configuration will be updated.

 CAUTION: Settings from a higher firmware version cannot be imported into a lower version of firmware. For example importing 6.5.4.5 settings into 6.5.4.4 firmware is unsupported.

Image

Image

TZ Series / SOHO Series Configuration Import Support

Image

NSA / SuperMassive Configuration Import Support

Image

NSa Configuration Import Support

Image

Image

 NOTE:  SonicOS running on NSv Gen 6/6.5 does not support settings import to NSv Gen 7 devices at this time.


See also:

How to Understand and Resolve Settings Corruption

How do I safely perform a firmware downgrade?

SonicOS 6.5 administrative and upgrade guides – Reference Links

Related Articles

Categories

Source :
https://www.sonicwall.com/support/knowledge-base/can-settings-be-exported-imported-from-one-sonicwall-to-another-support-matrix/170505258332789/

Introducing Wordfence CLI: A High Performance Malware Scanner Built for the Command Line

Matt Barry August 24, 2023

Today, we are incredibly excited to announce the launch of Wordfence CLI: an open source, high performance malware scanner built for the command-line. With Wordfence CLI you can detect malware and other indicators of compromise on a host system by running an extremely fast scanner that is at home in the Linux command line environment. This provides site owners, security administrators, operations teams, and security focused organizations more performance and flexibility in malware detection.

While the Wordfence plugin continues to provide industry leading security with its Web Application Firewall, 2-Factor Authentication, IP Blocklist, Malware Scanner, and other security features, Wordfence CLI can be used to provide a second layer of detection for malware or provide an option for those who choose not to utilize a security plugin.

Wordfence CLI does not provide the firewall, two-factor authentication, brute force protection and other security features that the Wordfence Free and Paid plugin provides. Wordfence CLI is purely focused on high performance, scalable and scriptable malware detection.

Wordfence CLI is for the following customers:

  • Individual site owners comfortable on the Linux command line, who choose to run (or schedule) high performance malware scans on the command line instead of using the malware scanning built into the Wordfence plugin.
  • Site cleaners who need a high performance malware scanner to scan a large number of files as part of remediation.
  • Developers providing hosting to several customers and who want to configure high performance scans in the Linux environment.
  • Hosting companies small and large that want to parallelize scanning across thousands or millions of hosts, fully utilizing all available CPU cores and IO throughput.
  • Operations teams in any organization who are looking for a highly configurable command line scanner that can slot right in to a comprehensive, scheduled and scripted security policy.

Wordfence CLI aims to provide the fastest PHP malware scanner in the world with the highest detection rate, in an scriptable tool that can work in concert with other tools and utilities in the Linux command line environment.

What is Wordfence CLI?

Malware Detection Designed with Performance in Mind

Under the hood, Wordfence CLI is a multi-process malware scanner written in Python. It’s designed to have low memory overhead while being able to utilize multiple cores for scanning large filesystems for malware. We’ve opted to use libpcre over Python’s existing regex libraries for speed and compatibility with our signature set.

From some of our own benchmarks, we’ve seen ~324 files per second and  approximately 13 Megabytes scanned per second using 16 workers on an AMD Ryzen 7 1700 with 8 Cores utilizing our full commercial signature set of over 5,000 malware signatures. That is approximately 46 Gigabytes per hour on modest hardware.

Here are some examples of Wordfence CLI in action.

Performing a basic scan of a single directory in a file system:

wordfence scan --output-path /home/wordfence/wordfence-cli.csv /var/www

This will recursively scan files in the /var/www directory and write the results of the scan in CSV format to /home/wordfence/wordfence-cli.csv. A scan like this could be scheduled using a cron job to be performed daily, which would be similar to how the Wordfence plugin performs scans. Additionally, we can use other utilities like find to select which files we want to scan using Wordfence CLI:

find /var/www/ -cmin -60 -type f -print0 | wordfence scan --output-path /home/wordfence/wordfence-cli.csv

In this example, we can find which files have been changed within the last hour and pipe those from the find command to Wordfence CLI for scanning. It is recommended that you use ctime over mtime and atime as changing the ctime of a file requires root access to the file system. mtime and atime can be arbitrarily set by the file owner using the touch command.

We don’t recommend solely scanning recently changed files on your file system. We frequently add new malware signatures to Wordfence CLI, and we therefore recommend periodically performing a full scan of your filesystem.

Flexibility at Your Fingertips

One key benefit of Wordfence CLI is flexibility. The tool comes with many options that enable users to utilize the output of the scan in various ways.

Some of these options include the ability to:

  • Format output in various ways like CSV, TSV, human readable, and more
  • Choose a number of workers based on available CPUs, that can increase speed and performance of a scan.
  • Include or skip certain files and directories from a scan.
  • Look for all malware signature matches in each file, or immediately stop scanning a file if we find malware (the default).
  • Include or exclude specific signatures from a scan.
  • And much more.

For more information on all of the options available, we recommend reviewing our help documentation at https://www.wordfence.com/help/wordfence-cli/, or downloading Wordfence CLI and running wordfence scan --help

How Wordfence CLI Licensing Works

Wordfence CLI comes in two primary license types, Wordfence CLI Free and Wordfence CLI Commercial.

Wordfence CLI Free is free for individual use and can not be used in a commercial setting. The free version uses our Free Signature Set which is a smaller set of signatures appropriate for entry-level malware detection. Wordfence CLI Free is a great way to get familiar with the tool and to conduct quick scans.

Wordfence CLI Commercial includes our Commercial Signature Set of over 5,000 malware signatures, and can be used in any commercial setting. We release new malware signatures in real-time to our commercial customers. For a sense of scale, our team has released over 100 new malware signatures in the past four months.

Wordfence CLI Commercial includes product support from our world-class Customer Support Engineers.

Wordfence CLI Commercial is available in four pricing tiers:

  • CLI-100 can be used to scan up to 100 unique sites, at just $299 per year.
  • CLI-1,000 can be used to scan up to 1,000 different sites, at just $950 per year.
  • CLI-10,000 can be used to scan up to 10,000 different sites, at just $2,950 per year.
  • CLI-Enterprise which is tailored to any organization or enterprise use case, where the number of sites to be scanned exceeds 10,000. Please contact us at presales@wordfence.com if you are interested in this option.

We trust that users will self-select into the appropriate CLI tier based on the number of sites they need to scan within the license year. You can sign up for a Wordfence CLI free license, or purchase a Wordfence CLI Commercial license at: https://www.wordfence.com/products/wordfence-cli

Contributing to Open Source

Wordfence was founded on a commitment to building and maintaining open source software, and Wordfence CLI is no different. This is why we’ve decided to release the Wordfence CLI application under the GPLv3 license. You can clone the repository here:

https://github.com/wordfence/wordfence-cli/

We’ve also included documentation about how to install, configure, and run Wordfence CLI here:

https://www.wordfence.com/help/wordfence-cli/

Come see us at WordCamp US!

Wordfence is a proud Admin level sponsor at WordCamp US in Maryland this year. Join us in celebrating our launch of Wordfence CLI by stopping by our booth and saying hi! We’ll be there 8AM – 5PM tomorrow (Friday) and 8AM – 3:30PM on Saturday. We’ll have team members from Engineering, Threat Intelligence, Customer Service, Operations, and Security who will be happy to answer any questions you have about the launch of Wordfence CLI. We can also help with any questions about our current product lineup which includes Wordfence Premium, Wordfence Care, and Wordfence Response along with Wordfence Intelligence. If the rumors are true, we might even be teaching the public how to pick locks, and you might have the opportunity to win your own lock picking set if you can crack it.

Did you enjoy this post? Share it!

Source :
https://www.wordfence.com/blog/2023/08/wordfence-cli/

A Comprehensive Guide on Cybersecurity for Business Travelers

28.06.2023

Business travel has become an integral part of many professionals’ lives, enabling them to expand networks and explore new opportunities. However, it also exposes travelers to various cyber risks that can compromise sensitive data and business operations.

In this comprehensive guide, we will examine the world of cybersecurity for business travelers, providing valuable insights and practical tips to ensure data protection while on the go.

The Cyber Risks of Business Travel 

Traveling on business opens up both individuals and organizations to countless cyber risks, including vulnerabilities associated with public Wi-Fi connections, the risk of device theft, weak password security, compliance issues, insecure email traffic, and unsecured file-sharing platforms.

These risks can lead to unauthorized access, data breaches, and severe financial and reputational consequences if not properly addressed. Below we outline those risks in further detail so that you may avoid them:

Public Wi-Fi Connections

These networks, often found in hotels, airports, and coffee shops, are often unsecured and easily exploited by cyberhackers. Connecting to these networks puts sensitive data at risk of interception, allowing cybercriminals to steal login credentials, financial information, and other confidential data. It is essential for business travelers to exercise caution and avoid transmitting sensitive information or accessing critical accounts while connected to public Wi-Fi.

Device Theft

The loss or theft of laptops, smartphones, or tablets not only results in financial loss but also grants illicit access to valuable company information. Cybercriminals may exploit stolen devices to gain access to sensitive data, compromise corporate networks, or launch phishing attacks against colleagues and clients.

Implementing physical security measures such as using laptop locks and keeping devices within sight can help deter theft while encrypting data and enabling remote wiping capabilities can mitigate the risks associated with device loss or theft.

Password Security

Weak or reused passwords can provide easy access to unauthorized individuals. Implementing strong, unique passwords across all devices and accounts adds an extra layer of protection. Additionally, enabling two-factor authentication (2FA) enhances security by requiring an additional verification step.

Compliance

It’s important to ensure that personal and business data remain compliant with relevant laws, such as the General Data Protection Regulation (GDPR). Implementing encryption protocols and secure file storage solutions helps maintain compliance and mitigate risks.

Insecure Email Traffic

Business travelers must be careful when using public or unsecured networks to send sensitive information via email. Implementing end-to-end encryption, using secure email providers, and avoiding opening suspicious attachments or clicking on unknown links are vital precautions to protect against email-based attacks.

File Sharing

File sharing can introduce serious security risks. It’s critical to utilize secure file-sharing platforms that encrypt data both in transit and at rest. It’s advisable to implement access controls and permissions to restrict file sharing to authorized individuals only. Also, regularly reviewing and updating file-sharing policies can also help prevent evolving cybersecurity threats.

Cybersecurity Tips for Business Travelers

As we mentioned above, cybercriminals are constantly targeting business travelers, seeking to exploit vulnerabilities in their devices and steal sensitive information. Therefore, it is imperative for business travelers to be well-equipped with effective cybersecurity tips and best practices to safeguard their valuable data and protect their digital assets while on the move.

Here are some simple yet effective things you can do to help keep the hackers at bay:

Lock Your Screens

This simple yet crucial step helps prevent unauthorized access to private or sensitive information. By enabling screen locks, such as passcodes, PINs, or biometric authentication (fingerprints or facial recognition), business travelers can create an additional layer of security that ensures that data remains protected even if their device falls into the wrong hands

Use Public Wi-Fi Sparingly

Public Wi-Fi networks found in hotels, airports, and coffee shops are infamous for their lack of security. When connecting to public Wi-Fi, business travelers expose their data to potential interception by hackers.

As such, it is highly advisable to use public Wi-Fi as sparingly as possible and avoid transmitting any sensitive information, such as login credentials, financial data, or confidential documents.

Instead, business travelers should consider using their mobile network or setting up a personal hotspot with a secure password, or utilizing a virtual private network (VPN) to encrypt internet traffic and protect private data from prying eyes.

Disable the Auto-Connect Feature

Most devices have a feature that automatically connects to available Wi-Fi networks. While this is extremely convenient, this feature can be a security risk. Disabling the auto-connect feature ensures that the device doesn’t automatically connect to untrusted or potentially malicious networks.

It also provides more control over network connections, allowing business travelers to evaluate the security of each network before connecting and minimizing the risk of unwittingly joining an insecure network.

Avoid Location-Sharing

Sharing locations through social media platforms or apps can compromise privacy and potentially put business travelers at risk. This is because cybercriminals can use location data to track movement, identify patterns, and exploit absence from certain locations.

By refraining from location-sharing, business travelers can maintain a higher level of privacy and reduce the chances of becoming a target for physical theft or cyber-attacks.

Use Anti-virus Protection and Run OS Updates

Installing reliable anti-virus software on devices is crucial for detecting and preventing malware infections. Anti-virus protection helps safeguard against various threats, including viruses, ransomware, and spyware.

Additionally, keeping the operating system (OS) up to date with the latest security patches and updates is essential. This is because operating system updates often include bug fixes, vulnerability patches, and security enhancements that protect against known exploits and vulnerabilities.

Update Your Passwords

Regularly updating passwords is an essential cybersecurity practice for business travelers. Strong, unique passwords provide an additional layer of protection against unauthorized access. It is recommended to use a combination of upper and lowercase letters, numbers, and special characters when creating passwords.

Travelers should avoid reusing passwords across different accounts or platforms, as this increases the risk of a single password compromise leading to multiple account breaches. Implementing a password manager can also help generate and securely store complex passwords for easy and secure access.

Disable Bluetooth

Bluetooth technology allows wireless connections between devices, but it also presents potential security risks. Cybercriminals know this and often exploit Bluetooth vulnerabilities to gain unauthorized access to business travelers’ devices or intercept sensitive data. Disabling Bluetooth when not in use mitigates these risks and reduces the likelihood of being targeted through Bluetooth-related attacks.

Turn Off NFC (Near-Field Communication) 

NFC enables contactless communication between devices. While NFC can be convenient for certain tasks, it also presents security risks, such as unauthorized access or data theft. Turning off NFC when not required helps prevent potential attacks and keeps business travelers’ devices and data secure.

Back up Information on the Cloud

Regularly backing up data on secure cloud storage services provides an additional layer of protection against data loss. In the event of device theft, damage, or loss, having all information securely stored in the cloud ensures that users can access and retrieve important files, documents, and data from any device with internet access.

Be Vigilant

Maintaining a vigilant mindset is crucial for business travelers. Staying alert for phishing attempts, suspicious links, and unfamiliar emails or messages is vital.

Hackers often exploit travel-related scenarios to trick individuals into revealing sensitive information or downloading malware.

By being cautious, double-checking before clicking on links or providing personal information, and staying informed about common phishing techniques, can significantly reduce the risk of falling victim to cyber-attacks.

By implementing the above cybersecurity tips, business travelers can enhance their digital security, reduce the risk of data breaches, and protect their sensitive information while on the go. 

Cybersecurity Tips for Businesses  

Organizations of all sizes must prioritize cybersecurity to protect their sensitive data, intellectual property, and customer information. Implementing effective cybersecurity measures is essential to safeguarding against cyber threats and minimizing the risk of data breaches. 

Here are some essential tips for businesses to enhance their cybersecurity posture:

Implement Public Wi-Fi Policies

Establish clear policies and guidelines for employees regarding the use of public Wi-Fi networks. This includes educating them about the risks associated with public Wi-Fi and providing instructions on how to connect securely or avoid using untrusted networks altogether.

Implement VPN Usage Policies

Administer the use of virtual private networks (VPNs) when accessing company resources remotely. Implement policies that require employees to connect to a business VPN to ensure encrypted and secure communication, especially when accessing sensitive data or using public networks.

Train Your Employees to Keep Their Devices Secure

Conduct regular training sessions to educate employees on best practices for device security. This includes creating strong passwords, enabling two-factor authentication (2FA), keeping software and applications updated, and avoiding suspicious websites and downloads.

Train Employees for a Response Plan

Develop and train employees on a comprehensive incident response plan. Ensure they understand the steps to take in the event of a cybersecurity incident, including who to notify, how to preserve evidence, and how to mitigate further damage.

Encourage Situational Awareness

Foster a culture of cybersecurity awareness among employees by promoting situational awareness. Encourage them to be vigilant and identify potential threats, such as phishing emails, suspicious activities, or social engineering attempts. Encourage reporting of any suspicious incidents promptly.

Protect Mobile Devices With Strong Passwords and 2FA

Emphasize the importance of strong passwords and enable two-factor authentication (2FA) on all company-owned mobile devices. This provides an additional layer of security and prevents unauthorized access to sensitive information.

Require Regular Software Updates

Make it a policy for employees to frequently update their software, applications, and operating systems. This ensures that devices have the latest security patches and protections against emerging threats.

Provide Traveling Employees With Charging Devices

Equip traveling employees with reliable charging devices to inhibit the use of public charging stations, which can be compromised to deliver malware or steal data.

Issue Travel-Only Laptops

Provide dedicated laptops specifically for business travel. These travel-only laptops should be hardened and secured with robust security measures, minimizing the risk of data exposure while on the move.

Update Devices After Traveling

After returning from travel, ensure that employees’ devices undergo thorough security checks and updates. This helps address any potential security vulnerabilities or malware that may have been acquired during travel.

Implement a Mobile Device Management Solution

Deploy a mobile device management (MDM) solution to enforce security policies, remotely manage and monitor devices, and protect sensitive data on mobile devices. MDM solutions provide centralized control and enhanced security for company-owned devices, especially for those used by traveling employees.

Unlock Advanced Security With Perimeter 81

Cybersecurity is of increasingly paramount importance for business travelers and organizations. The risks and threats faced while on the move require a proactive and comprehensive approach to protect sensitive information and mitigate potential breaches.

By implementing the cybersecurity tips outlined in this article, both business travelers and their organizations can significantly enhance their digital security posture, ensuring that sensitive information and digital assets are safeguarded, and enabling them to focus on their professional endeavors while minimizing the risks associated with their journeys.

Need a business VPN to use? We have the leading VPN and ZTNA technology suite to help you secure your business. Book a demo today!

FAQs

What are some good cybersecurity practices when going on a business trip?

To ensure cybersecurity while on business trips, there are several essential practices to follow. First, it is crucial to use secure and trusted networks, avoiding public Wi-Fi whenever possible. Instead, connect to secure networks such as virtual private networks (VPNs) or mobile hotspots with strong encryption.

Additionally, enabling two-factor authentication (2FA) adds an extra layer of security by requiring an additional verification step, like a unique code sent to a mobile device, along with a password. Keeping devices and software updated is also vital, as regular updates help protect against known vulnerabilities.

Implementing strong password practices, being cautious of phishing attempts, securing physical devices, and regularly backing up important data are further measures that business travelers should adopt.

What is cybersecurity in tourism?

Cybersecurity in tourism refers to the protection of digital assets, data, and systems within the tourism industry. It involves employing measures to safeguard against cyber threats, data breaches, and unauthorized access to sensitive information.

In the tourism sector, cybersecurity is vital to ensure the integrity and confidentiality of customer data, financial transactions, and other sensitive information.

It encompasses practices such as securing online booking platforms, protecting customer payment information, educating employees about cyber threats, and maintaining robust data protection protocols to instill confidence and trust in travelers.

What type of businesses need cybersecurity?

All businesses, regardless of size or industry, need cybersecurity measures to protect their digital assets and sensitive information. While certain industries face higher risks, such as financial institutions, healthcare organizations, e-commerce companies, government agencies, and technology firms, it is crucial to recognize that cybersecurity is relevant to all businesses.

Cyber threats can impact any organization that utilizes digital technologies, stores customer data or relies on online systems for operations. Safeguarding digital assets and customer information should be a priority for businesses across industries.

Source :
https://www.perimeter81.com/blog/network/cybersecurity-for-business-travelers

How to Build Network Security for Your Business in 2023

28.06.2023

Network security is paramount for businesses of all sizes. With the ever-evolving threat landscape and increasing cyber-attacks, it is crucial to implement robust network security measures to safeguard sensitive data, protect customer information, and ensure uninterrupted operations.

Read on to discover the concept of network security for businesses in 2023. We will also discuss various strategies, tools, and best practices to build secure network infrastructure.

What is Network Security for Businesses?

Network security for businesses refers to a set of measures and practices implemented to protect a company’s computer network from unauthorized access, data breaches, and other cyber threats.

It involves safeguarding the network infrastructure, including hardware, software, and data, by implementing layers of security controls.

Network security also aims to maintain the confidentiality, integrity, and availability of the network, ensuring that only authorized users can access resources and sensitive information while preventing malicious actors from compromising the system. 

The following points cover what you need to know about network security:

How Does Network Security Work? 

Network security operates on multiple layers and employs numerous technologies and protocols to safeguard the network infrastructure. 

For example:

  • Firewalls act as a barrier between an internal network and external networks, monitoring and controlling incoming and outgoing network traffic based on predefined security rules. They examine data packets, filter out potential threats, and prevent unauthorized access to the network. 
  • Virtual Private Networks (VPNs) establish secure, encrypted connections over public networks, such as the Internet, allowing remote users to access the company’s network resources securely. By encrypting data transmitted between the user and the network, business VPNs protect sensitive information from interception and unauthorized access. 
  • Intrusion Detection Systems/Intrusion Prevention Systems (IDS/IPS) tools monitor network traffic in real-time, identifying, and alerting administrators about potential security breaches, anomalies, or malicious activities. IDS identifies threats, while IPS actively blocks or mitigates attacks. 
  • Secure Web Gateways (SWGs) provide secure web browsing by filtering internet traffic, blocking malicious websites, preventing malware downloads, and enforcing acceptable use policies. They protect users from web-based threats and help maintain a secure browsing environment.
  • Zero Trust assumes that no user or device within or outside the network is inherently trustworthy. It enforces strict access controls, verifies identities, and continuously evaluates trustworthiness, even for users and devices inside the network perimeter. Zero Trust architecture reduces the attack surface and enhances overall network security. 

These are just a few examples of the mechanisms employed in network security. Businesses often implement a combination of technologies and strategies tailored to their specific needs and risk profiles.

The key is to establish multiple layers of security controls that work together to detect, prevent, and mitigate threats to the network infrastructure.

Benefits of Network Security For Businesses

Implementing robust network security measures, as outlined in the provided sources, offers several benefits to businesses as follows:

  • Protection of sensitive data: As mentioned above, network security measures, such as firewalls, VPNs, and encryption, play a vital role in safeguarding sensitive data. They help protect customer information, financial records, and proprietary data from unauthorized access, data breaches, and theft. By implementing these measures, businesses can ensure the confidentiality and integrity of their data, preserving customer trust and complying with data protection regulations.
  • Continuity of operations: Network security measures contribute to the smooth functioning of business operations. By detecting and mitigating potential risks and threats, businesses can prevent disruptions caused by malware, DDoS attacks, or unauthorized access attempts. This leads to improved productivity, reduced downtime, and minimized financial losses associated with network outages or data breaches. Network security solutions, such as SIEM systems and intrusion detection/prevention systems, enable businesses to proactively monitor and respond to security incidents, maintaining operational continuity 
  • Meeting regulatory requirements: compliance with industry-specific standards, such as HIPAA for healthcare or GDPR for data privacy, is crucial for avoiding penalties and maintaining the trust of customers and partners. Implementing robust network security measures, including vulnerability scanning and regular software updates, helps businesses adhere to these standards and protect sensitive information.

In summary, the implementation of strong network security measures, as recommended by the provided sources, ensures the protection of sensitive data, maintains operational continuity, and facilitates regulatory compliance for businesses. These benefits contribute to the overall security posture of the organization and help build trust with customers and partners.

Potential Dangers to Business Network Security

Business network security faces numerous potential dangers today. Cyber-attacks pose a significant threat, with attackers employing techniques such as phishing, malware, and ransomware to gain unauthorized access, compromise data, and disrupt operations.

Insider threats from internal employees or contractors can also jeopardize network security, ranging from accidental data breaches to intentional malicious activities. Weak passwords and authentication practices create vulnerabilities, allowing attackers to exploit credentials.

Additionally, the explosion of Bring Your Own Device (BYOD) policies and mobile devices introduces new risks, including device loss or theft. Cloud security is another concern, as misconfigurations or vulnerabilities in cloud platforms can lead to data breaches.

Understanding and addressing these potential dangers is vital for businesses to protect their assets, maintain operational continuity, and safeguard their reputation. Lastly, implementing robust cloud security measures such as encryption, access controls, and regular security assessments helps safeguard data and applications in the cloud.

By understanding and proactively addressing these potential dangers, businesses can fortify their network security defenses and mitigate risks effectively.

Some of the main threats to consider are:

Viruses

Viruses are malicious software programs designed to replicate themselves and infect other files or systems. They can spread via email attachments, infected websites, or removable storage devices.

Once a virus infects a business network, it can cause major damage, including data corruption, system crashes, and unauthorized access.

Viruses often exploit software vulnerabilities or user actions, such as clicking on infected links or downloading malicious files.

To protect against viruses, businesses should deploy up-to-date antivirus software that can detect and remove known viruses. Regular software updates, employee training on safe browsing habits, and caution when opening email attachments or downloading files are essential preventive measures.

Spyware

Spyware is software that secretly gathers information about a user’s activities, usually without their knowledge or consent. Spyware can monitor keystrokes, capture login credentials, track web browsing habits, and collect sensitive data.

It can be installed through malicious downloads, infected websites, and even bundled with legitimate software. Once installed, spyware operates in the background, compromising user privacy and potentially exposing sensitive business information.

Preventive measures against spyware include using reputable antivirus and anti-spyware software, regularly scanning systems for malware, and educating employees about safe online practices. Firewalls and web filters can also help block access to malicious websites known for distributing spyware.

Worms

Worms are self-replicating malware that spread through computer networks without requiring user intervention. They work by exploiting vulnerabilities in network protocols or software to gain unauthorized access and propagate rapidly.

Worms can consume network bandwidth, disrupt system performance, and deliver payloads such as additional malware or remote-control functionality. To defend against worms, businesses should regularly update operating systems and software to patch known vulnerabilities.

Network segmentation and strong access controls limit the spread of worms within the network. Intrusion detection and prevention systems (IDS/IPS) help detect and block worm-related activities, and firewalls can be configured to filter incoming and outgoing traffic to prevent worm propagation.

Adware

Adware is software that displays unwanted advertisements, often in the form of pop-ups, on a user’s device. Today, adware is commonly bundled with free software or downloaded unknowingly from malicious websites.

It can slow down system performance, consume network bandwidth, and compromise user privacy. In some cases, adware may even track user behavior and collect personal information for targeted advertising purposes.

Preventing adware requires implementing robust security measures such as using reputable antivirus software, exercising caution when downloading software from unfamiliar sources, and regularly scanning devices for malware.

Browser extensions or plugins that block or filter unwanted advertisements can also help mitigate the risks associated with adware.

Trojans

Trojans (taken from the concept of Trojan horses) are deceptive programs that masquerade as legitimate software or files to fool users into executing them. Once activated, these Trojans can grant unauthorized access to attackers, enabling them to steal sensitive data, install additional malware, or control the infected system remotely.

Trojans are often spread through email attachments, malicious downloads, or compromised websites. To protect against Trojans, businesses need to implement strong email security measures, including spam filters and email authentication protocols.

Regularly updating software, using reputable antivirus software, and educating employees about safe browsing habits and email hygiene are crucial in preventing Trojan infections.

Ransomware

Ransomware is a type of malware that encrypts a user’s files or entire systems, rendering them inaccessible until a ransom is paid to the attacker. Ransomware attacks can have severe consequences, including financial loss, operational disruption, and reputational damage.

Attackers often exploit vulnerabilities in software or use social engineering techniques to trick users into downloading or executing the malware.

Preventing ransomware requires a multi-layered approach, including regular backups of critical data, implementing strong email security measures, keeping systems and software up to date, and educating employees about phishing techniques and safe computing practices.

Network segmentation and robust access controls help limit the spread of ransomware within the network, and security solutions such as advanced endpoint protection and behavior-based detection can aid in early detection and mitigation.

By understanding the potential dangers posed by viruses, spyware, worms, adware, Trojans, and ransomware, businesses can implement comprehensive security measures to mitigate these risks.

Regular software updates, employee training, strong access controls, and deploying reputable security solutions are essential in maintaining a secure network environment and protecting sensitive business data.

Types of Network Security Solutions

As you have already read, protecting your business network from cyber threats is of paramount importance. Various types of network security solutions have emerged to safeguard organizations’ sensitive data and critical systems. From access control to cloud network security, these solutions form the foundation of a robust network defense strategy.

Below, we explore the most commonly available network security solutions, each addressing specific vulnerabilities and providing unique protective measures.

Access Control

Access control is the foundation of network security, ensuring that only authorized individuals can access sensitive resources and information. By implementing user authentication mechanisms such as strong passwords, multi-factor authentication, and access privilege management, businesses can enforce strict control over network access and reduce the risk of unauthorized entry.

Application Security

Application security focuses on protecting software and web applications from vulnerabilities and exploitation. This involves implementing secure coding practices, regularly updating applications, and utilizing web application firewalls (WAFs) to detect and block potential threats. By securing applications, businesses can prevent breaches that exploit application weaknesses.

Anti-Virus and Anti-Malware

To combat the evolving landscape of malware and viruses, businesses should deploy robust anti-virus and anti-malware solutions. These software applications scan files, emails, and websites for malicious code and remove or quarantine any detected threats. Regular updates and real-time scanning help ensure protection against the latest malware strains.

Firewalls

Firewalls are the most common first line of defense for network security. They monitor and control both incoming and outgoing network traffic based on predefined security rules. They also establish a barrier between trusted internal networks and external networks, effectively blocking unauthorized access and potentially malicious connections.

Intrusion Prevention Systems (IPS)

IPS solutions detect and prevent unauthorized access attempts and network attacks in real time. By monitoring network traffic for known attack signatures or anomalous behavior, IPS systems can take immediate action to block and mitigate potential threats, enhancing network security.

Network Segmentation

Network segmentation involves dividing a network into smaller, isolated segments, creating barriers that limit unauthorized access and the lateral movement of threats. By implementing network segmentation, businesses can contain breaches, reduce the impact of successful attacks, and protect critical resources.

Mobile Security

Mobile security measures include implementing mobile device management (MDM) solutions, enforcing strong passwords, encrypting data, and deploying remote wipe capabilities to protect sensitive information if a device is lost or stolen.

VPN (Virtual Private Network)

VPN creates a secure, encrypted connection over a public network, enabling users to access the company’s network resources remotely. By utilizing a VPN, businesses can ensure that data transmitted between remote users and the network remains secure, protecting sensitive information from interception.

Web Security

Web security solutions protect businesses from web-based threats, such as malicious websites, phishing attempts, and drive-by downloads. These solutions include web filtering, content scanning, and URL categorization, effectively preventing employees from accessing dangerous websites and reducing the risk of infection.

Data Loss Prevention

Data loss prevention (DLP) solutions help businesses protect sensitive information from unauthorized access, accidental exposure, or intentional data theft. By implementing DLP measures, such as encryption, access controls, and content monitoring, organizations can identify, monitor, and prevent the unauthorized transmission or storage of sensitive data. This can help dramatically reduce the risk of data breaches and compliance violations.

Behavioral Analytics

Behavioral analytics utilizes machine learning (ML) and artificial intelligence (AI) algorithms to detect anomalous user behavior within a network. By establishing baselines of normal behavior, these solutions can identify deviations that may indicate insider threats or compromised accounts.

Behavioral analytics enhances network security by providing real-time threat detection and response capabilities.

Zero Trust Network Access (ZTNA)

Zero Trust Network Access (ZTNA) is a security model that assumes no trust, even for users and devices within the network perimeter. It verifies each user and device, granting access only to authorized resources based on granular policies. ZTNA enhances network security by reducing the attack surface and providing secure access control, regardless of the user’s location or network connection.

Sandboxing

Sandboxing involves isolating potentially malicious files, programs, or activities in a controlled environment to analyze their behavior without risking harm to the network. By executing files within a sandbox, businesses can detect and mitigate threats such as zero-day exploits, malware, and ransomware before they can cause damage.

Hyperscale Network Security

Hypersecale network security refers to security measures designed to protect highly scalable and distributed network architectures, such as those found in cloud environments. It involves implementing security measures that can scale dynamically to accommodate the ever-changing demands of large-scale networks, ensuring robust protection against cyber threats.

Cloud Network Security

Cloud network security involves implementing security controls and solutions specifically designed for cloud environments. It includes measures such as encryption, access controls, data loss prevention, and security monitoring to safeguard data and applications hosted in the cloud.

Email Security

Email remains a common entry point for cyber-attacks. Email security solutions include spam filters, anti-phishing measures, attachment scanning, and encryption. By implementing robust email security measures, businesses can prevent malicious emails from reaching users’ inboxes and protect against email-based threats such as phishing and malware.

In conclusion: by considering and implementing a comprehensive range of network security solutions, businesses can significantly enhance their defenses against modern cyber threats. However, it is essential to tailor these solutions to your organization’s specific needs and regularly update and test them to ensure their effectiveness in safeguarding your network, data, and sensitive assets.

With a proactive and layered approach to network security, businesses can mitigate risks and maintain a secure digital environment.

How to Build Your Network Security

Building a strong network security infrastructure is crucial in order to establish comprehensive security measures that address potential vulnerabilities and safeguard against cyber threats.  

Here are 12 best practices for how to go about it:

Monitor Traffic

  • Implement network monitoring tools to gain visibility into network traffic.
  • Analyze and identify abnormal and/or suspicious activities indicative of potential security breaches.
  • Monitor both inbound and outbound traffic to detect and respond to threats promptly.

Run Network Audits Regularly

  • Conduct regular network audits to assess the overall security posture of your network.
  • Identify and address any vulnerabilities, misconfigurations, or outdated security protocols.
  • Review access controls, firewall rules, and network segmentation to ensure they align with your security requirements.

Stay Informed on New Threats

  • Stay updated with the latest security trends, vulnerabilities, and attack techniques.
  • Subscribe to security bulletins, follow reputable security blogs, and participate in industry forums to stay informed.
  • Regularly assess your network security measures against emerging threats and adapt your defenses accordingly.

Build and Update Your Firewall and Antivirus

  • Deploy a robust firewall solution to monitor and control network traffic based on predefined security policies.
  • Regularly update firewall rules to incorporate new security requirements and address emerging threats.
  • Utilize reputable anti-virus software and keep it up to date to protect against malware, viruses, and other malicious software.

Use MFA (Multi-Factor Authentication)

  • Implement multi-factor authentication to add an extra layer of security to user login processes.
  • Require users to provide additional verification factors, such as a unique code or biometric information, along with their credentials.
  • MFA significantly reduces the risk of unauthorized access even if passwords are compromised.

Implement Single Sign-On (SSO)

  • Deploy a single sign-on solution to streamline user authentication across multiple applications and services.
  • SSO reduces the number of passwords users need to remember, simplifies access management, and enhances security by enforcing strong authentication practices.

Train Employees Regularly

  • Provide regular security awareness training to employees to educate them about common security threats and best practices.
  • Train employees on identifying phishing emails, handling sensitive information, and practicing secure browsing habits.
  • Encourage employees to report any security incidents or suspicious activities promptly.

Create Secure Passwords

  • Educate employees about the importance of strong passwords and enforce password policies.
  • Encourage the use of complex passwords with a mix of uppercase and lowercase letters, numbers, and special characters.
  • Implement password management tools to securely store and manage passwords.

Disable File Sharing Outside of File Servers

  • Restrict file sharing to designated file servers or secure collaboration platforms.
  • Disable or restrict file-sharing features on endpoints to prevent unauthorized access or accidental exposure of sensitive data.

Backup Your Data

  • Regularly back up your critical data to a secure, offsite location.
  • Implement automated backup solutions to ensure data availability in the event of a system failure, natural disaster, or cyber-attack.
  • Test data restoration processes periodically to ensure the integrity and reliability of backups.

Update Router Firmware

  • Keep your router’s firmware up to date to address security vulnerabilities and take advantage of the latest security features.
  • Enable automatic firmware updates or establish a regular schedule to ensure timely updates.

Create Data Recovery Plans

  • Develop comprehensive data recovery plans to outline procedures for restoring data and resuming operations after a security incident or system failure.
  • Test and refine these plans regularly to ensure they are effective

Make Your Business a Fortress Against Cyber Threats

Businesses today absolutely must prioritize network security. By implementing a multi-layered approach, embracing emerging technologies, educating employees, and maintaining regular security practices, organizations can build a strong fortress against cyber threats.

This ongoing commitment to network security not only protects sensitive data and ensures operational continuity but also fosters trust with customers and partners. Need a hand? Book a demo today!

FAQs

How is network security used in business? 

Network security involves implementing a range of security measures, such as firewalls, intrusion detection systems, encryption, access controls, and user authentication, to safeguard networks from unauthorized access, data breaches, malware, and other cyber threats. Network security also plays a vital role in regulatory compliance and maintaining the trust of customers and partners.

How do I secure my business network?

Securing a business network involves implementing a combination of technical and organizational measures. Here are some essential steps to secure your business network:

– Use strong network security solutions, such as firewalls, antivirus software, and intrusion detection systems.
– Implement strong access controls, including strong passwords, multi-factor authentication (MFA), and role-based access controls.
– Regularly update software and firmware to patch vulnerabilities and address security flaws.
– Train employees on security best practices, such as identifying phishing emails, practicing safe browsing habits, and protecting sensitive data.
– Segment your network to isolate critical systems and limit the impact of a potential breach.
– Encrypt sensitive data both in transit and at rest to protect it from unauthorized access.
– Conduct regular network assessments and audits to identify vulnerabilities and address them promptly.
– Develop an incident response plan to effectively respond to and mitigate security incidents.
– Regularly back up critical data and test data restoration procedures to ensure data availability and quick recovery in case of a breach or system failure.
– Stay informed about the latest security threats and trends and adapt your security measures accordingly.

What are the 5 types of network security?

The five types of network security are:

1. Perimeter Security: This includes measures such as firewalls, intrusion detection systems, and virtual private networks (VPNs) to protect the network’s perimeter from unauthorized access and external threats.

2. Endpoint Security: Endpoint security focuses on securing individual devices connected to the network, such as laptops, smartphones, and IoT devices. It involves implementing antivirus software, patch management, and encryption to protect endpoints from malware and unauthorized access.

3. Network Access Control (NAC): NAC ensures that only authorized devices and users can connect to the network. It verifies the identity and security posture of devices before granting network access, enforcing security policies, and minimizing the risk of unauthorized or compromised devices accessing the network.

4. Data Security: Data security involves protecting sensitive information from unauthorized access, alteration, or theft. It includes encryption, access controls, data loss prevention (DLP), and backup and recovery strategies to safeguard critical data.

5. Security Monitoring and Incident Response: This type of security focuses on detecting and responding to security incidents. It includes security monitoring tools, intrusion detection and prevention systems (IDPS), security information and event management (SIEM), and incident response plans to identify, mitigate, and recover from security breaches.

What are the 3 elements of network security?

The three elements of network security are commonly referred to as the CIA triad, which stands for:

1. Confidentiality: Confidentiality ensures that sensitive data is protected from unauthorized access and disclosure. Encryption, access controls, and secure transmission protocols are used to maintain the confidentiality of information.

2. Integrity: Integrity ensures that data remains unaltered and trustworthy throughout its lifecycle. Data integrity measures, such as digital signatures, checksums, and access controls, prevent unauthorized modifications or tampering of data.

3. Availability: Availability ensures that network resources and services are accessible and operational when needed. Network security measures, such as redundancy, load balancing, and disaster recovery plans, are implemented to minimize downtime and ensure continuous availability.

Source :
https://www.perimeter81.com/blog/network/network-security-for-business

Key Insights into Healthcare Compliance in 2023

27.07.2023

Healthcare compliance in 2023 is being driven by a combination of increased regulatory scrutiny, technological advancements, and a growing focus on patient-centric care. As a result, organizations are increasingly expected to adhere to stringent regulations, safeguard patient data, maintain ethical practices, and ensure the delivery of high-quality care.

This necessitates a proactive approach to compliance, with healthcare providers and institutions striving to stay ahead by adopting robust systems, training staff, and embracing innovative solutions to mitigate risks and protect both patients and their reputation.

What is Healthcare Compliance?

Compliance is the adherence to regulations, guidelines, and ethical standards aimed at safeguarding patient privacy, data security, and overall quality of care. It involves staying up to date with evolving laws, implementing necessary measures, and ensuring organizational practices align with industry standards. 

Healthcare Compliance Regulations

Healthcare compliance regulations include:

  • The Health Insurance Portability and Accountability Act (HIPAA), which sets standards for protecting patient health information and establishes penalties for non-compliance.
  • The Affordable Care Act (ACA), which focuses on improving healthcare access and quality while combating fraud and abuse. 
  • The Centers for Medicare and Medicaid Services (CMS), which plays a crucial role by overseeing programs and regulations related to these government-sponsored healthcare services.

Compliance with these regulations is essential for healthcare organizations to maintain trust, avoid penalties, and provide high-quality care.

Who Regulates the Healthcare Industry?

The healthcare industry is regulated by several entities, including government agencies and regulatory bodies. In the United States, the primary regulators include:

  • The U.S. Department of Health and Human Services (HHS), which oversees several agencies responsible for healthcare regulation, such as the Centers for Medicare and Medicaid Services (CMS) and the Office for Civil Rights (OCR).
  • The Food and Drug Administration (FDA) who regulate drugs, medical devices, and food safety
  • The Drug Enforcement Administration (DEA) who monitor controlled substances. State health departments and professional boards.

What are the Most Important Healthcare Regulations?

Several regulations stand out as the most important in the healthcare industry as follows:

The Social Security Act 

The Social Security Act, enacted in 1935, is a landmark piece of legislation in the United States that established the Social Security program. It provides benefits to retirees, disabled individuals, and surviving family members, aiming to alleviate poverty and provide economic security.

The Health Insurance Portability and Accountability Act (HIPAA) 

The Health Insurance Portability and Accountability Act (HIPAA), enacted in 1996, safeguards the privacy and security of individuals’ health information. It sets standards for the electronic exchange of health information, ensures the confidentiality of medical records, and grants patients certain rights over their health data.

The Health Information Technology for Economic and Clinical Health ACT (HITECH)

The Health Information Technology for Economic and Clinical Health Act (HITECH) was passed in 2009 as part of the American Recovery and Reinvestment Act. It promotes the adoption and meaningful use of electronic health records (EHRs) and strengthens privacy and security protections for health information.

The False Claims Act 

The False Claims Act is a federal law that dates back to the Civil War era. It allows private individuals, known as whistleblowers, to file lawsuits on behalf of the government against those who defraud federal programs, such as Medicare and Medicaid, by submitting false claims for payment.

The Anti-Kickback Statute 

The Anti-Kickback Statute prohibits the exchange of anything of value in return for referrals or generating business for federal healthcare programs. This law aims to prevent kickbacks and improper financial arrangements that could compromise medical judgment and inflate healthcare costs.

The Physician Self-Referral Law

The Physician Self-Referral Law, also known as the Stark Law, prohibits physicians from referring Medicare or Medicaid patients to entities in which they have a financial interest, with exceptions. This law prevents potential conflicts of interest that could influence medical decision-making and billing practices.

The Patient Protection and Affordable Care Act

The Patient Protection and Affordable Care Act (ACA), passed in 2010, is a comprehensive healthcare reform law. It expands access to health insurance, implements consumer protections, such as prohibiting denial of coverage due to pre-existing conditions, and introduces various cost-containment measures.

The Interoperability and Patient Access Final Rule 

The Interoperability and Patient Access Final Rule, issued in 2020, is part of the 21st Century Cures Act. It requires healthcare providers, health plans, and health information technology developers to improve interoperability and facilitate patient access to their electronic health information.

The Hospital Price Transparency Final Rule

The Hospital Price Transparency Final Rule, implemented in 2021, requires hospitals to disclose their standard charges for healthcare services in a machine-readable format. This rule aims to increase price transparency, empower patients to make informed decisions and promote competition in the healthcare market.

Why is Healthcare Compliance so Important?

Healthcare compliance is necessary due to the following main reasons:

First and foremost, it ensures that healthcare organizations operate in accordance with applicable laws, regulations, and industry standards. Compliance helps protect patient safety and privacy by ensuring that healthcare providers follow protocols for handling sensitive health information, maintaining secure systems, and implementing proper safeguards against data breaches.

By adhering to compliance regulations, healthcare organizations demonstrate their commitment to maintaining the highest standards of care and ethical practices.

Moreover, healthcare compliance helps mitigate legal and financial risks. Non-compliance can result in severe consequences, such as hefty fines, penalties, and legal actions, which can significantly impact an organization’s reputation and financial stability. By actively engaging in compliance efforts, healthcare organizations can minimize the risk of violations, protect their reputation, and avoid potential litigation.

Finally, healthcare compliance promotes a culture of integrity, accountability, and transparency. It encourages healthcare professionals to adhere to ethical guidelines, maintain accurate records, and engage in responsible billing practices.

Compliance programs also promote internal monitoring, auditing, and reporting mechanisms, fostering an environment where unethical or fraudulent activities are detected and addressed promptly. 

Ultimately, healthcare compliance helps ensure the delivery of high-quality care, protects patients’ rights, and maintains the trust of individuals seeking healthcare services.

Privacy & Quality Patient Care

Protecting patient privacy is essential for ensuring quality patient care. When patients trust that their personal health information will remain confidential, they are far more likely to share vital details with healthcare providers, leading to accurate diagnoses and tailored treatment plans.

By implementing robust privacy measures, healthcare organizations can uphold patient confidentiality, enhance trust, and maintain the integrity of the patient-provider relationship, improving the quality of care delivered.

Healthcare Worker Protection

By implementing measures such as appropriate staffing levels, comprehensive training, and access to personal protective equipment, healthcare organizations can protect their workers from occupational hazards, minimize the risk of injuries or infections, and promote a healthy work environment.

Safeguarding healthcare workers’ physical and mental well-being contributes to their ability to provide quality care and ensures the sustainability of the healthcare workforce.

Avoiding Fraud

Healthcare fraud involves deceptive practices such as submitting false claims, providing unnecessary services, or billing for services not rendered. By implementing robust fraud detection and prevention mechanisms, such as auditing processes and internal controls, healthcare organizations can identify and prevent fraudulent activities.

This helps protect valuable healthcare resources, ensure that funds are directed towards legitimate patient care, and maintain the public’s trust in the healthcare system.

Staying Compliant with Regulations

By staying compliant, healthcare organizations mitigate legal and financial risks, maintain their reputation, and demonstrate a commitment to providing high-quality care while upholding ethical standards. Regular monitoring, training, and robust compliance programs are key to achieving and maintaining regulatory compliance.

10 Best Practices for Creating a Healthcare Compliance Plan

By implementing key strategies, organizations can establish a strong foundation for compliance and risk management as follows:

1. Designate a Chief Compliance Officer

Designate a CCO who has the authority and resources to develop, implement, and oversee the compliance program, ensuring adherence to regulatory requirements and promoting a culture of compliance throughout the organization.

2. Educate the Employees

Employees should be knowledgeable about their roles and responsibilities in maintaining compliance, including privacy and security of patient information, ethical billing practices, and reporting mechanisms for potential compliance violations.

3. Build an Effective Compliance Reporting System

Clear reporting channels, such as hotlines or anonymous reporting mechanisms, should be in place to capture and address compliance-related issues promptly.

4. Build a Risk Mitigation Plan

Conduct regular risk assessments to proactively identify vulnerabilities, implement controls and mitigation strategies, and monitor ongoing compliance to minimize the likelihood of compliance breaches.

5. Ensure Cybersecurity at Every Level

Implement robust security measures, such as encryption, access controls, and regular security audits to safeguard electronic health records and other sensitive information from unauthorized access or breaches.

6. Make Sure Your Telemedicine Services Are Secure

Implement secure telemedicine platforms, encryption protocols, and HIPAA-compliant telehealth practices to maintain compliance while delivering remote care.

7. Use a Compliant Talent Acquisition Process

Establish a compliant talent acquisition process that includes thorough background checks, verification of licenses and credentials, and adherence to equal employment opportunity guidelines. By ensuring compliance in the hiring process, organizations can minimize the risk of employing individuals with a history of compliance violations.

8. Develop Very Clear Policies

Put clear and comprehensive policies and procedures in place that cover all aspects of healthcare compliance, including privacy, security, billing, and ethical conduct. Policies should be readily accessible, regularly reviewed, and updated to reflect changes in regulations or organizational practices.

9. Conduct Regular Compliance Audits

Carry out regular compliance audits to assess the effectiveness of the compliance program, identify areas for improvement, and ensure ongoing adherence to regulatory requirements. Audits should include internal reviews, assessments of documentation and procedures, and external audits if necessary.

10. Address Noncompliance Swiftly

Establish protocols for investigating and resolving compliance violations, implementing corrective actions, and ensuring accountability. Timely response and appropriate disciplinary measures demonstrate a commitment to compliance and discourage further non-compliance.

The Repercussions of Noncompliance

Noncompliance with healthcare regulations can have severe consequences which can include financial penalties, legal actions, damage to reputation, loss of trust, and potential harm to patients. Subsequently, it is essential for healthcare organizations to prioritize compliance and proactively mitigate risks. 

To help ensure your organization’s compliance, we recommend using a comprehensive compliance checklist our HIPAA Compliance Checklist.

Source :
https://www.perimeter81.com/blog/compliance/healthcare-compliance