Millions of Attacks Target Tatsu Builder Plugin

The Wordfence Threat Intelligence team has been tracking a large-scale attack against a Remote Code Execution vulnerability in Tatsu Builder, which is tracked by CVE-2021-25094 and was publicly disclosed on March 24, 2022 by an independent security researcher. The issue is present in vulnerable versions of both the free and premium Tatsu Builder plugin. Tatsu Builder is a proprietary plugin that is not listed on the repository, so reliable installation counts are not available, but we estimate that the plugin has between 20,000 and 50,000 installations. Tatsu sent an urgent email notification to all of their customers on April 7th advising them to update, but we estimate that at least a quarter of remaining installations are still vulnerable.

All Wordfence users with the Wordfence Web Application Firewall active, including Wordfence free customers, are protected against attackers trying to exploit this vulnerability.

We began seeing attacks on May 10, 2022. The attacks are ongoing with the volume ramping up to a peak of 5.9 million attacks against 1.4 million sites on May 14, 2022. The attack volume has declined but the attacks are still ongoing at the time of publication.

The following is a graph showing the total volume of attacks targeting the vulnerability in Tatsu Builder.

Graph showing attack volume against CVE-2021-25094

While the following is a graph showing the total number of sites being targeted by attackers trying to exploit the vulnerability in Tatsu Builder.

Description: Unauthenticated Remote Code Execution
Affected Plugin: Tatsu Builder
Plugin Slug: tatsu
Plugin Developer: BrandExponents
Affected Versions: < 3.3.13
CVE ID:CVE-2021-25094
CVSS Score: 8.1 (High)
Researcher/s: Vincent Michel (darkpills)
Fully Patched Version: 3.3.13

Indicators of Attack

Most of the attacks we have seen are probing attacks to determine the presence of a vulnerable plugin. These may appear in your logs with the following query string:


The vast majority of attacks are the work of just a few IP addresses.

The top 3 attacking IPs have each attacked over 1 million sites:

An additional 15 IPs have each attacked over 100,000 sites:

Indicators of Compromise

The most common payload we’ve seen is a dropper used to place additional malware located in a randomly-named subfolder of wp-content/uploads/typehub/custom/ such as wp-content/uploads/typehub/custom/vjxfvzcd.

The dropper is typically named .sp3ctra_XO.php and has an MD5 hash of 3708363c5b7bf582f8477b1c82c8cbf8.

Note the dot at the beginning as this indicates a hidden file, which is necessary to exploit the vulnerability as it takes advantage of a race condition.

This file is detected by the Wordfence scanner.

What Should I Do?

All Wordfence users with the Wordfence Web Application Firewall active, including Wordfence free customers, are protected against this vulnerability. Nonetheless, if you use the Tatsu Builder plugin, we strongly recommend updating to the latest version available, which is 3.3.13 at the time of this writing. Please note that version 3.3.12 contained a partial patch but did not fully address all issues.

If you know anyone using the Tatsu Builder plugin on their site, we urge you to forward this article to them as this is a large-scale attack and any vulnerable sites that are not updated and not using some form of a Web Application Firewall are at risk of complete site takeover.

If you believe your site has been compromised as a result of this vulnerability or any other vulnerability, we offer Incident Response services via Wordfence Care. If you need your site cleaned immediately, Wordfence Response offers the same service with 24/7/365 availability and a 1-hour response time. Both these products include hands-on support in case you need further assistance.

Source :

SonicWall Releases Patches for New Flaws Affecting SSLVPN SMA1000 Devices

SonicWall has published an advisory warning of a trio of security flaws in its Secure Mobile Access (SMA) 1000 appliances, including a high-severity authentication bypass vulnerability.

The weaknesses in question impact SMA 6200, 6210, 7200, 7210, 8000v running firmware versions 12.4.0 and 12.4.1. The list of vulnerabilities is below –

  • CVE-2022-22282 (CVSS score: 8.2) – Unauthenticated Access Control Bypass
  • CVE-2022-1702 (CVSS score: 6.1) – URL redirection to an untrusted site (open redirection)
  • CVE-2022-1701 (CVSS score: 5.7) – Use of a shared and hard-coded cryptographic key

Successful exploitation of the aforementioned bugs could allow an attacker to unauthorized access to internal resources and even redirect potential victims to malicious websites.

Tom Wyatt of the Mimecast Offensive Security Team has been credited with discovering and reporting the vulnerabilities.

SonicWall noted that the flaws do not affect SMA 1000 series running versions earlier than 12.4.0, SMA 100 series, Central Management Servers (CMS), and remote access clients.


Although there is no evidence that these vulnerabilities are being exploited in the wild, it’s recommended that users apply the fixes in the light of the fact that SonicWall appliances have presented an attractive bullseye in the past for ransomware attacks.

“There are no temporary mitigations,” the network security company said. “SonicWall urges impacted customers to implement applicable patches as soon as possible.”

Source :

Enjoy the Speed and Safety of TLS 1.3 Support

SonicWall NGFWs offer full TLS 1.3 support — ensuring your network can handle the latest encryption protocols.

The best products tend to stick around for a while. In the first two years that the Ford Mustang was manufactured, 1965 and 1966, roughly 1.3 million cars rolled off assembly lines in Dearborn, Mich.; Metuchen, N.J.; and Milpitas, Calif. Of those, a remarkable 350,000 are still on the road today — and with proper care, still getting from Point A to Point B just as well as they did during the Johnson Administration.

But aesthetics aside, does that make them a good choice for a daily driver today? In a crash test with any modern vehicle (or a race with any of today’s Mustangs), the first-generation Mustang would be completely overwhelmed. Safety features we take for granted, such as airbags, lane-keep assist, blind spot detection and anti-lock brakes, are absent. These cars might do fine for the occasional Sunday spin around town. But would you put your family in one?

When a product forms the boundary between something precious and grave disaster, you want that product to be as safe as possible. This also holds true for another Milpitas innovation: SonicWall firewalls. To know whether your current choice is still the right choice, it helps to look at what innovations have occurred since then, and whether they were incremental improvements or giant leaps forward. In the case of TLS 1.3 encryption support, it’s unquestionably the latter.

TLS 1.3 is the latest version of transport layer security, which offers reliable encryption for digital communications over the internet. And as with the Mustang before it, modern innovations have led to sizeable leaps in two areas: safety and performance.

TLS 1.3: Safety First

Since the original SSL technology was introduced in 1994, each new version has worked to solve the problems of the previous versions while also maintaining compatibility with those versions. But, unfortunately, maintaining backward compatibility meant leaving in many unnecessary or vulnerable ciphers.

These legacy ciphers made the encryption susceptible to attack, offering attackers a vector through which to circumvent newer security advances in favor of older and weaker protection. A few of the ciphers that persisted up through TLS 1.2 were so weak that they allow an attacker to decrypt the data’s contents without having the key.

TLS 1.3 represents a fundamental shift in this philosophy. Due to a sharp increase in attacks, such as Lucky13, BEAST, POODLE, Logjam and FREAK, which depend on such vulnerabilities for transmission, the Internet Engineering Task Force (IETF) opted to remove these ciphers altogether — and the resulting TLS 1.3 is vastly more secure because of it.

It’s also more private. In previous versions, including 1.2, digital signatures weren’t used to ensure a handshake’s integrity — they only protected the part of the handshake after the cipher-suite negotiation, allowing attackers to manipulate the negotiation and access the entire conversation.

In TLS 1.3, the entire handshake is encrypted, and only the sender and the recipient can decrypt the traffic. This not only makes it virtually impossible for outsiders to eavesdrop on client/server communications and much harder for attackers to launch man-in-the-middle attacks, it also protects existing communications even if future communications are compromised.

TLS 1.3: Safety Fast

With TLS 1.3, the handshake process isn’t just more secure — it’s faster, too. The four-step handshake required with TLS 1.2 necessitated two round-trip exchanges between systems, introducing latency and taking up bandwidth and power.

These slowdowns especially affected the growing class of Internet of Things (IoT) devices, which have trouble handling connections requiring lots of bandwidth or power, but also tend to need encryption most due to weak onboard security.

However, with just a single key exchange and significantly fewer supported ciphers, TLS 1.3 uses considerably less bandwidth. And because it requires just one round trip to complete the handshake, it’s significantly faster. TLS 1.3’s zero round trip time (0-RTT) feature is even quicker: On subsequent visits, it offers a latency time equal to that of unencrypted HTTP.

Is Your Firewall Up to the Task?

Experts estimate that 80-90% of all network traffic today is encrypted. But many legacy firewalls lack the capability or processing power to detect, inspect and mitigate cyberattacks sent via HTTPs traffic at all, let alone using TLS 1.3 — making this a highly successful avenue for hackers to deploy and execute malware.

According to the 2022 SonicWall Cyber Threat Report, from 2020 to 2021, malware sent over HTTPS rose a staggering 167%. All told, SonicWall recorded 10.1 million encrypted attacks in 2021 — almost as many as in 2018, 2019 and 2020 combined.

With an average of 7% of customers seeing an encrypted attack in a given month, the odds your organization will be targeted by an attack this year are enormous. But if your firewall cannot inspect encrypted traffic — and increasingly, if it cannot inspect TLS 1.3 — you’ll never know it until it’s too late.

SonicWall Supports TLS 1.3 Encryption

SonicWall Gen 7 firewalls bring a lot to the table: They combine higher port density and greater threat throughput with comprehensive malware analysis, unmatched simplicity and industry-leading performance. But among the biggest game-changers in Gen 7 (and its predecessors capable of running SonicOS Gen 6.5) is its support for TLS 1.3 encryption.

SonicWall NGFWs with SonicOS Gen 6.5 and later offer full TLS inspection, decrypting data, checking it for potential threats, and then re-encrypting it for secure transmission — all while ensuring you retain optimal performance and comprehensive visibility.

After all, as in the case of the classic Mustang, there’s no blind spot detection for firewalls that can’t handle today’s encrypted traffic — and these legacy solutions are easily outclassed when going head-to-head. Don’t let yesterday’s firewalls leave unprotected gaps in your network: Upgrade to SonicWall Gen 7 today.

Source :

Anti-Ransomware Day: What Can We Do to Prevent the Next WannaCry?

This Anti-Ransomware Day, SonicWall looks at how cybersecurity has changed since WannaCry — and what we can do to ensure we never see such a widespread, devastating and preventable attack again.

On May 12, 2017, attackers identified a vulnerability in a Windows device somewhere in Europe — and in the process, set off an attack that would ultimately impact roughly 200,000 victims and over 300,000 endpoints across 150 countries. The devastation wrought by WannaCry caused financial losses of roughly $4 billion before the strain was halted by an unlikely hero just hours later. But perhaps most devastating of all was that it was completely preventable.

To help raise awareness about ransomware strains like WannaCry and the steps needed to combat them, INTERPOL in 2020 teamed up with cybersecurity firm Kaspersky to declare May 12 Anti-Ransomware Day. By taking a few important steps, organizations can help stop the next major ransomware attack, averting the potential for downtime, reputational damage, fines and more.

“Cybercrime and cybersecurity may seem like a complex issue that is difficult to understand unless you are an expert in the field — this is not the case. INTERPOL’s campaign aims to demystify these cyberthreats and offer simple, concrete steps which everybody can take to protect themselves,” INTERPOL’s Director of Cybercrime Craig Jones said.

What’s Changed Since WannaCry?

In the years since the infamous attack, ransomware has continued to grow. In 2021, SonicWall Capture Labs threat researchers recorded 623.3 million ransomware attempts on customers globally. This represents an increase of 105% from 2020’s total and a staggering 232% since 2019.

And while ransomware was a hot topic worldwide due to attacks such as WannaCry and NotPetya, which would begin its own savage trek across the globe just six weeks later, ransomware volume in 2017 was less than a third of what it was in 2021.

Weakened, but Still Wreaking Havoc

While variants such as Ryuk, SamSam and Cerber made up 62% of the ransomware attacks recorded by SonicWall in 2021, WannaCry lives on — and in surprising numbers. By now, five years on, the number of vulnerable Windows systems should be virtually zero. A patch for the EternalBlue vulnerability exploited by WannaCry was released two months prior to the attack, and Microsoft later took the unusual step of also releasing patches for Windows systems that were old and no longer supported.

But in 2020, SonicWall observed 233,000 instances of WannaCry, and in 2021, 100,000 hits were observed — indicating that there are still vulnerable Windows systems in the wild that need to be patched.

We Can Worry … Or Get to Work

What made WannaCry so successful was that many organizations at the time took a set-it-and-forget-it approach to IT, leaving vulnerable hundreds of thousands of endpoints that could otherwise have been patched prior to the attack. But while patching is a crucial part of any cybersecurity strategy, it can’t work alone — there are still a number of other steps organizations need to take to bolster their odds against the next big ransomware attack.

  • Update: Whenever possible, enable automatic updates on applications and devices on your network — both for operating systems and for any other apps in your ecosystem.
  • Upgrade: The older an operating system gets, the more malware and other threats are created to target them. Retire any software or hardware that is obsolete or no longer supported by the vendor.
  • Duplicate: All important data should be backed up to a place inaccessible by attackers. Having adequate and up-to-date backups on hand significantly eases recovery in the event of a ransomware attack.
  • Educate: A staggering 91% of all cyberattacks start with someone opening a phishing email. Teach employees to be wary any time they receive an email, particularly one with an attachment or link.
  • Safeguard: By taking the above steps, most attacks can be prevented, but not all. They’re called “best practices” and not “universal practices” for a reason: If any are allowed to lapse — or new methods are found to circumvent them — organizations will need a strong last line of defense. An advanced, multi-layer platform that includes endpoint security, next-gen firewall services, email security and secure mobile access can work to eliminate blind spots and eradicate both known and unknown threats.

“In the past two years, we have seen how cybercriminals have become bolder in using ransomware. Organizations targeted by such attacks are not limited to corporations and governmental organizations — ransomware operators are ready to hit essentially any business regardless of size,” Jones said. “To fight them, we need to educate ourselves on how they work and fight them as one. Anti-Ransomware Day is a good opportunity to highlight this need and remind the public of how important it is to adopt effective security practices.”

Source :

Examining Emerging Backdoors

Next up in our “This didn’t quite make it into the 2021 Threat Report, but is still really cool” series: New backdoors!

Backdoors are a crucial component of a website infection. They allow the attackers ongoing access to the compromised environment and provide them a “foot in the door” to execute their payload. We see many different types of backdoors with varying functionality.

When our malware research team is provided with a new backdoor they need to write what’s called a “signature” to ensure that we detect and remove it in future security scans. Signatures need names, and over the years we’ve developed something of a taxonomy naming system for all of the different malware that we come across.

In this article we’re going to explore all the different categories of signatures for newly-discovered backdoors throughout the year 2021.

How do Backdoors Work?

HTTP requests to websites typically fall into one of the following categories:

  • POST – sending data to a website
  • GET – requesting data from a website
  • COOKIE – data (such as session data) saved from a website
  • REQUEST – a conjunction of all/any of the three

We see all sorts of different backdoors while cleaning up compromised websites. Sometimes they use one of these types of requests, or a combination of multiple different types.

We’ve broken all newly generated signatures from 2021 down for further analysis into the following categories:

A graph showing the distribution of new backdoor signatures generated in 2021.


By far the most common type of backdoor found in 2021 was an uploader: That is, a PHP script that allows the attackers to upload any file that they want. These malicious files allow anyone with the correct URL path, parameters and (occasionally) access credentials to upload whichever files they want to the web server. Typically, bad actors use these backdoors to upload a webshell, spam directory, dropper, or other type of file giving them full control over the environment.

To avoid detection, attackers are always tweaking their malware by using new methods of obfuscation or concealing backdoors within legitimate-looking images, core files, plugins, or even themes — this can make malicious file uploaders difficult to detect during a casual site review.

Once an attacker has identified a vulnerable environment that they can get a foothold in, planting the uploader is often the next step. After that they have enough access to upload more complicated access points such as a webshell.

Of course there are legitimate uploader scripts, as many websites require functionality to allow users to upload photos or other content to the website. To mitigate risk, secure uploader scripts contain strict rules on how they are able to behave:

  • Only certain file types/extensions are allowed (usually image, or document files)
  • May require authorisation cookies to be set
  • May place files in a restricted directory with PHP execution disabled
  • May disable direct access and instead need to be called by the existing CMS structure

Malicious uploaders, on the other hand, have no such restrictions as they are designed to upload malicious files and PHP scripts.

A malicious uploader script


Webshells are a classic type of malware that have been used by attackers for many years. They are administrative dashboards that give the attacker full access to the files and often provide a large amount of information about the hosting environment including operating system, PHP settings, web server configurations, file management, and SQL connections.

The classic FilesMan shell continues to be very popular with attackers. In 2021 we generated 20 new signatures related to new filesman variants alone, not including hack tools which grab filesman shells from remote servers.

Interestingly, a lot of malicious web shells provide far superior functionality than a lot of file managers provided by web hosting providers.

A malicious web shell backdoor

Misc RCE

Sometimes remote code execution backdoors are a little more complicated, or just rely on more basic/generic $_REQUEST calls. This is a PHP global array that contains the content of GETPOST and COOKIE inputs. The content of these variables could be anything and the attacker can fill them — e.g. with the payload — which is then processed. Sometimes the entire payload code is stored there and only very simple code snippets are injected into legitimate files. Such a snippet only loads and executes the content of these variables.

Other times, RCE backdoors make use of multiple different functions and request types.

A remote code execution backdoor


Not falling into any particular category are our collection of “generic” backdoors. They tend to use a mixture of different functions and methods to maintain backdoor access to the environment. Some are heavily obfuscated and others are mostly in plain text, but what unites them is that they don’t rely on any one technique to backdoor the environment in which they reside.

A generic, malicious backdoor


The PHP function file_get_contents fetches a local file or remote file. As far as backdoors are concerned, attackers misuse this function to grab malicious files located on other websites or servers and add it to the victim’s website. This allows them to host the actual malicious content elsewhere, while maintaining all of the same functionality on the victim environment.

Here we have a very simple backdoor using file_get_contents to grab a backdoor from a malicious server. The actual address is obfuscated through use of a URL shortening service:

A backdoor which uses file_get_contents

The footprint of this malware is very small as the payload resides elsewhere, but the functionality is potentially huge.

Remote Code Execution Backdoors

Not to be confused with remote code execution vulnerabilities, these backdoors are crafted to take whatever command is issued to it by the attacker and execute it in the victim’s environment. These PHP backdoors are often more complex than uploaders and allow the attackers more leeway in terms of how they can interact with the victim website.

If a request is sent that matches the parameters of the backdoor it will execute whichever command the attacker instructs so long as it doesn’t get blocked by any security software or firewall running within the environment.

A remote code execution backdoor

Here’s another example of a quite well hidden RCE backdoor in a Magento environment:

A well-hidden RCE backdoor in a Magento environment

Attackers make heavy use of the eval function which executes the command in the victim environment.


These backdoors utilise the PHP function file_put_contents which will write the instructed content to a file on the victim environment.

Here is an example of such a backdoor lodged in a WordPress configuration file wp-config.php:

A backdoor which uses file_put_contents

This backdoor writes the specified malicious content into the file structure of the victim website given the correct parameters in the attacker’s request, allowing them to infect other files on the server with the content of their choice.


The curl() function facilitates the transmission of data. It can be used maliciously to download remote code which can be executed or directly displayed. This way, malware authors are able to create a small backdoor that only has this curl functionality implemented while the payload itself can be downloaded from a remote source.

It has many uses, and as such can be misused in many ways by attackers. We have seen it used frequently in credit card skimmers to transmit sensitive details to exfiltration destinations. It can also be used in RCE backdoors:

A backdoor which uses CURL

Since the attackers have crafted a backdoor to (mis)use curl, and they control the parameters under which it will function, in this way they are able to send or receive malicious traffic to and from the website, depending on how the backdoor is designed.

Authentication Bypass

These types of backdoors are most often seen in WordPress environments. They are small PHP scripts which allow the attacker to automatically log in to the administrator panel without needing to provide any password.

As long as they include the database configuration file in the script then they are able to set the necessary cookies for authorization, as seen in this example here:

A backdoor which bypasses normal authentication

The existence of such backdoors presents a case that additional authentication requirements should be employed within website environments. Protecting your admin panel with our firewall’s protected page feature is a great way to do this.

If you’re not a user of our firewall there are a lot of other ways that your admin panel can be protected.

Basic RCE via POST

Backdoors that take input through POST requests are quite common and many of the backdoor types that we’ve seen contain such functionality. Some of them, however, are quite small and rely exclusively on POST requests.

The example below shows one such backdoor, coupled with basic password protection to ensure that the backdoor is not used by anybody that does not have access to the password.

A basic remote code execution backdoor which uses POST

Fake Plugins

Another tactic that we’ve seen attackers use is the use of fake plugins. This is frequently used as a payload to deliver spam and malware, since WordPress will load the components present in the ./wp-content/plugins directory.

We’ve also seen attackers use these plugins as backdoors to maintain access to compromised environments.

A fake plugin in a WordPress environment

Since admin panel compromises are a very common attack vector, the usage of fake/malicious backdoor plugins is quite popular with attackers.

System Shell Backdoors

Attackers have also written malware that interacts with the hosting environment itself and will attempt to run shell commands via PHP scripts in the environment. This is not always possible, depending on the security settings of the environment, but here’s an example of one such backdoor:

A system shell backdoor

If system() is disabled in the environment then these will not work, so the functionality of such backdoors will be limited by the security settings in the host.

COOKIE Based Backdoors

Some malware creators use COOKIES as a storage for various data. These can be decryption keys  used to decode an otherwise inaccessible payload, or even the entire malicious payload itself.

A cookie based backdoor


The create_function() is often used by malware instead of (or in conjunction with) the eval() function to hide the execution of the malicious code. The payload is encapsulated inside the crafted custom function, often with an obfuscated name to make the functionality less clear.

This function is then called somewhere else within the code, and thus the payload is evaluated. Backdoors have been found to abuse this to place their payload back on the infected website after it was removed.

A backdoor which creates a malicious function in the victim environment


Backdoors have also been seen using GET requests for input, rather than POST requests. In the example below we can see that the backdoor will execute the malicious payload if a GET request contains a certain string.

A remote code execution backdoor which uses GET

This allows the attackers to restrict the usage of the backdoor to only those who know the exact parameters to specify in the malicious GET request to the website. If the correct parameters are given then the backdoor will execute its intended function.

Database Management Backdoors

Most often attackers will misuse tools such as Adminer to insert malicious content into the victim website’s database, but occasionally we have seen them craft their own database management tools. This allows them to insert admin users into the website as well as inject malicious JavaScript into the website content to redirect users to spam or scam websites or steal credit card information from eCommerce environments.

A database management backdoor

Conclusion & Mitigation Steps

Backdoors play a crucial role for the attackers in a huge number of website compromises. Once the attackers are able to gain a foothold into an environment their goal is to escalate the level of access they have as much as possible. Certain vulnerabilities will provide them access only to certain directories. For example, a subdirectory of the wp-content/uploads area of the file structure.

Often the first thing they will do is place a malicious uploader or webshell into the environment, giving them full control over the rest of the website files. Once that is established they are able to deliver a payload of their choosing.

If default configurations are in place in a standard WordPress/cPanel/WHM configuration a single compromised admin user on a single website can cause the entire environment to be infected. Attackers can move laterally throughout the environment by the use of symlinks even if the file permissions/ownership are configured correctly.

Malicious actors are writing new code daily to try to evade existing security detections. As security analysts and researchers it’s our job to stay on top of the most recent threats and ensure that our tools and monitoring detect it all.

Throughout the year 2021 we added hundreds of new signatures for newly discovered backdoors. I expect we’ll also be adding hundreds more this year.

If you’d like us to help you monitor and secure your website from backdoors and other threats you can sign up for our platform-agnostic website security services.

Source :

This World Password Day consider ditching passwords altogether

Did you know that May 5, 2022, is World Password Day?1 Created by cybersecurity professionals in 2013 and designated as the first Thursday every May, World Password Day is meant to foster good password habits that help keep our online lives secure. It might seem strange to have a day set aside to honor something almost no one wants to deal with—like having a holiday for filing your income taxes (actually, that might be a good idea). But in today’s world of online work, school, shopping, healthcare, and almost everything else, keeping our accounts secure is more important than ever. Passwords are not only hard to remember and keep track of, but they’re also one of the most common entry points for attackers. In fact, there are 921 password attacks every secondnearly doubling in frequency over the past 12 months.2

But what if you didn’t have to deal with passwords at all? Last fall, we announced that anyone can completely remove the password from their Microsoft account. If you’re like me and happy to ditch passwords completely, read on to learn how Microsoft is making it possible to start enjoying a passwordless life today. Still, we know not everyone is ready to say goodbye to passwords, and it’s not possible for all your online accounts. We’ll also go over some easy ways to improve your password hygiene, as well as share some exciting news from our collaboration with the FIDO Alliance about a new way to sign in without a password.  

Free yourself with passwordless sign-in

Yes, you can now enjoy secure access to your Microsoft account without a password. By using the Microsoft Authenticator app, Windows Hello, a security key, or a verification code sent to your phone or email, you can go passwordless with any of your Microsoft apps and services. Just follow these five steps:

  1. Download and install Microsoft Authenticator (linked to your personal Microsoft account).
  2. Sign in to your Microsoft account.
  3. Choose Security. Under Advanced security options, you’ll see Passwordless account in the section titled Additional security.
  4. Select Turn on.
  5. Approve the notification from Authenticator.
User interface of Microsoft Authenticator app providing instructions on how to turn on passwordless account option.
Notification from Microsoft Authenticator app confirming user's password has been removed.

Once you approve the notification, you’ll no longer need a password to access your Microsoft accounts. If you decide you prefer using a password, you can always go back and turn off the passwordless feature. Here at Microsoft, nearly 100 percent of our employees use passwordless options to log into their corporate accounts.

Strengthen security with multifactor authentication

One simple step we can all take to protect our accounts today is adding multifactor authentication, which blocks 99.9 percent of account compromise attacks. The Microsoft Authenticator app is free and provides multiple options for authentication, including time-based one-time passcodes (TOTP), push notifications, and passwordless sign-in—all of which work for any site that supports multifactor authentication. Authenticator is available for Android and iOS and gives you the option to turn two-step verification on or off. For your Microsoft Account, multifactor authentication is usually only needed the first time you sign in or after changing your password. Once your device is recognized, you’ll just need your primary sign-in.

Microsoft Authenticator screen showing different accounts, including: Microsoft, Contoso Corporation, and Facebook.

Make sure your password isn’t the weak link

Rather than keeping attackers out, weak passwords often provide a way in. Using and reusing simple passwords across different accounts might make our online life easier, but it also leaves the door open. Attackers regularly scroll social media accounts looking for birthdates, vacation spots, pet names and other personal information they know people use to create easy-to-remember passwords. A recent study found that 68 percent of people use the same password for different accounts.3 For example, once a password and email combination has been compromised, it’s often sold on the dark web for use in additional attacks. As my friend Bret Arsenault, our Chief Information Security Officer (CISO) here at Microsoft, likes to say, “Hackers don’t break in, they log in.”

Some basics to remember—make sure your password is:

  • At least 12 characters long.
  • A combination of uppercase and lowercase letters, numbers, and symbols.
  • Not a word that can be found in a dictionary, or the name of a person, product, or organization.
  • Completely different from your previous passwords.
  • Changed immediately if you suspect it may have been compromised.

Tip: Consider using a password manager. Microsoft Edge and Microsoft Authenticator can create (and remember) strong passwords using Password Generator, and then automatically fill them in when accessing your accounts. Also, keep these other tips in mind:

  • Only share personal information in real-time—in person or by phone. (Be careful on social media.)
  • Be skeptical of messages with links, especially those asking for personal information.
  • Be on guard against messages with attached files, even from people or organizations you trust.
  • Enable the lock feature on all your mobile devices (fingerprint, PIN, or facial recognition).
  • Ensure all the apps on your device are legitimate (only from your device’s official app store).
  • Keep your browser updated, browse in incognito mode, and enable Pop-Up Blocker.
  • Use Windows 11 and turn on Tamper Protection to protect your security settings.

Tip: When answering security questions, provide an unrelated answer. For example, Q: “Where were you born?” A: “Green.” This helps throw off attackers who might use information skimmed from your social media accounts to hack your passwords. (Just be sure the unrelated answers are something you’ll remember.)

Passwordless authentication is becoming commonplace

As part of a historic collaboration, the FIDO Alliance, Microsoft, Apple, and Google have announced plans to expand support for a common passwordless sign-in standard. Commonly referred to as passkeys, these multi-device FIDO credentials offer users a platform-native way to safely and quickly sign in to any of their devices without a password. Virtually unable to be phished and available across all your devices, a passkey lets you sign in simply by authenticating with your face, fingerprint, or device PIN.

In addition to a consistent user experience and enhanced security, these new credentials offer two other compelling benefits:

  1. Users can automatically access their passkeys on many of their devices without having to re-enroll for each account. Simply authenticate with your platform on your new device and your passkeys will be there ready to use—protecting you against device loss and simplifying device upgrade scenarios.
  2. With passkeys on your mobile device, you’re able to sign in to an app or service on nearly any device, regardless of the platform or browser the device is running. For example, users can sign in on a Google Chrome browser that’s running on Microsoft Windows, using a passkey on an Apple device.

These new capabilities are expected to become available across Microsoft, Apple, and Google platforms starting in the next year. This type of Web Authentication (WebAuthn) credential represents a new era of authentication, and we’re thrilled to join the FIDO Alliance and others in the industry in supporting a common standard for a safe, consistent authentication experience. Learn more about this open-standards collaboration and exciting passwordless capabilities coming for Microsoft Azure Active Directory in a blog post from Alex Simons, Vice President, Identity Program Management.

Helping you stay secure year-round

Read more about Microsoft’s journey to provide passwordless authentication in a blog post by Joy Chik, Corporate Vice President of Identity. You can also read the complete guide to setting up your passwordless account with Microsoft, including FAQs and download links. And be sure to visit Security Insider for interviews with cybersecurity thought leaders, news on the latest cyberthreats, and lots more.

To learn more about Microsoft Security solutions, visit our website. Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

Source :

NIST Releases Updated Cybersecurity Guidance for Managing Supply Chain Risks

The National Institute of Standards and Technology (NIST) on Thursday released an updated cybersecurity guidance for managing risks in the supply chain, as it increasingly emerges as a lucrative attack vector.

“It encourages organizations to consider the vulnerabilities not only of a finished product they are considering using, but also of its components — which may have been developed elsewhere — and the journey those components took to reach their destination,” NIST said in a statement.

The new directive outlines major security controls and practices that entities should adopt to identify, assess, and respond to risks at different stages of the supply chain, including the possibility of malicious functionality, flaws in third-party software, insertion of counterfeit hardware, and poor manufacturing and development practices.

Software Supply Chain Risks

The development follows an Executive Order issued by the U.S. President on “Improving the Nation’s Cybersecurity (14028)” last May, requiring government agencies to take steps to “improve the security and integrity of the software supply chain, with a priority on addressing critical software.”

Supply Chain Risks

It also comes as cybersecurity risks in the supply chain have come to the forefront in recent years, in part compounded by a wave of attacks targeting widely-used software to breach dozens of downstream vendors all at once.

According to the European Union Agency for Cybersecurity’s (ENISA) Threat Landscape for Supply Chain Attacks, 62% of 24 attacks documented from January 2020 to early 2021 were found to “exploit the trust of customers in their supplier.”

“Managing the cybersecurity of the supply chain is a need that is here to stay,” said NIST’s Jon Boyens and one of the publication’s authors. “If your agency or organization hasn’t started on it, this is a comprehensive tool that can take you from crawl to walk to run, and it can help you do so immediately.”

Source :

5 benefits of integrating corporate SIEM systems

A company can accumulate massive amounts of information that security analysts are not able to monitor instantly. This can mean that priority security alerts either go unnoticed or are considered a false alarm because the appropriate technology is not available, which results in organizations failing to take action in time.  

A Security Information and Event Management (SIEM) system specializes in prioritizing critical alerts over information received in real time, thus adapting to the needs of all organizations. This is achieved by incorporating multiple intelligence feeds and logs according to the criteria and needs set by the IT department. This makes it possible to categorize events and contextualize cybersecurity threat alerts. 

The main benefits of having corporate SIEM systems are as follows:  

  • A SIEM system ensures that alerts reach the right people so that they can carry out contextualized research and apply remediation mechanisms. This saves time as analysts are not required to interpret data from so many different sources. 
  • It reduces the company’s costs, both in terms of infrastructure – by gaining full visibility into how the systems accessing the network are using it – and in terms of consuming resources. For example, a SIEM system can analyze the bandwidth machines are using and generate an event warning if one of them is consuming more resources than it should, which the IT department then checks for anomalies. SIEM enables better management of security resources, which translates into cost savings.  
  • It restores cybersecurity configurations if they have been changed by mistake, which could leave an organization dangerously exposed to threats. SIEM can automatically detect a change in the configuration and generate an event to alert the company’s security analyst, who reviews the change and can restore the previous configuration if the new one is potentially hazardous to the company. 
  • It detects operational maintenance activities in the business infrastructure that could pose a risk to the organization. Cybersecurity administrators incorporate the function of creating an event before a change to the company’s maintenance activities log, as well as in Windows. Then if there is any malicious activity they can decide whether or not to validate these adjustments. 
  • It provides cyberattack control and protection in order to act before it becomes an irreversible problem, filtering whether it is a real attack or a false alarm. Known or unknown attacks are analyzed whether they are malwareless attacks (which resort to the legitimate tools of the system itself) or DDoS attacks or advanced persistent threats (APTs). 

In the case of malware attacks, the usual security logs can send alerts for both real attacks and false alarms. To avoid alert saturation, SIEM solutions use event correlation to determine accurately whether or not it is a malware attack, as well as to detect the potential access points for the attack.  

In DDoS attacks, SIEM is able to flag such an event from web traffic logs, prioritizing the event and sending it to an analyst for investigation before causing a slowdown or a total company service outage. 

Finally, due to their complexity, when advanced persistent threats are detected they may not trigger alerts or be considered false alarms. Having a SIEM solution helps demonstrate a pattern of anomalous behavior, flagging it as a real concern for security analysts to investigate. 

Given the differentiating value of this solution, WatchGuard has incorporated its SIEMFeeder module into WatchGuard EDR and EDPR to collect and correlate the status of IT systems, enabling organizations to turn large volumes of data into useful information for decision making. 

Source :

NSv Virtual Firewall: Tested and Certified in AWS Public Cloud

Looking for the best way to extend your firewall protection to the cloud? Independent testing recently found that SonicWall NSv series is more than up to the challenge.

More than 90% of enterprises use the cloud in some way, with 69% of those considered hybrid cloud users (utilizing both private and public clouds). Along with widespread remote work adoption, this shift is driving the need for scaled-out, distributed infrastructure.

Within this new cloud landscape, security has become more complex as the number of perimeters and integrations grow, and cybercriminals increasingly focus on security gaps and vulnerabilities in cloud implementations. It’s often easier for threat actors to exploit these vulnerabilities than it is to breach hardened components of the cloud deployment.

A next-generation firewall deployed in the cloud can protect critical data stored in the cloud. But it’s important to make sure this firewall provides the same level of security and performance as an on-premises firewall.

Recently, Tolly Group used Keysight Technologies’ brand-new native cloud testing solution — CyPerf — to measure the performance of SonicWall NSv 470 virtual firewall in Amazon Web Services (AWS). AWS is the major public cloud vendor, with a projected 49% market share in enterprise cloud adoption for 2022. AWS recommends a shared responsibility model, meaning AWS is responsible for the security of the cloud, and the customer is responsible for security in the cloud.

What is SonicWall NSv virtual firewall?

SonicWall’s NSv Series virtual firewalls provide all the security advantages of a physical firewall, plus all the operational and economic benefits of the cloud — including system scalability and agility, speed of system provisioning, simple management and cost reduction. NSv delivers full-featured security tools including VPN, IPS, application control and URL filtering. These capabilities shield all critical components of the private/public cloud environments from resource misuse attacks, cross-virtual-machine attacks, side-channel attacks, and common network-based exploits and threats.

What is Keysight Technologies CyPerf?

Keysight CyPerf is the industry’s first cloud-native software solution that recreates every aspect of a realistic workload across a variety of physical and cloud environments. CyPerf deployed across a variety of heterogeneous cloud environments realistically models dynamic application traffic, user behavior and threat vectors at scale. It validates hybrid cloud networks, security devices and services for more confident rollouts.

Putting SonicWall NSv to the Test

Keysight Technologies and Tolly Group engineers tested a SonicWall NSv 470 virtual firewall running SonicOSX version 7. The AWS instance for the NSv 470 under test was AWS C5.2xlarge. The engineers deployed CyPerf agents on AWS C5.n2xlarge instances to be certain that the agents would have sufficient resources to stress the firewall under test. Each of two agent instances was provisioned with 8 vCPUs, 21GB memory and 25GbE network interfaces.

Product Image

Test methodology and results

The engineers used three different traffic profiles to collect results — unencrypted HTTP traffic, encrypted (HTTPS/TLS) traffic, and Tolly’s productivity traffic mix, which includes five applications: JIRA, Office 365, Skype, AWS S3 and Salesforce. Engineers used CyPerf application mix tests to create the Tolly productivity mix and generate stateful, simulated application traffic.

The tests were run against three different security profiles:

1) Firewall: Basic firewall functions with no policy set

2) IPS: Firewall with the intrusion prevention system feature enabled

3) Threat Prevention: Firewall with IPS, antivirus, anti-spyware and application control features enabled

The results observed in the AWS public cloud environment are similar to the results observed in virtual environment.

TestUnencrypted HTTP TrafficEncrypted HTTPS/TLS Traffic 
Firewall Throughput7.70 Gbps3.10 Gbps
IPS Throughput7.60 Gbps3.05 Gbps
Threat Prevention7.40 Gbps3.04 Gbps

Table 1: Test measurements for NSv 470 in AWS Cloud

Note: The table above highlights just a few of the test results. For complete results and test parameters, please download the report.


Most enterprises are moving their datacenters away from traditional on-premises deployments and to the cloud. It is imperative that security teams provide the same level of security for cloud server instances as they have been doing for on-premises physical servers. A next-generation firewall with advanced security services like IPS and application control is the first step to securing cloud instances against cyber threats.

In addition to security features, it also important to choose a firewall that provides the right level of performance needed for a given cloud workload. SonicWall NSv series offers a variety of models with performance levels suited to any size of cloud deployment, with all the necessary security features enabled. To learn more about how SonicWall NSv Series excels in AWS environments, click here.

Source :

World Backup Day: Because Real Life Can Have Save Points Too

March 31 is World Backup Day. Get 1-up on theft, device failure and data loss by creating and checking backups — both for your organization and for yourself. 

You’ve been playing for hours. You’ve faced two tough enemies in a row, and all signs indicate you’re about to take your remaining 12 hit points straight into a boss fight.

Up ahead a glowing stone beckons like a glimmering oasis.

“Would you like to save your progress?” a popup asks as you approach.

Um. YES!

But as obvious a choice as that seems, when the same opportunity presents itself in real life, a shocking number of people don’t take advantage of it.

What Do You Have to Lose?

The digital revolution has brought about unprecedented efficiency and convenience, ridding us of the need for bulky filing cabinets, media storage, photo albums, rolodexes and more. But every time we outsource the storage of our data to the cloud, we become a little more reliant on digital devices that are anything but infallible.

According to, more than 60 million computers worldwide will fail this year, and more than 200,000 smartphones—113 every minute—will be lost or stolen. But while the devices themselves are replaceable, their contents often aren’t. Imagine what could be at stake: All the photos you’ve taken of your children over the past two years. Every message you ever sent your spouse, all the way back to the very beginning. The last voicemail you ever got from your grandmother. All could disappear in an instant, even when associated with cloud accounts, as experienced below.

But the loss isn’t always just sentimental. Sometimes it’s professional too, as journalist Matt Honan found out in 2012. Honan used an iCloud account for his data, but had no backups — and when hackers gained access to the account, they remotely wiped his phone, tablet and computer. They also took over and deleted his Google account. “In the space of one hour,” Honan told Wired, “my entire digital life was destroyed.”

Good Backups Are Good Business

Businesses have fallen victim to devastating data loss, as well. In 1998, Pixar lost 90% of its film “Toy Story 2,” then in progress, due to the combination of a faulty command and insufficient backups.

And when social media/bookmarking site experienced a database failure resulting in the loss of all user data, it ultimately shuttered the company. “I made a huge mistake in how I set up my [backup] system,” founder Larry Halff said of the incident. 

The Cultural Cost of Insufficient Backups

While World Backup Day’s primary goal is to encourage people to create and check their backups, it also aims to spark discussion of an enormous task: how to preserve our increasingly digital heritage and cultural works for future generations.

Due to insufficient archiving and backup practices, many cultural properties have already disappeared. For example, an entire season of the children’s TV show “Zodiac Island” was lost forever when a former employee at the show’s internet service provider deleted over 300GB of video files, resulting in a lawsuit over the ISP’s lack of backups.

And decades before, a similar fate befell the now-iconic sci-fi series “Dr. Who.” The Film Library of Britain and BBC Enterprises each believed the other party was responsible for archiving the material. As a result, the BBC destroyed its own copies at will, resulting in the master videotapes of the series’ first 253 episodes being recorded over or destroyed. Despite the existence of secondary recordings and showrunners obtaining copies from as far away as Nigeria, 97 episodes are still unaccounted for and presumed lost for good.

How to Ensure Your Digital Future Today

With so much at stake, you’d think almost everyone would back up their data at least occasionally. This isn’t the case, however. According to, only about 1 in 4 people are backing up their data regularly, and an astounding 21% have never made a backup.

This phenomenon is also seen at the corporate level. While 45% of companies have reported downtime from hardware failure and 28% reported a data loss event in the past 12 months, FEMA reports that 1 in 5 companies don’t have a disaster recovery/business continuity plan (and thus don’t typically have current backups.) With 20% of SMBs facing catastrophic data loss every five years, being left unprepared is much less an “if” than a “when.”

The difference in outcome for these businesses is stark. Ninety-three of businesses that experienced data loss and more than ten days of downtime filed for bankruptcy within a year. But 96% of businesses that had a disaster recovery plan fully recovered operations.

While a good backup plan will require ongoing attention, today is a great day to start — and even one backup is a tremendous improvement over no backups at all. The World Backup Day website is full of information on online backup services, external hard drive backup, computer backup, smartphone backup, creating a NAS backup, and other methods of preserving your data.

If you’re like many IT professionals and already understand the importance of backups, today’s a perfect day to test your backups out and make sure they’re still fully operational. It’s also a good opportunity to share the importance of backups with bosses, colleagues and friends.

After all, if you’re an individual, you won’t get an “extra life” to go back and relive all the memories you might lose if your device fails. And if you’re a small- or medium-sized business owner and lose all your data, having backups might be the difference between “Continue” and “Game Over.” On World Backup Day and every day, the choice is up to you.

To learn more about backups, visit

Source :