The Top 10 AI Security Risks Every Business Should Know

By: Trend Micro
July 08, 2024
Read time: 4 min (1104 words)

With every week bringing news of another AI advance, it’s becoming increasingly important for organizations to understand the risks before adopting AI tools. This look at 10 key areas of concern identified by the Open Worldwide Application Security Project (OWASP) flags risks enterprises should keep in mind through the back half of the year.

For more than 20 years, Open Worldwide Application Security Project (OWASP) top 10 risk lists has have been go-to references in the fight to make software more secure. In 2023, OWASP brought forward a new addition: a rundown of risks specific to AI. Two draft versions of the AI risk list were published in spring/summer of that year, with a formal version 1 released in October.

Since then, LLMs have only become more entrenched as business productivity tools. Most companies are either using or exploring the use of AI, and while some liabilities are well known—such as the need to always check an LLM’s work—others remain under the radar.

We did some analysis and found the vulnerabilities identified by OWASP fall broadly into three categories:

  1. Access risks associated with exploited privileges and unauthorized actions.
  2. Data risks such as data manipulation or loss of services.
  3. Reputational and business risks resulting from bad AI outputs or actions.

In this blog, we take a closer look at the specific risks in each case and offer some suggestions about how to handle them.

1. Access risks with AI

Of the 10 vulnerabilities listed by OWASP, three are specific to access and misuse of privileges: insecure plugin design, insecure output handling, and excessive agency.

According to OWASP, an LLM using that uses insecure could lose access control, opening them up to malicious requests or the execution of unauthorized remote code. On the flipside, plugins or applications that handle large language model outputs insecurely—without evaluating them—could expose backend systems be susceptible to XSS, CSRF, and SSRF attacks that execute unwanted actions, and to unauthorized privilege escalations, and remote code execution.

And because AI chatbots are ‘actors’ able to make and implement decisions, it matters how much free reign (i.e., agency) they’re given. As OWASP explains, “Excessive Agency is the vulnerability that enables damaging actions to be performed in response to unexpected/ambiguous outputs from an LLM (regardless of what is causing the LLM to malfunction; be it hallucination/confabulation, direct/indirect prompt injection, malicious plugin, poorly-engineered benign prompts, or just a poorly-performing model).”

For example, a personal mail reader assistant with message-sending capabilitiess could be exploited by a malicious email to propagate spam from a user’s account.

In all these cases, the large language model becomes a conduit for bad actors to infiltrate systems.

2. AI and data risks

Poisoned training datasupply chain vulnerabilitiessensitive information disclosuresprompt injection vulnerabilities , and denials of service are all data-specific AI risks.

Data can be poisoned deliberately by bad actors and inadvertently when an AI system learns from unreliable or unvetted sources. Both types of poisoning can occur within an active AI chatbot application or emerge from the LLM supply chain, where reliance on pre-trained models, crowdsourced data, and insecure plugin extensions may produce biased data outputs, security breaches, or system failures.

Poisoned data and the supply chain are input concerns. Allowing private, confidential, personally identifying information and the like into model training data can also result in unwanted disclosures of sensitive information.

With prompt injections, ill-meaning inputs may cause a large language model AI chatbot to expose data that should be kept private or perform other actions that lead to data compromises.

AI denial of service attacks are similar to classic DOS attacks. They may aim to overwhelm a large language model and deprive users of access to data and apps, or—because many AI chatbots rely on pay-as-you-go IT infrastructure—force the system to consume excessive resources and rack up massive costs.

3. Reputational and business risks associated with AI

The final two OWASP vulnerabilities relate to model theft and overreliance on AI. The first applies when an organization has its own proprietary LLM model. If that model is accessed, copied, or exfiltrated by unauthorized users, it could be exploited to harm the performance of a business, disadvantage it competitively, and potentially cause a leak of sensitive information.

Overreliance on AI is already having consequences around the world today. There’s no shortage of stories about large language models generating false or inappropriate outputs from fabricated citations and legal precedents to racist and sexist language.

OWASP points out that depending on AI chatbots without proper oversight can make organizations vulnerable to publishing misinformation or offensive content that results in reputational damage or even legal action.


Given all these various risks, the question becomes, “What can we do about it?” Fortunately, there are some protective steps organizations can take. 

What enterprises can do about AI vulnerabilities

From our perspective at Trend Micro, defending against AI access risks requires a zero-trust security stance with disciplined separation of systems (sandboxing). Even though generative AI can challenge zero-trust defenses in ways that other IT systems don’t—because it can mimic trusted entities—a zero-trust posture still adds checks and balances that make it easier to identify and contain unwanted activity. OWASP also advises that large language models “should not self-police” and calls for controls to be embedded in application programming interfaces (APIs).

Sandboxing is also key to protecting data privacy and integrity: keeping confidential information fully separated from shareable data and making it inaccessible to AI chatbots and other public-facing systems.

Good separation of data prevents large language models from including private or personally identifiable information in public outputs, and from being publicly prompted to interact with secure applications such as payment systems in inappropriate ways.

On the reputational front, the simplest remedies are to not rely solely on AI-generated content or code, and to never publish or use AI outputs without first verifying they are true, accurate, and reliable.

Many of these defensive measures can—and should—be embedded in corporate policies. Once an appropriate policy foundation is in place, security technologies such as endpoint detection and response (EDR), extended detection and response (XDR), and security information and event management (SIEM) can be used for enforcement and to monitor for potentially harmful activity.

Large language model AI chatbots are here to stay

OWASP’s catalogue of AI risks proves that concerns about the rush to embrace AI are well justified. At the same time, AI clearly isn’t going anywhere, so understanding the risks and taking responsible steps to mitigate them is critically important.

Setting up the right policies to manage AI use and implementing those policies with the help of cybersecurity solutions is a good first step. So is staying informed. The way we see it at Trend Micro, OWASP’s top 10 AI risk list is bound to become as much of an annual must-read as its original application security list has been since 2003.

Source :
https://www.trendmicro.com/en_us/research/24/g/top-ai-security-risks.html

The Potential Impact of the OpenSSH Vulnerabilities CVE-2024–6387 and CVE-2024-6409

By: Jagir Shastri
July 17, 2024
Read time: 5 min (1331 words)

We check the OpenSSH vulnerabilities CVE-2024–6387 and CVE-2024-6409, examining their potential real-world impact and the possibility of exploitation for CVE-2024–6387 in x64 systems.

Introduction

CVE-2024–6387, also known as “regreSSHion,” is a vulnerability that exists in OpenSSH, a widely-used suite of secure networking utilities based on the SSH protocol. This vulnerability, which was discovered in July 2024, allows for remote unauthenticated code execution, potentially providing attackers root privileges on affected systems. The Common Vulnerability Scoring System (CVSS) has rated this vulnerability with a score of 9.8

The OpenSSH vendor advisory mentions that the successful exploitation of CVE-2024-6387 has been demonstrated on 32-bit Linux and GNU C Library systems with (ASLR). It also mentions that exploitation on 64-bit systems might be possible but this has not been demonstrated at the time of publishing.

On July 8, another similar vulnerability, the signal handler race condition CVE-2024-6409 was discovered. This flaw occurs when a client fails to authenticate within the LoginGraceTime period, which is 120 seconds by default, and 600 seconds in older OpenSSH versions. Consequently, this can lead to a signal handler race condition in the cleanup_exit() function within the child process of the SSHD server.

Figure 1. How the exploit works
Figure 1. How the exploit works

The “regreSSHion” vulnerability arises from the unsafe handling of the SIGALRM signal during SSH authentication. When the LoginGraceTime expires, the SIGALRM signal is raised, and the corresponding handler performs certain actions, including calling non-async-signal-safe functions like syslog(). This can create a race condition, where the timing of operations could lead to memory corruption or other unexpected behaviors.

SIGALRM
SIGALRM is a signal in Unix-like operating systems that indicates an alarm or timer expiration. When a process sets and a function triggers, it schedules a SIGALRM signal to be sent to the process after a specified number of seconds. This signal is commonly used for timing operations, such as implementing timeouts for network requests or scheduling periodic tasks. Processes can define custom signal handlers to respond to SIGALRM, allowing them to perform actions such as terminating processes, resetting timers, or managing execution time limits. Overall, SIGALRM facilitates time-sensitive operations within Unix processes by providing a mechanism to handle scheduled alarms and timing events.

Exploiting CVE-2024–6387 requires an attacker to initiate thousands of connection attempts to trigger the race condition accurately. The process involves repeatedly setting and resetting LoginGraceTime, causing the server to invoke the SIGALRM signal handler. This requires precise timing and proper inputs to manipulate the server’s memory layout, leading to heap corruption and code execution.

Signal handlers
Signal handlers are special functions that get called in response to specific signals sent to a program. These signals can be generated, either by the operating system or by the program itself. However, not all functions are safe to call from within a signal handler since they may not be reentrant, therefore cannot safely be interrupted and called again (“async-signal-safe”). For instance, syslog() is a function used to log messages to the system logger and is not considered async-signal-safe.

Researchers have found that approximately 10,000 attempts are needed to successfully exploit this vulnerability. While the exploit could take days to complete, it is still not guaranteed that the attempt would be successful . The presence of modern security mechanisms such as Address Space Layout Randomization (ASLR) and No-eXecute (NX) bits further complicate the exploitation process but do not entirely mitigate the risk.

CVE-2024-6409 technical details

Like CVE-2024-6387, this vulnerability occurs when the SSHD’s SIGALRM handler is called asynchronously, which in turn calls various functions that are not async-signal-safe.

The race condition in grace_alarm_handler() calls cleanup_exit() from the privsep child process. However, cleanup_exit() is not designed to be called from a signal handler, potentially invoking unsafe functions. Cleanup function calls can be interrupted by signals, causing unsafe state changes and potential remote code execution (RCE).

As a privsep child process run’s with reduced privileges, there is less reason to worry about the vulnerability. In addition, working exploits for the CVE-2024-6409 have not been yet discovered, therefore proof of its actual exploitation has not been established at the time of publishing.

Exploitability of CVE-2024-6387 in x64 Systems

The OpenSSH vendor advisory mentions that the successful exploitation of CVE-2024-6387 has been demonstrated on 32-bit Linux and GNU C Library (glibc) systems with (ASLR). It also mentions that exploitation on 64-bit systems might be possible. However, certain characteristics of X64 systems make this exploitation much more difficult, which we’ll expound on in this section.

In x64 systems, ASLR plays a crucial role by randomizing memory addresses, including those of the GNU C Library (glibc), with each program execution. This randomness makes it very difficult for attackers to predict the location of the glibc base address, thus mitigating exploits that depend on precise memory targeting. The x64 architecture’s expansive address space further complicates exploitation, as attackers have to guess an exponentially greater amount of addresses. Combined with security measures such as stack canaries and NX bits, exploiting vulnerabilities such as CVE-2024-6387 becomes highly impractical on x64 systems.

While theoretically possible under specific conditions, the effective implementation of ASLR and the inherent complexities of the x64 environment significantly reduce real-world exploitability, highlighting the robust security benefits of these architectural safeguards.

Potential impact

Our As per our internal telemetry we did not notice any trend change for CVE-2024–6387, which could be considered a known exploited vulnerability (KEV)that is being exploited in wild. .

While CVE-2024–6387 presents a critical security risk, its real-world impact is mitigated by several factors. The technical complexity of the exploit and the extensive time required to execute it make large-scale attacks impractical. Each attack attempt resets the login timer, requiring precise timing and substantial effort from the attacker.

Moreover, the vulnerability affects specific versions of OpenSSH (up to 4.4p1 and 8.5p1 to 9.7p1) running on Linux systems using the GNU C Library. Systems with additional protections against brute force attacks and distributed denial-of-service (DDoS) are less likely to be successfully exploited. Therefore, while targeted attacks are possible, mass exploitation is unlikely due to the unavailability of working exploits and the time required to exploit these vulnerabilities.

Mitigation

To mitigate the risks associated with CVE-2024–6387, administrators should immediately update OpenSSH to version 9.8 or later. If immediate updating is not feasible, reducing the LoginGraceTime can provide temporary mitigation against this vulnerability.

Additionally, organizations can consider implementing the following best practices for general vulnerability exploit protection:

Patch management
Regularly updating and patching software, operating systems, and applications is the most straightforward method for organizations to avoid the exploitation of vulnerabilities within their systems.

Network segmentation
Separating critical network segments from the larger network can minimize the impact of a potential vulnerability exploitation.

Regular security audits
Performing security audits and vulnerability assessments can identify and remediate potential weaknesses within the infrastructure before they can be exploited.

Security awareness training
Educating employees about the common tactics used by attackers can help them avoid falling victim to social engineering attacks that might precede vulnerability exploitation.

Incident response plan
Developing, testing, and maintaining an incident response plan can help organizations quickly and effectively respond to security breaches and vulnerability exploitations.

Additionally, employing network-based access controls, intrusion prevention systems such as Trend Vision One™, and regular vulnerability scanning can further enhance security.
For Trend customers, the following IPS smart rules can detect the attack on a surface level:

  • 1003593 Detected SSH Server Traffic (ATT&CK T1021.004)
  • 1005748 Multiple SSH Connection Detected (ATT&CK T1499.002, T1110)

Conclusion

According to other researchers, there could be non-functional exploits in circulation that claim to be working proofs-of-concept (POCs) for CVE-2024-6387. These fake exploits contain payloads that download files from remote servers and establish persistence on the systems of security researchers. Assuming they are testing a legitimate POC for the vulnerability, the security features of their systems might be disabled, making them vulnerable to malicious activities.

Overall, while CVE-2024–6387 and CVE-2024-6409 is a critical vulnerability, it does not pose a widespread threat to the internet due to its exploitation complexity and existing mitigations. However, administrators should remain vigilant, apply patches promptly, and implement recommended security practices to protect their systems.

Source :
https://www.trendmicro.com/en_us/research/24/g/cve-2024-6387-and-cve-2024-6409.html

SANS’s 2024 Threat-Hunting Survey Review

By: Trend Micro
June 04, 2024
Read time: 3 min (709 words)

In its ninth year, the annual SANS Threat Hunting Survey delves into global organizational practices in threat hunting, shedding light on the challenges and adaptations in the landscape over the past year.

The 2024 survey highlights a growing maturity in threat-hunting methodologies, with a significant increase in organizations adopting formal processes.

This marks a shift towards a more standardized approach in cybersecurity strategies despite challenges such as skill shortages and tool limitations. Additionally, the survey reveals evolving practices in sourcing intelligence and an increase in outsourcing threat hunting, raising questions about the efficiency and alignment with organizational goals. This summary encapsulates the essential findings and trends, emphasizing the critical role of threat hunting in contemporary cybersecurity frameworks.

Participants

survey demographics
Figure 1: Survey demographics

This year’s survey attracted participants from a wide array of industries, with cybersecurity leading at 15% and 9% of respondents from the manufacturing sector, which has recently faced significant challenges from ransomware attacks. The survey participants varied in organization size, too, ranging from those working in small entities with less than 100 employees (24%) to large corporations with over 100,000 employees (9%).

The respondents play diverse roles within their organizations, highlighting the multidisciplinary nature of threat hunting. Twenty-two percent are security administrators or analysts, while 11% hold business manager positions, showcasing a balance between technical, financial, and personnel perspectives in threat-hunting practices.

However, the survey does note a geographical bias, with 65% of participants coming from organizations based in the United States, which could influence the findings related to staffing and organizational practices, though it’s believed not to affect the technical aspects of threat hunting.

Significant findings and implications

The survey examines the dynamic landscape of cyber threats and the strategies deployed by threat hunters to identify and counteract these risks. Notably, it sheds light on the prevalent types of attacks encountered:

  • Business email compromise (BEC): BEC emerges as the foremost concern, with approximately 68% of respondents reporting its detection. BEC involves malicious actors infiltrating legitimate email accounts to coerce individuals into transferring funds through social engineering tactics.
  • Ransomware: Following closely behind is ransomware, detected by 64% of participants. Ransomware operations encrypt data and demand payment for decryption, constituting a significant threat in the cybersecurity landscape.
  • Tactics, techniques, and procedures (TTPs): The survey found that TTPS are employed in different attack scenarios. In ransomware incidents, threat actors often deploy custom malware, target specific data for exfiltration, utilize off-the-shelf tools like Cobalt Strike, attempt to delete traces, and sometimes resort to physical intrusion into target companies.

Evolving threat-hunting practices

SANS also found that organizations have significantly evolved their threat-hunting practices, with changes in methodologies occurring as needed, monthly, quarterly, or annually.

Outsourced threat hunting is now used by 37% of organizations, and over half have adopted clearly defined methodologies for threat hunting, marking a notable advancement.

Additionally, 64% of organizations formally evaluate the effectiveness of their threat-hunting efforts, showing a decrease in those without formal methodologies from 7% to 2%. The selection of methods is increasingly influenced by available human resources, recognized by 47% of organizations.

The chief information security officer (CISO) plays a key role in developing threat-hunting methodologies, with significant involvement in 40% of cases.

Benefits of better threat-hunting efforts

Significant benefits from threat hunting include improved attack surface and endpoint security, more accurate detections with fewer false positives, and reduced remediation resources.

About 30% of organizations use vendor information as supplemental threat intelligence, with 14% depending solely on it. Incident response teams’ involvement in developing threat-hunting methodologies rose to 33% in 2024, indicating better integration within security functions.

Challenges such as data quality and standardization issues are increasing, underscoring the complexities of managing expanding cybersecurity data.

Final thoughts

The SANS 2024 Threat Hunting Survey highlights the cybersecurity industry’s evolution and focuses on improving cyber defense capabilities. Organizations aim to enhance threat hunting with better contextual awareness and data tools, with 51% looking to improve response to nuanced threats.

Nearly half (47%) plan to implement AI and ML to tackle the increasing complexity and volume of threats. There’s a significant planned investment in both staff and tools, with some organizations intending to increase their investment by over 10% or even 25% in the next 24 months, emphasizing threat hunting’s strategic importance.

However, a small minority anticipate reducing their investment, hinting at a potential shift in security strategy.

Source :
https://www.trendmicro.com/en_us/research/24/f/sans-2024-threat-hunting-survey-review.html

Not Just Another 100% Score: MITRE ENGENUITY ATT&CK

By: Trend Micro
June 18, 2024
Read time: 4 min (1135 words)

The latest MITRE Engenuity ATT&CK Evaluations pitted leading managed detection and response (MDR) services against threats modeled on the menuPass and BlackCat/AlphV adversary groups. Trend Micro achieved 100% detection across all 15 major attack steps with an 86% actionable rate for those steps— balancing detections and business priorities including operational continuity and minimized disruption.

Trend took part in the MITRE Engenuity ATT&CK Evaluations for managed detection and response (MDR) services—building on a history of strong performance in other MITRE Engenuity tests. Key to that ongoing success is our platform approach, which provides high-fidelity detection of early- and mid-chain tactics, techniques, and procedures (TTPs) enabling quick and decisive counteractions before exfiltration or encryption can occur. Of course, we know real-world outcomes matter more than lab results. That’s why we’re proud to support thousands of customers worldwide with MDR that brings the most native extended detection and response (XDR) telemetry, leading threat intelligence from Trend™ Research and our Trend Micro™ Zero-Day Initiative™ (ZDI) under a single service to bridge real-time threat protection and cyber risk management. 

The evaluation focused on our Trend Service One™ offering, powered by Trend Vision One, which included XDR, endpoint and network security capabilities. The results proved Trend Micro MDR is a great alternative to managed services that rely on open XDR platforms or managed SIEM platforms.

Our detection of adversarial activity early in the attack chain combined with our platform’s deeply integrated native response capabilities enables rapid mean-time-to-detect (MTTD) and mean-time-to-respond (MTTR). At the same time, comprehensive visibility and protection gives security teams greater confidence.

MITRE ENGENUITY ATTACK EVALUATIONS Managed Services Badge

Full detection across all major steps

This most recent MITRE Engenuity ATT&CK Evaluations for Managed Services featured attacks modeled on the real-world adversaries menuPass and BlackCat/AlphV. These took the form of advanced persistent threats (APTs) designed to dwell in the network post-breach and execute harmful activity over time.

Trend MDR achieved full detection coverage, reflecting and reinforcing our achievements in cybersecurity:

  • 100% across all  major attack steps
  • 100% for enriched detail on TTPs
  • 86% actionable rate for major steps

How Trend MDR delivers

To put its MDR evaluation in context, MITRE Engenuity conducted a survey prior to testing, gaining insights into market perceptions and expectations of managed cybersecurity services. More than half (58%) of respondents said they rely on managed services either to complement their in-house SOC or as their main line of defense. For companies with fewer than 5,000 employees, that tally increased to 68%.

Our MDR service at Trend helps meet those needs by combining AI techniques with human threat expertise and analysis. We correlate data and detect threats that might otherwise slip by as lower severity alerts. Our experts prioritize threats by severity, determine the root cause of attacks, and develop detailed response plans.

XDR is a key technology to achieve these security outcomes, extending visibility beyond endpoints to other parts of the environment where threats can otherwise go undetected: servers, email, identities, mobile devices, cloud workloads, networks, and operational technologies (OT). 

Integrated with native XDR insights is deep, global threat intelligence. Native telemetry enables high-fidelity detections, strong correlations and rich context; global threat intelligence brings highly relevant context to detect threats faster and more precisely. Combined with a broad third-party integration ecosystem and response automation across vectors, Trend Vision One introduces a full-spectrum SOC platform for security teams to speed up investigations and frees up time to focus on high-value, proactive security work including threat hunting and detection engineering. In some cases, smaller teams rely on our MDR service completely for their security operations.

With Trend Vision One, teams have access to a continuously updated and growing library of detection models—with the ability to build custom detection models to fit their unique threat models.

Proven strength in delivering higher-confidence alerts

Security and security operations center (SOC) teams are inundated with detection alerts and noise. Our visibility and analytics performance achieves a finely tuned balance between providing early alerts of critical adversarial tactics and techniques and managing alert fatigue to improve the analyst experience. Our MDR operations team takes advantage of the platform advantage and knows only to alert customers when critical.

In each simulation during the MITRE Engenuity ATT&CK Evaluations, there was no scenario where menuPass and BlackCat/AlphV attack attempts successfully breached the environment without being detected or disrupted.

It’s important to note that MITRE Engenuity doesn’t rank products or solutions. It provides objective measures but no scores. Instead, since every service and solution functions differently, the evaluation reveals areas of strength and opportunities for improvement within each offering. 

About the attacks

The menuPass threat group has been active since at least 2006. Some of its members have been associated with the Tianjin State Security Bureau of the Chinese Ministry of State Security and with the Huaying Haitai Science and Technology Development Company. It has targeted healthcare, defense, aerospace, finance, maritime, biotechnology, energy, and government targets—and in 2016–17 went after managed IT service providers. BlackCat is Rust-based ransomware offered as a service and first observed in November 2021. It has been used to target organizations across Africa, the Americas, Asia, Australia, and Europe in a range of sectors. 

Putting our service to the test

In cybersecurity, actions speak louder than words. Our significant investment in research and development extend to our MDR service offering to support thousands of enterprises around the world.

We’re dedicated to continuous iteration and improvement to equip security teams with cutting-edge solutions to keep their organizations safe. As we evolve our solutions, MITRE Engenuity continues to evolve its evaluation approach as well. The category of “actionability” was new in this evaluation, determining if each alert provided enough context for the security analyst to act on. The actionability testing category is an area we’re investing in heavily from a process and technology standpoint to ensure contextual awareness, prioritization, and intelligent guidance are included while maintaining manageable communication cadences and minimizing false positive alerts.

Overall, areas for improvement surfaced through the test scenarios have been resourced with dedicated engineering and development efforts to match the high standard we hold ourselves to-and that our users expect. We are pleased to see our MDR service demonstrated a strong balance of detection capabilities across the entire attack chain, both within the service itself and embedded in the underlying Trend Vision One platform.

We invite all our MDR customers to take a look at the MITRE Engenuity ATT&CK Evaluations for Managed Services to better understand the strength of their defensive posture, and to come to us with any questions or thoughts.

Next steps

For more on Trend MDR, XDR, and other related topics, check out these additional resources:

Forward vision

At Trend, we are dedicated to continuous iteration and improvement to equip security teams with cutting-edge solutions to keep their organizations safe. These relevant areas of improvement surfaced through the scenarios have been resourced with dedicated engineering and development efforts to match the high standard we hold ourselves to and which our users expect.

Source :
https://www.trendmicro.com/en_us/research/24/f/mitre-enginuity-attack-evaluations.html

NIST Launches Cybersecurity Framework (CSF) 2.0

By: Shannon Murphy, Greg Young
March 20, 2024
Read time: 2 min (589 words)

On February 26, 2024, the National Institute of Standards and Technology (NIST) released the official 2.0 version of the Cyber Security Framework (CSF).

What is the NIST CSF?

The NIST CSF is a series of guidelines and best practices to reduce cyber risk and improve security posture. The framework is divided into pillars or “functions” and each function is subdivided into “categories” which outline specific outcomes.

As titled, it is a framework. Although it was published by a standards body, it is not a technical standard.

https://www.nist.gov/cyberframework

What Is the CSF Really Used For?

Unlike some very prescriptive NIST standards (for example, crypto standards like FIPS-140-2), the CSF framework is similar to the ISO 27001 certification guidance. It aims to set out general requirements to inventory security risk, design and implement compensating controls, and adopt an overarching process to ensure continuous improvement to meet shifting security needs.

It’s a high-level map for security leaders to identify categories of protection that are not being serviced well. Think of the CSF as a series of buckets with labels. You metaphorically put all the actions, technology deployments, and processes you do in cybersecurity into these buckets, and then look for buckets with too little activity in them or have too much activity — or repetitive activity — and not enough of other requirements in them.

The CSF hierarchy is that Functions contain many Categories — or in other words, there are big buckets that contain smaller buckets.

What Is New in CSF 2.0?

The most noteworthy change is the introduction of Governance as a sixth pillar in the CSF Framework. This shift sees governance being given significantly more importance from just a mention within the previous five Categories to now being its owna separate Function.

According to NIST the Govern function refers to how an organization’s, “cybersecurity risk management strategy, expectations, and policy are established, communicated, and monitored.”  This is a positive and needed evolution, as when governance is weak, it often isn’t restricted to a single function (e.g. IAM) and can be systemic.

Governance aligns to a broader paradigm shift where we see cybersecurity becoming highly relevant within the business context as an operational risk. The Govern expectation is cybersecurity is integrated into the broader enterprise risk management strategy and requires dedicated accountability and oversight.

There are some other reassignments and minor changes in the remaining five Categories. CSF version 1.0 was published in 2014, and 1.1 in 2018. A lot has changed in security since then. The 2.0 update acknowledges that a review has been conducted.

As a framework, the CISO domain has not radically changed. Yes, the technology has radically evolved, but the greatest evolution in the CISO role really has been around governance: greater interaction with C-suite and board, while some activities have been handed off to operations.

NIST Cybersecurity Framework

So How Will This Impact Me in the Short Term?

The update to the NIST CSF provides a fresh opportunity to security leaders to start or reopen conversations with business leaders on evolving needs.

  • The greatest impact will be to auditors and consultants who will need to make formatting changes to their templates and work products to align with version 2.0.
  • CISOs and security leaders will have to make some similar changes to how they track and report compliance.
  • But overall, the greatest impact (aside from some extra billable cybersecurity consulting fees) will be a boost of relevance to the CSF that could attract new adherents both through security leaders choosing to look at themselves through the CSF lens and management asking the same of CISOs.
Category

Source :
https://www.trendmicro.com/it_it/research/24/c/nist-cybersecurity-framework-2024.html

Black Basta-Affiliated Water Curupira’s Pikabot Spam Campaign

By: Shinji Robert Arasawa, Joshua Aquino, Charles Steven Derion, Juhn Emmanuel Atanque, Francisrey Joshua Castillo, John Carlo Marquez, Henry Salcedo, John Rainier Navato, Arianne Dela Cruz, Raymart Yambot, Ian Kenefick
January 09, 2024
Read time: 8 min (2105 words)

A threat actor we track under the Intrusion set Water Curupira (known to employ the Black Basta ransomware) has been actively using Pikabot. a loader malware with similarities to Qakbot, in spam campaigns throughout 2023.

Pikabot is a type of loader malware that was actively used in spam campaigns by a threat actor we track under the Intrusion set Water Curupira in the first quarter of 2023, followed by a break at the end of June that lasted until the start of September 2023. Other researchers have previously noted its strong similarities to Qakbot, the latter of which was taken down by law enforcement in August 2023. An increase in the number of phishing campaigns related to Pikabot was recorded in the last quarter of 2023, coinciding with the takedown of Qakbot — hinting at the possibility that Pikabot might be a replacement for the latter (with DarkGate being another temporary replacement in the wake of the takedown).

Pikabot’s operators ran phishing campaigns, targeting victims via its two components — a loader and a core module — which enabled unauthorized remote access and allowed the execution of arbitrary commands through an established connection with their command-and-control (C&C) server. Pikabot is a sophisticated piece of multi-stage malware with a loader and core module within the same file, as well as a decrypted shellcode that decrypts another DLL file from its resources (the actual payload).

In general, Water Curupira conducts campaigns for the purpose of dropping backdoors such as Cobalt Strike, leading to Black Basta ransomware attacks (coincidentally, Black Basta also returned to operations in September 2023). The threat actor conducted several DarkGate spam campaigns and a small number of IcedID campaigns in the early weeks of the third quarter of 2023, but has since pivoted exclusively to Pikabot.

Pikabot, which gains initial access to its victim’s machine through spam emails containing an archive or a PDF attachment, exhibits the same behavior and campaign identifiers as Qakbot

Figure 1. Our observations from the infection chain based on Trend’s investigation
Figure 1. Our observations from the infection chain based on Trend’s investigation

Initial access via email

The malicious actors who send these emails employ thread-hijacking, a technique where malicious actors use existing email threads (possibly stolen from previous victims) and create emails that look like they were meant to be part of the thread to trick recipients into believing that they are legitimate. Using this technique increases the chances that potential victims would select malicious links or attachments. Malicious actors send these emails using addresses (created either through new domains or free email services) with names that can be found in original email threads hijacked by the malicious actor. The email contains most of the content of the original thread, including the email subject, but adds a short message on top directing the recipient to open the email attachment.

This attachment is either a password-protected archive ZIP file containing an IMG file or a PDF file. The malicious actor includes the password in the email message. Note that the name of the file attachment and its password vary for each email.

Figure 2. Sample email with a malicious ZIP attachment
Figure 2. Sample email with a malicious ZIP attachment
Figure 3. Sample email with a malicious PDF attachment
Figure 3. Sample email with a malicious PDF attachment

The emails containing PDF files have a shorter message telling the recipient to check or view the email attachment.

The first stage of the attack

The attached archive contains a heavily obfuscated JavaScript (JS) with a file size amounting to more than 100 KB. Once executed by the victim, the script will attempt to execute a series of commands using conditional execution.

Figure 4. Files extracted to the attached archive (.zip or .img)
Figure 4. Files extracted to the attached archive (.zip or .img)
Figure 5. Deobfuscated JS command
Figure 5. Deobfuscated JS command

The script attempts command execution using cmd.exe. If this initial attempt is unsuccessful, the script proceeds with the following steps: It echoes a designated string to the console and tries to ping a specified target using the same string. In case the ping operation fails, the script employs Curl.exe to download the Pikabot payload from an external server, saving the file in the system’s temporary directory.

Subsequently, the script will retry the ping operation. If the retry is also unsuccessful, it uses rundll32.exe to execute the downloaded Pikabot payload (now identified as a .dll file) with “Crash” as the export parameter. The sequence of commands concludes by exiting the script with the specified exit code, ciCf51U2FbrvK.

We were able to observe another attack chain where the malicious actors implemented a more straightforward attempt to deliver the payload. As before, similar phishing techniques were performed to trick victims into downloading and executing malicious attachments. In this case, password-protected archive attachments were deployed, with the password contained in the body of the email.

However, instead of a malicious script, an IMG file was extracted from the attachment. This file contained two additional files — an LNK file posing as a Word document and a DLL file, which turned out to be the Pikabot payload extracted straight from the email attachment:

Figure 6. The content of the IMG file
Figure 6. The content of the IMG file

Contrary to the JS file observed earlier, this chain maintained its straightforward approach even during the execution of the payload.

Once the victim is lured into executing the LNK file, rundll32.exe will be used to run the Pikabot DLL payload using an export parameter, “Limit”.

The content of the PDF file is disguised to look like a file hosted on Microsoft OneDrive to convince the recipient that the attachment is legitimate. Its primary purpose is to trick victims into accessing the PDF file content, which is a link to download malware.

Figure 7. Malicious PDF file disguised to look like a OneDrive attachment; note the misspelling of the word “Download”
Figure 7. Malicious PDF file disguised to look like a OneDrive attachment; note the misspelling of the word “Download”
Figure 7. Malicious PDF file disguised to look like a OneDrive attachment; note the misspelling of the word “Download”

When the user selects the download button, it will attempt to access a malicious URL, then proceed to download a malicious JS file (possibly similar to the previously mentioned JS file).

The delivery of the Pikabot payload via PDF attachment is a more recent development, emerging only in the fourth quarter of 2023.

We discovered an additional variant of the malicious downloader that employed obfuscation methods involving array usage and manipulation:

Figure 8. Elements of array “_0x40ee” containing download URLs and JS methods used for further execution
Figure 8. Elements of array “_0x40ee” containing download URLs and JS methods used for further execution

Nested functions employed array manipulation methods using “push” and “shift,” introducing complexity to the code’s structure and concealing its flow to hinder analysis. The presence of multiple download URLs, the dynamic creation of random directories using the mkdir command, and the use of Curl.exe, as observed in the preceding script, are encapsulated within yet another array. 

The JavaScript will run multiple commands in an attempt to retrieve the malicious payload from different external websites using Curl.exe, subsequently storing it in a random directory created using mkdir.

Figure 9. Payload retrieval commands using curl.exe
Figure 9. Payload retrieval commands using curl.exe

The rundll32.exe file will continue to serve as the execution mechanism for the payload, incorporating its export parameter.

Figure 10. Payload execution using rundll32.exe
Figure 10. Payload execution using rundll32.exe

The Pikabot payload

We analyzed the DLL file extracted from the archive shown in Figure 6 and found it to be a sample of a 32-bit DLL file with 1515 exports. Calling its export function “Limit”, the file will decrypt and execute a shellcode that identifies if the process is being debugged by calling the Windows API NtQueryInformationProcess twice with the flag 0x7 (ProcessDebugPort) on the first call and 0x1F ProcessDebugFlags on the second call. This shellcode also decrypts another DLL file that it loads into memory and then eventually executes.

Figure 11. The shellcode calling the entry point of the decrypted DLL file
Figure 11. The shellcode calling the entry point of the decrypted DLL file

The decrypted DLL file will execute another anti-analysis routine by loading incorrect libraries and other junk to detect sandboxes. This routine seems to be copied from a certain GitHub article.

Security/Virtual Machine/Sandbox DLL filesReal DLL filesFake DLL files
cmdvrt.32.dllkernel32.dllNetProjW.dll
cmdvrt.64.dllnetworkexplorer.dllGhofr.dll
cuckoomon.dllNlsData0000.dllfg122.dll
pstorec.dll  
avghookx.dll  
avghooka.dll  
snxhk.dll  
api_log.dll  
dir_watch.dll  
wpespy.dll  

Table 1. The DLL files loaded to detect sandboxes

After performing the anti-analysis routine, the malware loads a set of PNG images from its resources section which contains an encrypted chunk of the core module and then decrypts them. Once the core payload has been decrypted, the Pikabot injector creates a suspended process (%System%\SearchProtocolHost) and injects the core module into it. The injector uses indirect system calls to hide its injection.

Figure 12. Loading the PNG images to build the core module
Figure 12. Loading the PNG images to build the core module

Resolving the necessary APIs is among the malware’s initial actions. Using a hash of each API (0xF4ACDD80x03A5AF65E, and 0xB1D50DE4), Pikabot uses two functions to obtain the addresses of the three necessary APIs, GetProcAddressLoadLibraryA, and HeapFree. This process is done by looking through kernel32.dll exports. The rest of the used APIs are resolved using GetProcAddress with decrypted strings. Other pertinent strings are also decrypted during runtime before they are used.

Figure 13. Harvesting the GetProcAddress and LoadLibrary API
Figure 13. Harvesting the GetProcAddress and LoadLibrary API
Figure 13. Harvesting the GetProcAddress and LoadLibrary API

The Pikabot core module checks the system’s languages and stops its execution if the language is any of the following:

  • Russian (Russia)
  • Ukrainian (Ukraine)
  •   

It will then ensure that only one instance of itself is running by creating a hard-coded mutex, {A77FC435-31B6-4687-902D-24153579C738}.

The next stage of the core module involves obtaining details about the victim’s system and forwarding them to a C&C server. The collected data uses a JSON format, with every data item  using the wsprintfW function to fill its position. The stolen data will look like the image in Figure 13 but with the collected information before encryption:

Figure 14. Stolen information in JSON format before encryption
Figure 14. Stolen information in JSON format before encryption

Pikabot seems to have a binary version and a campaign ID. The keys 0fwlm4g and v2HLF5WIO are present in the JSON data, with the latter seemingly being a campaign ID.

The malware creates a named pipe and uses it to temporarily store the additional information gathered by creating the following processes: 

  • whoami.exe /all
  • ipconfig.exe /all
  • netstat.exe -aon

Each piece of information returned will be encrypted before the execution of the process.

A list of running processes on the system will also be gathered and encrypted by calling CreateToolHelp32Snapshot and listing processes through Process32First and Process32Next.

Once all the information is gathered, it will be sent to one of the following IP addresses appended with the specific URL, cervicobrachial/oIP7xH86DZ6hb?vermixUnintermixed=beatersVerdigrisy&backoff=9zFPSr: 

  • 70[.]34[.]209[.]101:13720
  • 137[.]220[.]55[.]190:2223
  • 139[.]180[.]216[.]25:2967
  • 154[.]61[.]75[.]156:2078
  • 154[.]92[.]19[.]139:2222
  • 158[.]247[.]253[.]155:2225
  • 172[.]233[.]156[.]100:13721

However, as of writing, these sites are inaccessible.

C&C servers and impact

As previously mentioned, Water Curupira conducts campaigns to drop backdoors such as Cobalt Strike, which leads to Black Basta ransomware attacks.It is this potential association with a sophisticated type of ransomware such as Black Basta that makes Pikabot campaigns particularly dangerous.

The threat actor also conducted several DarkGate spam campaigns and a small number of IcedID campaigns during the early weeks of the third quarter of 2023, but has since pivoted exclusively to Pikabot.

Lastly, we have observed distinct clusters of Cobalt Strike beacons with over 70 C&C domains leading to Black Basta, and which have been dropped via campaigns conducted by this threat actor.

Security recommendations

To avoid falling victim to various online threats such as phishing, malware, and scams, users should stay vigilant when it comes to emails they receive. The following are some best practices in user email security:

  • Always hover over embedded links with the pointer to learn where the link leads.
  • Check the sender’s identity. Unfamiliar email addresses, mismatched email and sender names, and spoofed company emails are signs that the sender has malicious intent.
  • If the email claims to come from a legitimate company, verify both the sender and the email content before downloading attachments or selecting embedded links.
  • Keep operating systems and all pieces of software updated with the latest patches.
  • Regularly back up important data to an external and secure location. This ensures that even if you fall victim to a phishing attack, you can restore your information.

A multilayered approach can help organizations guard possible entry points into their system (endpoint, email, web, and network). Security solutions can detect malicious components and suspicious behavior, which can help protect enterprises.  

  • Trend Vision One™ provides multilayered protection and behavior detection, which helps block questionable behavior and tools before ransomware can do any damage. 
  • Trend Cloud One™ – Workload Security protects systems against both known and unknown threats that exploit vulnerabilities. This protection is made possible through techniques such as virtual patching and machine learning.  
  • Trend Micro™ Deep Discovery™ Email Inspector employs custom sandboxing and advanced analysis techniques to effectively block malicious emails, including phishing emails that can serve as entry points for ransomware.  
  • Trend Micro Apex One™ offers next-level automated threat detection and response against advanced concerns such as fileless threats and ransomware, ensuring the protection of endpoints.
     

Indicators of Compromise (IOCs)

The indicators of compromise for this blog entry can be found here.

Source :
https://www.trendmicro.com/it_it/research/24/a/a-look-into-pikabot-spam-wave-campaign.html

Forward Momentum: Key Learnings From Trend Micro’s Security Predictions for 2024

By: Trend Micro
December 06, 2023
Read time: 4 min (971 words)

In this blog entry, we discuss predictions from Trend Micro’s team of security experts about the drivers of change that will figure prominently in 2024.

Digital transformations in the year ahead will be led by organizations pursuing a pioneering edge from the integration of emergent technologies. Advances in cloud technology, artificial intelligence and machine learning (AI/ML), and Web3 are poised to reshape the threat landscape, giving it new frontiers outside the purview of traditional defenses. However, these technological developments are only as efficient as the IT structures that support them. In 2024, business leaders will have to take measures to ensure that their organization’s systems and processes are equipped to stay in step with these modern solutions — not to mention the newfound security challenges that come with implementing and securing them.

As the new year draws closer, decision-makers will need to stay on top of key trends and priority areas in enterprise cybersecurity if they are to make room for growth and fend off any upcoming threats along their innovation journey. In this blog entry, we discuss predictions from Trend Micro’s team of security experts about the drivers of change that will figure prominently next year.

Misconfigurations will allow cybercriminals to scale up their attacks using cloud-native worms

Enterprises should come into 2024 prepared to ensure that their cloud resources can’t be turned against them in “living-off-the-cloud” attacks. Security teams need to closely monitor cloud environments in anticipation of cyberattacks that, tailored with worming capabilities, can also abuse cloud misconfigurations to gain a foothold in their targets and use rootkits for persistence. Cloud technologies like containerized applications are especially at risk as once infected, these can serve as a launchpad from which attackers can spread malicious payloads to other accounts and services. Given their ability to infect multiple containers at once, leverage vulnerabilities at scale, and automate various tasks like reconnaissance, exploitation, and achieving persistence, worms will endure as a prominent tactic among cybercriminals next year.

AI-generated media will give rise to more sophisticated social engineering scams

The gamut of use cases for generative AI will be a boon not only for enterprises but also for fraudsters seeking new ways of profiteering in 2024. Though they’re often behind the curve when it comes to new technologies, expect cybercriminals — swayed by the potential of lucrative pay — to incorporate AI-generated lures as part of their upgraded social engineering attacks. Notably, despite the shutdown of malicious large language model (LLM) tool WormGPT, similar tools could still emerge from the dark web. In the interim, cybercriminals will also continue to find other ways to circumvent the limitations of legitimate AI tools available online. In addition to their use of digital impostors that combine various AI-powered tools in emerging threats like virtual kidnapping, we predict that malicious actors will resort specifically to voice cloning in more targeted attacks.

The rising tide of data poisoning will be a scourge on ML models under training

Integrating machine-learning (ML) models into their operations promises to be a real game changer for businesses that are banking on the potential of these models to supercharge innovation and productivity. As we step into 2024, attempts to corrupt the training data of these models will start gaining ground. Threat actors will likely carry out these attacks by taking advantage of a model’s data-collection phase or by compromising its data storage or data pipeline infrastructure. Specialized models using focused datasets will also be more vulnerable to data poisoning than LLMs and generative AI models trained on extensive datasets, which will prompt security practitioners to pay closer attention to the risks associated with tapping into external resources for ML training data.

Attackers will take aim at software supply chains through their CI/CD pipelines

Software supply chains will have a target on their back in 2024, as cybercriminals will aim to infiltrate them through their continuous integration and delivery (CI/CD) systems. For example, despite their use in expediting software development, components and code sourced from third-party libraries and containers are not without security risks, such as lacking thorough security audits, containing malicious or outdated components, or harboring overlooked vulnerabilities that could open the door to code-injection attacks. The call for developers to be wary of anything sourced from third parties will therefore remain relevant next year. Similarly, to safeguard the resilience of critical software development pipelines and weed out bugs in the coming year, DevOps practitioners should exercise caution and conduct routine scans of any external code they plan to use.

New extortion schemes and criminal gangs will be built around the blockchain

Whereas public blockchains are hardened by continuous cyberattacks, the same can’t be said of their permissioned counterparts because of the latter’s centralized nature. This lack of hard-won resilience will drive malicious actors to develop new extortion business models specific to private blockchains next year. In such extortion operations, criminals could use stolen keys to insert malicious data or modify existing records on the blockchain and then demand a payoff to stay mum on the attack. Threat actors can also strong-arm their victims into paying the ransom by wresting control of enough nodes to encrypt an entire private blockchain. As for criminal groups, we predict that 2024 will see the debut of the first criminal organizations running entirely on blockchains with smart contract or decentralized autonomous organizations (DAOs).

Countering future cyberthreats

Truly transformative technologies inevitably cross the threshold into standard business operations. But as they make that transition from novel to industry norm, newly adopted tools and solutions require additional layers of protection if they are to contribute to an enterprise’s expansion. So long as their security stance is anchored on preparedness and due diligence, organizations stand to reap the benefits from a growing IT stack without exposing themselves to unnecessary risks. To learn more about the key security considerations and challenges that lie ahead for organizations and end users, read our report, “Critical Scalability: Trend Micro Security Predictions for 2024.”

Source :
https://www.trendmicro.com/it_it/research/23/l/forward-momentum–key-learnings-from-trend-micro-s-security-pred.html

The Ultimate Guide to Password Best Practices: Guarding Your Digital Identity

Dirk Schrader
Published: November 14, 2023
Updated: November 24, 2023

In the wake of escalating cyber-attacks and data breaches, the ubiquitous advice of “don’t share your password” is no longer enough. Passwords remain the primary keys to our most important digital assets, so following password security best practices is more critical than ever. Whether you’re securing email, networks, or individual user accounts, following password best practices can help protect your sensitive information from cyber threats.

Read this guide to explore password best practices that should be implemented in every organization — and learn how to protect vulnerable information while adhering to better security strategies.

The Secrets of Strong Passwords

A strong password is your first line of defense when it comes to protecting your accounts and networks. Implement these standard password creation best practices when thinking about a new password:

  • Complexity: Ensure your passwords contain a mix of uppercase and lowercase letters, numbers, and special characters. It should be noted that composition rules, such as lowercase, symbols, etc. are no longer recommended by NIST — so use at your own discretion.
  • Length: Longer passwords are generally stronger — and usually, length trumps complexity. Aim for at least 6-8 characters.
  • Unpredictability: Avoid using common phrases or patterns. Avoid using easily guessable information like birthdays or names. Instead, create unique strings that are difficult for hackers to guess.

Handpicked related content:

Combining these factors makes passwords harder to guess. For instance, if a password is 8 characters long and includes uppercase letters, lowercase letters, numbers and special characters, the total possible combinations would be (26 + 26 + 10 + 30)^8. This astronomical number of possibilities makes it exceedingly difficult for an attacker to guess the password.

Of course, given NIST’s updated guidance on passwords, the best approach to effective password security is using a password manager — this solution will not only help create and store your passwords, but it will automatically reject common, easy-to-guess passwords (those included in password dumps). Password managers greatly increase security against the following attack types.

Password-Guessing Attacks

Understanding the techniques that adversaries use to guess user passwords is essential for password security. Here are some of the key attacks to know about:

Brute-Force Attack

In a brute-force attack, an attacker systematically tries every possible combination of characters until the correct password is found. This method is time-consuming but can be effective if the password is weak.

Strong passwords help thwart brute force attacks because they increase the number of possible combinations an attacker must try, making it unlikely they can guess the password within a reasonable timeframe.

Dictionary Attack

A dictionary attack is a type of brute-force attack in which an adversary uses a list of common words, phrases and commonly used passwords to try to gain access.

Unique passwords are essential to thwarting dictionary attacks because attackers rely on common words and phrases. Using a password that isn’t a dictionary word or a known pattern significantly reduces the likelihood of being guessed. For example, the string “Xc78dW34aa12!” is not in the dictionary or on the list of commonly used passwords, making it much more secure than something generic like “password.”

Dictionary Attack with Character Variations

In some dictionary attacks, adversaries also use standard words but also try common character substitutions, such as replacing ‘a’ with ‘@’ or ‘e’ with ‘3’. For example, in addition to trying to log on using the word “password”, they might also try the variant “p@ssw0rd”.

Choosing complex and unpredictable passwords is necessary to thwart these attacks. By using unique combinations and avoiding easily guessable patterns, you make it challenging for attackers to guess your password.

How Password Managers Enhance Security

Password managers are indispensable for securely storing and organizing your passwords. These tools offer several key benefits:

  • Security: Password managers store passwords and enter them for you, eliminating the need for users to remember them all. All users need to remember is the master password for their password manager tool. Therefore, users can use long, complex passwords as recommended by best practices without worrying about forgetting their passwords or resorting to insecure practices like writing passwords down or reusing the same password for multiple sites or applications.
  • Password generation: Password managers can generate a strong and unique password for user accounts, eliminating the need for individuals to come up with them.
  • Encryption: Password managers encrypt password vaults, ensuring the safety of data — even if it is compromised.
  • Convenience: Password managers enable users to easily access passwords across multiple devices.

When selecting a password manager, it’s important to consider your organization’s specific needs, such as support for the platforms you use, price, ease of use and vendor breach history. Conduct research and read reviews to identify the one that best aligns with your organization’s requirements. Some noteworthy options include Netwrix Password Secure, LastPass, Dashlane, 1Password and Bitwarden.

How Multifactor Authentication (MFA) Adds an Extra Layer of Security

Multifactor authentication strengthens security by requiring two or more forms of verification before granting access. Specifically, you need to provide at least two of the following authentication factors:

  • Something you know: The classic example is your password.
  • Something you have: Usually this is a physical device like a smartphone or security token.
  • Something you are: This is biometric data like a fingerprint or facial recognition.

MFA renders a stolen password worthless, so implement it wherever possible.

Password Expiration Management

Password expiration policies play a crucial role in maintaining strong password security. Using a password manager that creates strong passwords also has an influence on password expiration. If you do not use a password manager yet, implement a strategy to check all passwords within your organization; with a rise in data breaches, password lists (like the known rockyou.txt and its variations) used in brute-force attacks are constantly growing. The website haveibeenpawned.com offers a service to check whether a certain password has been exposed. Here’s what users should know about password security best practices related to password expiration:

  • Follow policy guidelines: Adhere to your organization’s password expiration policy. This includes changing your password when prompted and selecting a new, strong password that meets the policy’s requirements.
  • Set reminders: If your organization doesn’t enforce password expiration via notifications, set your own reminders to change your password when it’s due. Regularly check your email or system notifications for prompts.
  • Avoid obvious patterns: When changing your password, refrain from using variations of the previous one or predictable patterns like “Password1,” “Password2” and so on.
  • Report suspicious activity: If you notice any suspicious account activity or unauthorized password change requests, report them immediately to your organization’s IT support service or helpdesk.
  • Be cautious with password reset emails: Best practice for good password security means being aware of scams. If you receive an unexpected email prompting you to reset your password, verify its authenticity. Phishing emails often impersonate legitimate organizations to steal your login credentials.

Password Security and Compliance

Compliance standards require password security and password management best practices as a means to safeguard data, maintain privacy and prevent unauthorized access. Here are a few of the laws that require password security:

  • HIPAA (Health Insurance Portability and Accountability Act): HIPAA mandates that healthcare organizations implement safeguards to protect electronic protected health information (ePHI), which includes secure password practices.
  • PCI DSS (Payment Card Industry Data Security Standard): PCI DSS requires organizations that handle payment card data on their website to implement strong access controls, including password security, to protect cardholder data.
  • GDPR (General Data Protection Regulation): GDPR requires organizations that store or process the data of EU residents to implement appropriate security measures to protect personal data. Password security is a fundamental aspect of data protection under GDPR.
  • FERPA (Family Educational Rights and Privacy Act): FERPA governs the privacy of student education records. It includes requirements for securing access to these records, which involves password security.

Organizations subject to these compliance standards need to implement robust password policies and password security best practices. Failure to do so can result in steep fines and other penalties.

There are also voluntary frameworks that help organizations establish strong password policies. Two of the most well known are the following:

  • NIST Cybersecurity Framework: The National Institute of Standards and Technology (NIST) provides guidelines and recommendations, including password best practices, to enhance cybersecurity.
  • ISO 27001: ISO 27001 is an international standard for information security management systems (ISMSs). It includes requirements related to password management as part of its broader security framework.

Password Best Practices in Action

Now, let’s put these password security best practices into action with an example:

Suppose your name is John Doe and your birthday is December 10, 1985. Instead of using “JohnDoe121085” as your password (which is easily guessable), follow these good password practices:

  • Create a long, unique (and unguessable) password, such as: “M3an85DJ121!”
  • Store it in a trusted password manager.
  • Enable multi-factor authentication whenever available.

10 Password Best Practices

If you are looking to strengthen your security, follow these password best practices:

  • Remove hints or knowledge-based authentication: NIST recommends not using knowledge-based authentication (KBA), such as questions like “What town were you born in?” but instead, using something more secure, like two-factor authentication.
  • Encrypt passwords: Protect passwords with encryption both when they are stored and when they are transmitted over networks. This makes them useless to any hacker who manages to steal them.
  • Avoid clear text and reversible forms: Users and applications should never store passwords in clear text or any form that could easily be transformed into clear text. Ensure your password management routine does not use clear text (like in an XLS file).
  • Choose unique passwords for different accounts: Don’t use the same, or even variations, of the same passwords for different accounts. Try to come up with unique passwords for different accounts.
  • Use a password management: This can help select new passwords that meet security requirements, send reminders of upcoming password expiration, and help update passwords through a user-friendly interface.
  • Enforce strong password policies: Implement and enforce strong password policies that include minimum length and complexity requirements, along with a password history rule to prevent the reuse of previous passwords.
  • Update passwords when needed: You should be checking and – if the results indicate so – updating your passwords to minimize the risk of unauthorized access, especially after data breaches.
  • Monitor for suspicious activity: Continuously monitor your accounts for suspicious activity, including multiple failed login attempts, and implement account lockouts and alerts to mitigate threats.
  • Educate users: Conduct or partake in regular security awareness training to learn about password best practices, phishing threats, and the importance of maintaining strong, unique passwords for each account.
  • Implement password expiration policies: Enforce password expiration policies that require password changes at defined circumstances to enhance security.

How Netwrix Can Help

Adhering to password best practices is vital to safeguarding sensitive information and preventing unauthorized access.

Netwrix Password Secure provides advanced capabilities for monitoring password policies, detecting and responding to suspicious activity and ensuring compliance with industry regulations. With features such as real-time alerts, comprehensive reporting and a user-friendly interface, it empowers organizations to proactively identify and address password-related risks, enforce strong password policies, and maintain strong security across their IT environment.

Conclusion

In a world where cyber threats are constantly evolving, adhering to password management best practices is essential to safeguard your digital presence. First and foremost, create a strong and unique password for each system or application — remember that using a password manager makes it much easier to adhere to this critical best practice. In addition, implement multifactor authentication whenever possible to thwart any attacker who manages to steal your password. By following the guidelines, you can enjoy a safer online experience and protect your valuable digital assets.

Dirk Schrader

Dirk Schrader is a Resident CISO (EMEA) and VP of Security Research at Netwrix. A 25-year veteran in IT security with certifications as CISSP (ISC²) and CISM (ISACA), he works to advance cyber resilience as a modern approach to tackling cyber threats. Dirk has worked on cybersecurity projects around the globe, starting in technical and support roles at the beginning of his career and then moving into sales, marketing and product management positions at both large multinational corporations and small startups. He has published numerous articles about the need to address change and vulnerability management to achieve cyber resilience.

Source :
https://blog.netwrix.com/2023/11/15/password-best-practices/

How to Set Up a VLAN

Diego Asturias UPDATED: July 11, 2023


If you want to improve your network security and performance, learning how to set up a VLAN properly is all you need. Virtual LANs are powerful networking tools that allow you to segment your network into logical groups and isolate traffic between them.

In this post, we will go through the steps required to set up a VLAN in your network. We will configure two switches along with their interfaces and VLANs, respectively.

So, let’s dive in and learn how to set up VLANs and take your network to the next level.

Table of Contents

  • What is a VLAN?
  • Preparing for VLAN configuration
    • Our Lab
    • Network Diagram
  • How to set up a VLAN on a Switch?
    • Let’s connect to the Switch
    • Configure VLANs
    • Assign switch ports to VLANs
    • Configure trunk ports
  • Extra Configuration to Consider

What is a VLAN?

Before we go deep into learning how to set up a VLAN and provide examples, let’s understand the foundations of VLANs (or Virtual Local Area Networks).

In a nutshell, VLANs are logical groupings of devices that rely on Layer 2 addresses (MAC) for communication. VLANs are implemented to segment a physical network (or large Layer two broadcast domains) into multiple smaller logical networks (isolated broadcast domains).

Each VLAN behaves as a separate network with its own broadcast domain. VLANs help prevent broadcast storms (extreme amounts of broadcast traffic). They also help control traffic and overall improve network security and performance.

Preparing for VLAN configuration

Although VLANs are usually left for Layer 2 switches, in reality, any device (including routers and L3 switches) with switching capabilities and support of VLAN configuration should be an excellent fit for VLANs. In addition, VLANs are supported by different vendors, and since each vendor has a different OS and code, the way the VLANs are configured may slightly change.

Furthermore, you can also use specific software such as network diagramming and simulation to help you create network diagrams and test your configuration.

Our Lab

We will configure a popular Cisco (IOS-based) switch for demonstration purposes. We will use Boson NetSim (a network simulator for Cisco networking hardware and software) to run Cisco IOS simulated commands. This simulation is like you were configuring an actual Cisco switch or router.

Network Diagram

To further illustrate how to set up a VLAN, we will work on the following network diagram. We will configure two VLANs in two different switches. We will then configure each port on the switches connected to a PC. We will then proceed to configure the trunk port, which is vital for VLAN traffic.

Network Diagram

Network diagram details

  • S2 and S3 (Switch 2 and Switch 3) – Two Cisco L2 Switches connecting PCs at different VLANs (VLAN 10 and VLAN 20) via Fast Ethernet interfaces.
  • VLANs 10 and VLAN20. These VLANs configured in L2 switches (S2 and S3) create a logical grouping of PCs within the network. In addition, each VLAN gets a name, VLAN 10 (Engineering) and VLAN 20 (Sales).
  • PCs. PC1, PC2, PC3, and PC4 are each connected to a specific L2 switch.

How to set up a VLAN on a Switch?

So now that you know the VLAN configuration we will be using, including the number of switches, VLAN ID, VLAN name, and the devices or ports that will be part of the configuration, let’s start setting up the VLANs.

Note: VLAN configuration is just a piece of the puzzle. Switches also need proper interface configuration, authentication, access, etc. To learn how to correctly connect and configure everything else, follow the step-by-step guide on how to configure a Cisco Switch. 

a. Let’s connect to the switch

Inspect your hardware and find the console port. This port is usually located on the back of your Cisco switch. You can connect to the switch’s “console port” using a console cable (or rollover). Connect one end of the console cable to the switch’s console port and the other to your computer’s serial port.

Note: Obviously, not all modern computers have serial ports. Some modern switches come with a Mini USB port or AUX port to help with this. But if your hardware doesn’t have these ports, you can also connect to the switch port using special cables like an RJ-45 rollover cable, a Serial DB9-to-RJ-45 console cable, or a serial-to-USB adapter. 

  • Depending on your switch’s model, you can configure it via Command Line Interface (CLI) or Graphical User Interface (GUI). We will connect to the most popular user interface: The IOS-based CLI. 
  • To connect to your switch’s IOS-based CLI, you must use a terminal emulator on your computer, such as PuTTY or SecureCRT.
  • You’ll need to configure the terminal emulator to use the correct serial port and set the baud rate to 9600. Learn how to properly set these parameters in the Cisco switching configuration guide.
  • In the terminal emulator, press Enter to activate the console session. The Cisco switch should display a prompt asking for a username and password.
  • Enter your username and password to log in to the switch.
connect to the switch

b. Configure VLANs

According to our previously shown network diagram, we will need two VLANs; VLAN 10 and VLAN 20.

  • To configure Layer 2 switches, you need to enter the privileged EXEC mode by typing “enable” and entering the password (if necessary).
  • Enter the configuration mode by typing “configure terminal.”
  • Create the VLAN with “vlan <vlan ID>” (e.g., “vlan 10”).
  • Name the VLAN by typing “name <vlan name>” (e.g., “name Sales”).
  • Repeat these two steps for each VLAN you want to create.

Configuration on Switch 2 (S2)

S2# configure terminal

S2(config)# vlan 10

S2(config-vlan)# name Engineering

S2(config-vlan)# end

S2# configure terminal

S2(config)# vlan 20

S2(config-vlan)# name Sales

S2(config-vlan)# end

Use the “show vlan” command to see the configured VLANs. From the output below, you’ll notice that the two new VLANs 10 (Engineering) and 20 (Sales) are indeed configured and active but not yet assigned to any port.

Configure VLANs

Configuration on Switch 3 (S3)

S3# configure terminal

S3(config)# vlan 10

S3(config-vlan)# name Engineering

S3(config-vlan)# end

S3# configure terminal

S3(config)# vlan 20

S3(config-vlan)# name Sales

S3(config-vlan)# end

Configuration on Switch 3 (S3)

Note: From the output above, you might have noticed VLAN 1 (default), which is currently active and is assigned to all the ports in the switch. This VLAN, also known as native VLAN, is the default VLAN on most Cisco switches. It is used for untagged traffic on a trunk port. This means that all traffic that is not explicitly tagged with VLAN information will be sent to this default VLAN. 

Now, let’s remove those VLAN 1 tags from interfaces Fa0/2 and Fa0/3. Or in simple words let’s assign the ports to our newly created VLANs.

c. Assign switch ports to VLANs

In the previous section, we created our VLANs; now, we must assign the appropriate switch ports to the correct VLANs. The proper steps to assign switch ports to VLANs are as follows:

  • Enter configuration mode. Remember to run these commands under the configuration mode (configure terminal).
  • Assign ports to the VLANs by typing “interface <interface ID>” (e.g., “interface GigabitEthernet0/1”).
  • Configure the port as an access port by typing “switchport mode access”
  • Assign the port to a VLAN by typing “switchport access vlan <vlan ID>” (e.g., “switchport access vlan 10”).
  • Repeat these steps for each port you want to assign to a VLAN.

Let’s refer to a section of our network diagram

network diagram

Configuration on Switch 2 (S2)

S2(config)# interface fastethernet 0/2

S2(config-if)# switchport mode access

S2(config-if)# switchport access vlan 10

S2(config)# interface fastethernet 0/3

S2(config-if)# switchport mode access

S2(config-if)# switchport access vlan 20

Configuration on Switch 2 (S2)

Use the “show running-configuration” to see the new configuration taking effect on the interfaces.

Configuration on Switch 3 (S3)

S3(config)# interface fastethernet 0/2

S3(config-if)# switchport mode access

S3(config-if)# switchport access vlan 10

S3(config)# interface fastethernet 0/3

S3(config-if)# switchport mode access

S3(config-if)# switchport access vlan 20

Configuration on Switch 3 (S3)

A “show running-configuration” can show you our configuration results.

show running-configuration

d. Configure trunk ports

Trunk ports are a type of switch port mode (just like access) that perform essential tasks like carrying traffic for multiple VLANs between switches, tagging VLAN traffic, supporting VLAN management, increasing bandwidth efficiency, and allowing inter-VLAN routing.

If we didn’t configure trunk ports between our switches, the PCs couldn’t talk to each other on different switches, even if they were on the same VLAN.

Here’s a step by step to configuring trunk ports

  • Configure a trunk port to carry traffic between VLANs by typing “interface <interface ID>” (e.g., “interface FastEthernet0/12”).
  • Set the trunk encapsulation method (dot1q). The IEEE 802.1Q (dot1q) trunk encapsulation method is the standard tagging Ethernet frames with VLAN information.
  • Configure the port as a trunk port by typing “switchport mode trunk”.
  • Repeat the steps for each trunk port you want to configure.

Note (on redundant trunk links): To keep our article simple, we will configure one trunk link. However, keep in mind that any good network design (including trunk links) would need redundancy. One trunk link between switches is not an optimal redundant solution for networks on production. To add redundancy, we recommend using EtherChannel to bundle physical links together and configure the logical link as a trunk port. You can also use Spanning Tree Protocol (STP) by using the “spanning-tree portfast trunk” command.

Let’s refer to our network diagram

network diagram

Configuration on Switch 2 (S2)

S2(config)# interface fastethernet 0/12

S2(config-if)# switchport trunk encapsulation dot1q

S2(config-if)# switchport mode trunk

S2(config-if)# exit

Configuration on Switch 2 (S2)

Configuration on Switch 3 (S3)

S3(config)# interface fastethernet 0/24

S3(config-if)# switchport trunk encapsulation dot1q

S3(config-if)# switchport mode trunk

S3(config-if)# exit

Configuration on Switch 3 (S3)

Note: You can use different types of trunk encapsulation such as dot1q and ISL, just make sure both ends match the type of encapsulation.

Extra Configuration to Consider

Once you finish with VLAN and trunk configuration, remember to test VLAN connectivity between PCs, you can do this by configuring the proper IP addressing and doing a simple ping. Below are other key configurations related to your new VLANs that you might want to consider.

a. Ensure all your interfaces are up and running

To ensure that your interfaces are not administratively down, issue a “no shutdown” (or ‘no shut’) command on all those newly configured interfaces. Additionally, you can also use the “show interfaces” to see the status of all the interfaces.

no shutdown command

b. (Optional) enable inter-VLAN

VLANs, as discussed earlier, separate broadcast domains (Layer 2) — they do not know how to route IP traffic because Layer 2 devices like switches can’t accept IP address configuration on their interfaces. To allow inter-VLAN communication (PCs on one VLAN communicate with PCs on another VLAN), you would need to use a Layer 3 device (a router or L3 switch) to route traffic.

There are three ways to implement inter-VLAN routing: an L3 router with multiple Ethernet interfaces, an L3 router with one router interface using subinterfaces (known as Router-On-a-Stick), and an L3 switch with SVI.

We will show a step-by-step on how to configure Router-On-a-Stick for inter-VLAN communications. 

  • Connect the router to one switch via a trunk port.
  • Configure subinterfaces on the router for each VLAN (10 and 20 in our example). To configure subinterfaces, use the “interface” command followed by the VLAN number with a period and a subinterface number (e.g., “interface FastEthernet0/0.10” for VLAN 10). For example, to configure subinterfaces for VLANs 10 and 20, you would use the following commands:

> router(config)# interface FastEthernet 0/0

> router(config-if)# no shutdown

> router(config-if)# interface FastEthernet 0/0.10

> router(config-subif)# encapsulation dot1Q 10

> router(config-subif)# ip address 192.168.10.1 255.255.255.0

> router(config-subif)# interface FastEthernet 0/0.20

> router(config-subif)# encapsulation dot1Q 20

> router(config-subif)# ip address 192.168.20.1 255.255.255.0

  • Configure a default route on the router using the “ip route” command. This is a default route to the Internet through a gateway at IP address 192.168.1.1. For example:

> router(config)# ip route 0.0.0.0 0.0.0.0 192.168.1.1

c. Configure DHCP Server

To automatically assign IP addresses to devices inside the VLANs, you will need to configure a DHCP server. Follow these steps:

  1. The DHCP server should also be connected to the VLAN.
  2. Configure the DHCP server to provide IP addresses to devices in the VLAN.
  3. Configure the router to forward DHCP requests to the DHCP server by typing “ip helper-address <ip address>” (e.g., “ip helper-address 192.168.10.2”).

Final Words

By following the steps outlined in this post, you can easily set up a VLAN on your switch and effectively segment your network. Keep in mind to thoroughly test your VLAN configuration and consider additional configuration options to optimize your network for your specific needs.

With proper setup and configuration, VLANs can greatly enhance your network’s capabilities and 10x increase its performance and security.

Source :
https://www.pcwdld.com/how-to-set-up-a-vlan/

Electric Power System Cybersecurity Vulnerabilities

By: Mayumi Nishimura
October 06, 2023
Read time: 4 min (1096 words)

Digitalization has changed the business environment of the electric power industry, exposing it to various threats. This webinar will help you uncover previously unnoticed threats and develop countermeasures and solutions.

The Electric utility industry is constantly exposed to various threats, including physical threats and sophisticated national-level cyber attacks. It has been an industry that has focused on security measures. But in the last few years, power system changes have occurred. As OT becomes more networked and connected to IT, the number of interfaces between IT and OT increases, and various cyber threats that have not surfaced until now have emerged.

Trend Micro held a webinar to discuss these changes in the situation, what strategies to protect your company’s assets from the latest cyber threats, and the challenges and solutions in implementing these strategies.

This blog will provide highlights from the webinar and share common challenges in the power industry that emerged from the survey. We hope that this will be helpful to cybersecurity directors in the Electric utility industry who recognize the need for consistent security measures for IT and OT but are faced with challenges in implementing them.

Click here to watch the On-demand Webinar

Vulnerabilities in Electric Power Systems

In the webinar, we introduced examples of threats from “Critical Infrastructures Exposed and at Risk: Energy and Water Industries” conducted by Trend Micro. The main objective of this study was to demonstrate how easy it is to discover and exploit OT assets in the water and energy sector using basic open-source intelligence (OSINT) techniques. As a result of the investigation, it was possible to access the HMI remotely, view the database containing customer data, and control the start and stop of the turbine.

Figure1. Interoperability and Connected Resources
Figure1. Interoperability and Connected Resources

Cyberattacks Against Electric Power

Explained the current cyberattacks on electric power companies. Figure 2 shows the attack surface (attack x digital assets), attack flow, and ultimately, possible damage in IT and OT of energy systems.

An example of an attack surface in an IT network is an office PC that exploits VPN vulnerabilities. If attackers infiltrate the monitoring system through a VPN, they can seize privileges and gain unauthorized access to OT assets such as the HMI. There is also the possibility of ransomware being installed.

A typical attack surface in an OT network is a PC for maintenance. If this terminal is infected with a virus and a maintenance person connects to the OT network, the virus may infect the OT network and cause problems such as stopping the operation of the OT equipment.

To protect these interconnected systems, it is necessary to review cybersecurity strategies across IT, OT, and different technology domains.

Figure 2. Attack Surface Includes Both IT and OT
Figure 2. Attack Surface Includes Both IT and OT

Solutions

We have organized the issues from People, Process, and Technology perspectives when reviewing security strategies across different technology domains such as IT and OT.

One example of people-related issues is labor shortages and skills gaps. The reason for the lack of skills is that IT security personnel are not familiar with the operations side, and vice versa. In the webinar, we introduced three ideas for approaches to solving these people’s problems.

The first is improving employee security awareness and training. From management to employees, we must recognize the need for security and work together. Second, to understand the work of the IT and OT departments, we recommend job rotation and workshops for mutual understanding. The third is documentation and automation of incident response. Be careful not to aim for automation. First, it is important to identify unnecessary tasks and reduce work. After that, we recommend automating the necessary tasks. We also provide examples of solutions for Process and Technology issues in the webinar.

 Figure 3. Need Consistent Cybersecurity across IT and OT
Figure 3. Need Consistent Cybersecurity across IT and OT

Finally, we introduced Unified Kill Chain as an effective approach. It extends and combines existing models such as Lockheed Martin’s Cyber KillChain® and MITER’s ATT&CK™ to show an attacker’s steps from initiation to completion of a cyber attack. The attacker will not be able to reach their goal unless all of these steps are completed successfully, but the defender will need to break this chain at some point, which will serve as a reference for the defender’s strategy. Even when attacks cross IT and OT, it is possible to use this approach as a reference to evaluate the expected attacks and the current security situation and take appropriate security measures in response.

Figure 4. Unified Kill Chain
Figure 4. Unified Kill Chain

The Webinar’s notes

To understand the situation and thoughts of security leaders in the Electric utility industry, we have included some of the survey results regarding this webinar. The webinar, held on June 29th, was attended in real time by nearly 100 people working in the energy sector and engaged in cybersecurity-related work.

When asked what information they found most helpful, the majority of survey respondents selected “consistent cybersecurity issues and solutions across IT and OT,” indicating that “consistent cybersecurity issues and solutions across IT and OT.” I am glad that I was able to help those who feel that there are issues in implementing countermeasures.

 Chart 1. Question What was the most useful information for you from today's seminar? (N=28)
Chart 1. Question What was the most useful information for you from today’s seminar? (N=28)

Also, over 90% of respondents answered “Agree” when asked if they needed consistent cybersecurity across IT and OT. Among those who chose “Agree”, 39% answered that they have already started some kind of action, indicating the consistent importance of cybersecurity in IT and OT.

 Chart 2. Do you agree with Need Consistent Cybersecurity across IT and OT? (N=28)
Chart 2. Do you agree with Need Consistent Cybersecurity across IT and OT? (N=28)

Lastly, I would like to share the results of a question asked during webinar registration about what issues people in this industry think about OT security. Number one was siloed risk and threat visibility, and number two was legacy system support. The tie for 3rd place was due to a lack of preparation for attacks across different NWs and lack of staff personnel/skills. There is a strong sense of challenges in the visualization of risks and threats, other organizational efforts, and technical countermeasures.

 Chart 3. Please select all of the challenges you face in thinking about OT cybersecurity. (N=55 multiple choice)
Chart 3. Please select all of the challenges you face in thinking about OT cybersecurity. (N=55 multiple choice)

Resources

The above is a small excerpt from the webinar. We recommend watching the full webinar video below if you are interested in the power industry’s future cybersecurity strategy.

Click here to watch the On-demand Webinar

In addition, Trend Micro reports introduced in the webinar and other reference links related to the energy industry can be accessed below.

Tech Paper
ICS/OT Security for the Electric Utility
Critical Infrastructures Exposed and at Risk: Energy and Water Industries

VIDEO
Electric utilities need to know cross domain attack

Blog
Electricity/Energy Cybersecurity: Trends & Survey Response

Source :
https://www.trendmicro.com/it_it/research/23/j/electric-power-system-cybersecurity-vulnerabilities.html