High Severity Vulnerability Patched in Download Manager Plugin

On July 8, 2022 the Wordfence Threat Intelligence team initiated the responsible disclosure process for a vulnerability we discovered in “Download Manager,” a WordPress plugin that is installed on over 100,000 sites. This flaw makes it possible for an authenticated attacker to delete arbitrary files hosted on the server, provided they have access to create downloads. If an attacker deletes the wp-config.php file they can gain administrative privileges, including the ability to execute code, by re-running the WordPress install process.

Wordfence PremiumWordfence Care, and Wordfence Response received a firewall rule on July 8, 2022 to provide protection against any attackers that try to exploit this vulnerability. Wordfence Free users will receive this same protection 30 days later on August 7, 2022.

We attempted to reach out to the developer on July 8, 2022, the same day we discovered the vulnerability. We never received a response so we sent the full details to the WordPress.org plugins team on July 26, 2022. The plugin was fully patched the next day on July 27, 2022.

We strongly recommend ensuring that your site has been updated to the latest patched version of “Download Manager”, which is version 3.2.53 at the time of this publication.

Description: Authenticated (Contributor+) Arbitrary File Deletion
Affected Plugin: Download Manager
Plugin Slug: download-manager
Plugin Developer: W3 Eden, Inc.
Affected Versions: <= 3.2.50
CVE ID: CVE-2022-2431
CVSS Score: 8.8 (High)
Researcher/s: Chloe Chamberland
Fully Patched Version: 3.2.51

Download Manager is a popular WordPress plugin designed to allow site content creators to share downloadable files that are stored as posts. These downloads can be displayed on the front-end of the WordPress site for users to download. Unfortunately, vulnerable versions of the plugin contain a bypass in how the downloadable file is stored and subsequently deleted upon post deletion that make it possible for attackers to delete arbitrary files on the server.

More specifically, vulnerable versions of the plugin register the deleteFiles() function that is called via the before_delete_post hook. This hook is triggered right before a post has been deleted and its intended functionality in this case is to delete any files that may have been uploaded and associated with a “download” post.

At first glance this looks like a relatively safe functionality assuming the originally supplied file path is validated. Unfortunately, however, that is not the case as the path to the file saved with the “download” post is not validated to ensure it was a safe file type or in a location associated with a “download” post. This means that a path to an arbitrary file with any extension can be supplied via the file[files][] parameter when saving a post and that would be the file associated with the “download” post. On many configurations an attacker could supply a path such as /var/www/html/wp-config.php that would associate the site’s WordPress configuration file with the download post.

32add_action('before_delete_post', array($this, 'deleteFiles'), 10, 2);
979899100101102103104functiondeleteFiles($post_id, $post){    $files= WPDM()->package->getFiles($post_id, false);    foreach($filesas$file) {        $file= WPDM()->fileSystem->locateFile($file);        @unlink($file);    }}

When the user goes to permanently delete the “download” post the deleteFiles() function will be triggered by the before_delete_post hook and the supplied file will be deleted, if it exists.

This can be used by attackers to delete critical files hosted on the server. The wp-config.php file in particular is a popular target for attackers as deletion of this file would disconnect the existing database from the compromised site and allow the attacker to re-complete the initial installation process and connect their own database to the site. Once a database is connected, they would have access to the server and could upload arbitrary files to further infect the system.

Demonstrating site reset upon download post deletion.

This vulnerability requires contributor-level access and above to exploit, so it serves as an important reminder to make sure you don’t provide contributor-level and above access to untrusted users. It’s also important to validate that all users have strong passwords to ensure your site won’t subsequently be compromised as a result of a vulnerability like this due to an unauthorized actor gaining access via a weak or compromised password.


  • July 8, 2022 – Discovery of the Arbitrary File Deletion Vulnerability in the “Download Manager” plugin. A firewall rule is released to Wordfence PremiumWordfence Care, and Wordfence Response users. We attempt to initiate contact with the developer.
  • July 26, 2022 – After no response from the developer, we send the full disclosure details to the WordPress plugins team. They acknowledge the report and make contact with the developer.
  • July 27, 2022. – A fully patched version of the plugin is released as version 3.2.51.
  • August 7, 2022 – Wordfence free users receive the firewall rule.


In today’s post, we detailed a flaw in the “Download Manager” plugin that makes it possible for authenticated attackers to delete arbitrary files hosted on an affected server, which could lead to remote code execution and ultimately complete site compromise. This flaw has been fully patched in version 3.2.51.

We recommend that WordPress site owners immediately verify that their site has been updated to the latest patched version available, which is version 3.2.53 at the time of this publication.

Wordfence PremiumWordfence Care, and Wordfence Response received a firewall rule on July 8, 2022 to provide protection against any attackers trying to exploit this vulnerability. Wordfence Free users will receive this same protection 30 days later on August 7, 2022.

If you believe your site has been compromised as a result of this vulnerability or any other vulnerability, we offer Incident Response services via Wordfence Care. If you need your site cleaned immediately, Wordfence Response offers the same service with 24/7/365 availability and a 1-hour response time. Both these products include hands-on support in case you need further assistance.

Source :

Better Together: AWS and Trend Micro

There’s a very good reason why AWS remains a leader in cloud computing. While many providers describe themselves as “customer obsessed,” few come close to our long-time partner in the lengths it goes to earn and retain the trust of its customers.

AWS starts with the customer and works backwards. That means the vast majority of its feature enhancements and new services are directly driven from their input. The latest is Amazon GuardDuty Malware Protection.

This threat detection tool, which will work closely with Trend Micro cloud solutions, will provide another valuable layer of defense in our fight against a shared adversary.

Shining a light on an expanding attack surface

Spurred by a drive for greater cost efficiency and business agility, global organizations are migrating to the cloud in droves. Gartner predicts the worldwide market for public cloud services will reach almost $495bn this year, and grow by over 21% in 2023. In this environment, security remains a persistent concern for cloud builders, because if not properly managed, investments can increase the digital attack surface.

According to recent Trend Micro research, many global organizations are already struggling to securely manage their cloud assets. We found that 73% of IT and business leaders are concerned with the size of their attack surface, and 43% claim it is “spiralling out of control.” Cloud is the area where most respondents say they have least insight. They want their cloud providers to do more—for example by building enhanced detection into their systems, to complement third-party tools.

That’s part of the reason why AWS built Amazon GuardDuty Malware Protection was built. This new feature is triggered by detection of known malicious signatures across the cloud network. Based on this detection, the service scans the associated Amazon EBS storage environment for malware and reports any findings to AWS Security Hub. Open APIs from here link to products like Trend Micro Cloud One to enhance existing detection and response efforts.

Better together

Trend Micro and AWS have been working closely together for over a decade now, and this latest announcement represents another exciting stage in the journey. Customers will welcome AWS native threat detection as a complement to their Trend Micro Cloud One capabilities, delivering a comprehensive range of features to secure the hybrid cloud. Once they add the AWS tool to our virtual patching, vulnerability scanning, lateral movement detection, posture management and other capabilities, joint customers will have a powerful set of integrated offerings to deliver simple, all-in-one cloud security and compliance.

In addition, this move from AWS validates our XDR strategy, which is focused on using as many data sources as possible to enhance detection and response. The bottom line is that security takes a village. Customers, cloud providers and security vendors have a shared responsibility to work together as the threat landscape continues to evolve. That’s what we’ll continue to do, expanding and deepening our strategic partnerships with AWS and other providers in a collective effort to make the digital world safer.

Source :

Juniper Releases Patches for Critical Flaws in Junos OS and Contrail Networking

Juniper Networks has pushed security updates to address several vulnerabilities affecting multiple products, some of which could be exploited to seize control of affected systems.

The most critical of the flaws affect Junos Space and Contrail Networking, with the tech company urging customers to release versions 22.1R1 and 21.4.0, respectively.

Chief among them is a collection of 31 bugs in the Junos Space network management software, including CVE-2021-23017 (CVSS score: 9.4) that could result in a crash of vulnerable devices or even achieve arbitrary code execution.

“A security issue in nginx resolver was identified, which might allow an attacker who is able to forge UDP packets from the DNS server to cause 1-byte memory overwrite, resulting in worker process crash or potential other impact,” the company said.

The same security vulnerability has also been remediated in Northstar Controller in versions 5.1.0 Service Pack 6 and 6.2.2.

Additionally, the networking equipment maker cautioned of multiple known issues exist in CentOS 6.8 that’s shipped with Junos Space Policy Enforcer before version 22.1R1. As mitigations, the version of CentOS packed with the Policy Enforcer component has been upgraded to 7.9.

Also listed are 166 security vulnerabilities impacting its Contrail Networking product that impact all versions prior to 21.4.0 and have been collectively given the maximum CVSS score of 10.0.

“Multiple vulnerabilities in third party software used in Juniper Networks Contrail Networking have been resolved in release 21.4.0 by upgrading the Open Container Initiative (OCI)-compliant Red Hat Universal Base Image (UBI) container image from Red Hat Enterprise Linux 7 to Red Hat Enterprise Linux 8,” it noted in an advisory.

Source :

5 Key Things We Learned from CISOs of Smaller Enterprises Survey

New survey reveals lack of staff, skills, and resources driving smaller teams to outsource security.

As business begins its return to normalcy (however “normal” may look), CISOs at small and medium-size enterprises (500 – 10,000 employees) were asked to share their cybersecurity challenges and priorities, and their responses were compared the results with those of a similar survey from 2021.

Here are the 5 key things we learned from 200 responses:

— Remote Work Has Accelerated the Use of EDR Technologies

In 2021, 52% of CISOs surveyed were relying on endpoint detection and response (EDR) tools. This year that number has leapt to 85%. In contrast, last year 45% were using network detection and response (NDR) tools, while this year just 6% employ NDR. Compared to 2021, double the number of CISOs and their organizations are seeing the value of extended detection and response (XDR) tools, which combine EDR with integrated network signals. This is likely due to the increase in remote work, which is more difficult to secure than when employees work within the company’s network environment.

— 90% of CISOs Use an MDR Solution

There is a massive skills gap in the cybersecurity industry, and CISOs are under increasing pressure to recruit internally. Especially in small security teams where additional headcount is not the answer, CISOs are turning to outsourced services to fill the void. In 2021, 47% of CISOs surveyed relied on a Managed Security Services Provider (MSSP), while 53% were using a managed detection and response (MDR) service. This year, just 21% are using an MSSP, and 90% are using MDR.

— Overlapping Threat Protection Tools are the #1 Pain Point for Small Teams

The majority (87%) of companies with small security teams struggle to manage and operate their threat protection products. Among these companies, 44% struggle with overlapping capabilities, while 42% struggle to visualize the full picture of an attack when it occurs. These challenges are intrinsically connected, as teams find it difficult to get a single, comprehensive view with multiple tools.

— Small Security Teams Are Ignoring More Alerts

Small security teams are giving less attention to their security alerts. Last year 14% of CISOs said they look only at critical alerts, while this year that number jumped to 21%. In addition, organizations are increasingly letting automation take the wheel. Last year, 16% said they ignore automatically remediated alerts, and this year that’s true for 34% of small security teams.

— 96% of CISOs Are Planning to Consolidate Security Platforms

Almost all CISOs surveyed have consolidation of security tools on their to-do lists, compared to 61% in 2021. Not only does consolidation reduce the number of alerts – making it easier to prioritize and view all threats – respondents believe it will stop them from missing threats (57%), reduce the need for specific expertise (56%), and make it easier to correlate findings and visualize the risk landscape (46%). XDR technologies have emerged as the preferred method of consolidation, with 63% of CISOs calling it their top choice.

Download 2022 CISO Survey of Small Cyber Security Teams to see all the results.

Source :

Spectre and Meltdown Attacks Against OpenSSL

The OpenSSL Technical Committee (OTC) was recently made aware of several potential attacks against the OpenSSL libraries which might permit information leakage via the Spectre attack.1 Although there are currently no known exploits for the Spectre attacks identified, it is plausible that some of them might be exploitable.

Local side channel attacks, such as these, are outside the scope of our security policy, however the project generally does introduce mitigations when they are discovered. In this case, the OTC has decided that these attacks will not be mitigated by changes to the OpenSSL code base. The full reasoning behind this is given below.

The Spectre attack vector, while applicable everywhere, is most important for code running in enclaves because it bypasses the protections offered. Example enclaves include, but are not limited to:

The reasoning behind the OTC’s decision to not introduce mitigations for these attacks is multifold:

  • Such issues do not fall under the scope of our defined security policy. Even though we often apply mitigations for such issues we do not mandate that they are addressed.
  • Maintaining code with mitigations in place would be significantly more difficult. Most potentially vulnerable code is extremely non-obvious, even to experienced security programmers. It would thus be quite easy to introduce new attack vectors or fix existing ones unknowingly. The mitigations themselves obscure the code which increases the maintenance burden.
  • Automated verification and testing of the attacks is necessary but not sufficient. We do not have automated detection for this family of vulnerabilities and if we did, it is likely that variations would escape detection. This does not mean we won’t add automated checking for issues like this at some stage.
  • These problems are fundamentally a bug in the hardware. The software running on the hardware cannot be expected to mitigate all such attacks. Some of the in-CPU caches are completely opaque to software and cannot be easily flushed, making software mitigation quixotic. However, the OTC recognises that fixing hardware is difficult and in some cases impossible.
  • Some kernels and compilers can provide partial mitigation. Specifically, several common compilers have introduced code generation options addressing some of these classes of vulnerability:
    • GCC has the -mindirect-branch-mfunction-return and -mindirect-branch-register options
    • LLVM has the -mretpoline option
    • MSVC has the /Qspectre option

  1. Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel, “Axiomatic Hardware-Software Contracts for Security,” in Proceedings of the 49th ACM/IEEE International Symposium on Computer Architecture (ISCA), 2022.

Posted by OpenSSL Technical Committee May 13th, 2022 12:00 am

Source :

Which Altaro directories do I need to exclude from AntiVirus software?

If you are running an AntiVirus software or a file-scanning software, we do recommend excluding a couple of directories used by Altaro in order to ensure that it’s operation remains undisrupted.

We do recommend excluding the following:

  • all onsite backup drive directories
  • all offsite backup drive directories
  • C:\ProgramData\Altaro on the Altaro Management and on the Hyper-V hosts
  • C:\Program Files\Altaro on the Altaro Management and on the Hyper-V hosts

Also, if you relocated the Altaro temporary files ensure to exclude that directory as well.

Source :

Securing Port 443: The Gateway To A New Universe

At Wordfence our business is to secure over 4 million WordPress websites and keep them secure. My background is in network operations, and then I transitioned into software development because my ops role was at a scale where I found myself writing a lot of code. This led me to founding startups, and ultimately into starting the cybersecurity business that is Wordfence. But I’ve maintained that ops perspective, and when I think about securing a network, I tend to think of ports.

You can find a rather exhaustive list of TCP and UDP ports on Wikipedia, but for the sake of this discussion let’s focus on a few of the most popular ports:

  • 20 and 21 – FTP
  • 22 – SSH
  • 23 – (Just kidding. You better not be running Telnet)
  • 25 – Email via SMTP
  • 53 – DNS
  • 80 – Unencrypted Web
  • 110 – POP3 (for older email clients)
  • 443 – Web encrypted via TLS
  • 445 – Active Directory or SMB sharing
  • 993 – IMAP (for email clients)
  • 3306 – MySQL
  • 6378 – Redis
  • 11211 – Memcached

If you run your eye down this list, you’ll notice something interesting. The options available to you for services to run on most of these ports are quite limited. Some of them are specific to a single application, like Redis. Others, like SMTP, provide a limited number of applications, either proprietary or open-source. In both cases, you can change the configuration of the application, but it’s rare to write a custom application on one of those ports. Except port 443.

In the case of port 443 and port 80, you have a limited range of web servers listening on those ports, but users are writing a huge range of bespoke applications on port 443, and have a massive selection of applications that they can host on that port. Everything from WordPress to Drupal to Joomla, and more. There are huge lists of Content Management Systems.

Not only do you have a wide range of off-the-shelf web applications that you can run on port 443 or (if you’re silly) port 80, but you also have a range of languages they might be coded in, or in which you can code your own web application. Keep in mind that the web server, in this case, is much like an SSH or IMAP server in that it is listening on the port and handling connections, but the difference is that it is handing off execution to these languages, their various development frameworks, and ultimately the application that a developer has written to handle the incoming request.

With SSH, SMTP, FTP, IMAP, MySQL, Redis and most other services, the process listening on the port is the process that handles the request. With web ports, the process listening on the port delegates the incoming connection to another application, usually written in another language, running at the application layer, that is part of the extremely large and diverse ecosystem of web applications.

This concept in itself – that the applications listening on the web ports are extremely diverse and either home-made or selected from a large and diverse ecosystem – presents unique security challenges. In the case of, say, Redis, you might worry about running a secure version of Redis and making sure it is not misconfigured. In the case of a web server, you may have 50 application instances written in two languages from five different vendors all on the same port, which all need to be correctly configured, have their patch levels maintained, and be written using secure coding practices.

As if that doesn’t make the web ports challenging enough, they are also, for the most part, public. Putting aside internal websites for the moment, perhaps the majority of websites derive their value from making services available to users on the Internet by being public-facing. If you consider the list of ports I have above, or in the Wikipedia article I linked to, many of those ports are only open on internal networks or have access to them controlled if they are external. Web ports for public websites, by their very nature, must be publicly accessible for them to be useful. There are certain public services like SMTP or DNS, but as I mentioned above, the server that is listening on the port is the server handling the request in these cases.

A further challenge when securing websites is that often the monetary and data assets available to an attacker when compromising a website are greater than the assets they may gain compromising a corporate network. You see this with high volume e-commerce websites where a small business is processing a large number of web-based e-commerce transactions below $100. If the attacker compromises their corporate network via leaked AWS credentials, they may gain access to the company bank account and company intellectual property, encrypt the company’s data using ransomware, or perhaps even obtain customer PII. But by compromising the e-commerce website, they can gain access to credit card numbers in-flight, which are far more tradeable, and where the sum of available credit among all cards is greater than all the assets of the small business, including the amount of ransom that business might be able to pay.

Let’s not discount breaches like the 2017 Equifax breach that compromised 163 million American, British and Canadian citizen’s records. That was extremely valuable to the attackers. But targets like this are rare, and the Web presents a target-rich environment. Which is the third point I’d like to make in this post. While an organization may run a handful of services on other ports, many companies – with hosting providers in particular – run a large number of web applications. And an individual or company is far more likely to have a service running on a web port than any other port. Many of us have websites, but how many of us run our own DNS, SMTP, Redis, or another service listening on a port other than 80 or 443? Most of us who run websites also run MySQL on port 3306, but that port should not be publicly accessible if configured correctly.

That port 443 security is different has become clear to us at Wordfence over the years as we have tracked and cataloged a huge number of malware variants, web vulnerabilities, and a wide range of tactics, techniques, and procedures (TTP) that attackers targeting web applications use. Most of these have no relationship with the web server listening on port 443, and nearly all of them have a close relationship with the web application that the web server hands off control to once communication is established.

My hope with this post has been to catalyze a different way of thinking about port 443 and that other insecure port (80) we all hopefully don’t use. Port 443 is not just another service. It is, in fact, the gateway to a whole new universe of programming languages, dev frameworks, and web applications.

In the majority of cases, the gateway to that new universe is publicly accessible.

Once an attacker passes through that gateway, a useful way to think about the web applications hosted on the server is that each application is its own service that needs to have its patch level maintained, needs to be configured correctly, and should be removed if it is not in use to reduce the available attack surface.

If you are a web developer you may already think this way, and if anything, you may be guilty of neglecting services on ports other than port 80 or 443. If you are an operations engineer, or an analyst working in a SOC protecting an enterprise network, you may be guilty of thinking about port 443 as just another port you need to secure.

Think of port 443 as a gateway to a new universe that has no access control, with HTTPS providing easy standardized access, and with a wide range of diverse services running on the other side, that provide an attacker with a target and asset-rich environment.

Footnote: We will be exhibiting at Black Hat in Las Vegas this year at booth 2514 between the main entrance and Innovation City. Our entire team of over 30 people will be there. We’ll have awesome swag, as always. Come and say hi! Our team will also be attending DEF CON immediately after Black Hat.

Written by Mark Maunder – Founder and CEO of Wordfence. 

Source :

An Analysis of Azure Managed Identities Within Serverless Environments

We examine Azure’s Managed Identities service and its security capability in a threat model as developers’ go-to feature for managing secrets and credentials.

Authentication and authorization play crucial parts when securing resources. Authentication verifies that the service or user accessing the secured resources has provided valid credentials, while authorization makes sure that they have sufficient permissions for the request itself.

Broken Access Control is listed among the top 10 OWASP prevalent web application issues from 2017 to 2021, and we have previously written about the importance of secrets management used for authentication. This occurs when an unauthorized user can access, modify, delete, or perform actions within an application or system that is outside the set permissions or policies, malicious or unintended. Broken access control has become the number one concern in the organization’s list, and in this article, we discuss Azure’s Managed Identities service inside the cloud service provider (CSP) to tackle the said web application issue.

Managing system and user identities

Managed Identities for Azure allows users to authenticate certain services available within the CSP. This is done by providing the cloud application a token used for service authentication. We distinguish between two types of managed identities: system-assigned identities and user-assigned identities. To differentiate, system-assigned identities are restricted from one to the resource, which means that different user roles can’t be applied to the same resource. On the other hand, user-managed identities solve this problem and we can imagine them as user roles.

Figure 1. Usage of Managed Identities

For instance, we want to use an Azure storage account within a serverless application for saving our application records. For this purpose, we decided to use a system-managed identity.

This practically means:

  • Enable managed identities inside a serverless function
  • Grant serverless functions the necessary permissions for storage account access

Figure 2. Enabling managed identities in a serverless function

After that, we can start using the managed identity for authentication to the storage account. In the following sections, we will look at how the managed identities interface is technically implemented within the serverless environment and the corresponding security implications based on our recent research.

Managing identities in the serverless environment

To make it work, the serverless environment runs a special .NET application process named “dotnet TokenServiceContainer.dll.” This process listens on a localhost and port 8081 to accept HTTP requests. The endpoint for requesting a token is http://localhost:8081/msi/token, and the required parameters specifies that the API version used and resource identifier for which the service requests the token. Optionally, it uses “client_id,” which is a parameter used when a managed user identity token is requested. The request also needs a specific X-IDENTITY-HEADER, and the needed value is present inside IDENTITY_HEADER or an MSI_SECRET environmental variable.

After receiving this token request, the request is delegated to the endpoint within the CSP (another service) and provides the requested token. The endpoint is publicly available and is a part of the *.identity.azure.net subdomain based on the region of the serverless application. By design and public access to the endpoint the service requires authentication, and this is done using a X509 client certificate. This certificate is unique to the specific application ID (meaning the serverless function has a one-to-one pairing of certificate and app ID) and valid for 180 days. If the request is successful, it returns a JSON response with a bearer token valid for one day.

Figure 3. Managed identities inside serverless environments

From that perspective, the security standard is high, which is expected from a CSP service. However, there is one hidden danger and that is the certificate itself. The certificate can be leaked by leaking environmental variables.

The Managed Service Identity (MSI) certificate is part of the encrypted container context, which can be accessed inside using a URL-specified CONTAINER_START_CONTEXT_SAS_URI and decrypted using the CONTAINER_ENCRYPTION_KEY variable. Once the certificate is leaked, it can be used to obtain the token outside the scope of CSP services and successfully used for publicly available service endpoints as it would be called from the CSP service.

Threat model and scenario

Figure 4. PoC of getting token using leaked environmental variables from Managed Identity service

At this point, we should emphasize that to be able to abuse the retained token, a certain factor (or malicious actor) must first leak these environmental variables and there must be an assigned role within the requested resource, the pre-requisites being the identities enabled and the role set for the application. This means there are no default roles unless explicitly specified within the CSP settings.

However, as this example of potential compromise shows from a gap leaking environmental variables of a Linux endpoint, using environmental variables for storing sensitive information is not a valid secure approach as they are by default inherited into the child process. Considering that the information is available inside the environment itself and that the certificate contains all the information provided, the endpoint for getting the token now becomes publicly available. A threat actor can get the authentication token outside of the CSP’s service and get all the permissions as the original user.

In this example, the token provider service within the serverless environment is running under a different user. Why is the client certificate available not only for this user in the form of a file with permissions only for that user? This allows a compromised serverless function to leak it and obtain the access token from the external service. But while the unauthorized user can’t get additional privileges other than what the function has, this is enough to conduct activities inside the environment that can have a range of damaging effects. By moving a client certificate into the security boundary of token service user and setting access permissions for the token service user as read-only, we guarantee that even in case of a compromise, the client certificate could not be leaked and used outside the CSP service without additional lateral movement.

The security chain is only as strong as its weakest parts. And while CSP services are not inherently insecure, small design weaknesses put together with improper user configurations could lead to bigger, more damaging consequences. Design applications, environments, and all their related variables with security in mind. If possible, avoid using environmental variables. Following best security practices such as applying the principle of least privilege helps to mitigate the consequences of a breach.

Source :

Trend Micro Cloud App Security Threat Report 2021

In this report, we highlight the notable email threats of 2021, including over 33.6 million high-risk email threats (representing a 101% increase from 2020’s numbers) that we’ve detected using the Trend Micro Cloud App Security platform.

Email is an integral cog in the digital transformation machine. This was especially true in 2021, when organizations found themselves trying to keep business operations afloat in the middle of a pandemic that has forever changed how people work. At a time when the workplace had already largely shifted from offices to homes, malicious actors continued to favor email as a low-effort yet high-impact attack vector to disseminate malware.

Email is not only popular among cybercriminals for its simplicity but also for its efficacy. In fact, 74.1% of the total threats blocked by Trend Micro in 2021 are email threats. Meanwhile, the 2021 Internet Crime Report by the FBI’s Internet Crime Complaint Center (IC3) states that there was “an unprecedented increase in cyberattacks and malicious cyber activity” last year, with business email compromise (BEC) being among the top incidents.

In this report, we discuss the notable email threats of 2021 based on the data that we’ve gathered using the Trend Micro™ Cloud App Security™, a security solution that supplements the preexisting security features in email and collaboration platforms.

Download our infographic

Malware detections surge as attacks become more elaborate, targeted

The Trend Micro Cloud App Security solution detected and thwarted a total of 3,315,539 total malware files in 2021. More urgently, this number represents an increase of a whopping 196% from 2020’s numbers. There were also huge spikes in both known and unknown malware detections in 2021 at 133.8% and 221%, respectively.

Cybercriminals worked overtime to attach malware in malicious emails in 2021 using advanced tactics and social engineering lures. In January, we saw how Emotet sent spam emails that used hexadecimal and octal representations of IP addresses for detection evasion in its delivery of malware such as TrickBot and Cobalt Strike.

In May last year, we reported on Panda Stealer, an information stealer that targets cryptocurrency wallets and credentials via spam emails. We also shared an update on APT-C-36 (aka Blind Eagle), an advanced persistent threat (APT) group targeting South American entities using a spam campaign that used fraudulent emails impersonating Colombia’s national directorate of taxes and customs and even fake infidelity email lures.

QAKBOT operators also resumed their spam campaign in late 2021 after an almost three-month hiatus and abused hijacked email threads to lead victims to both QAKBOT and the SquirrelWaffle malware loader.

Meanwhile, ransomware detections continued to decline in 2021, a consistent trend that we have been seeing in previous years. Last year, the Trend Micro Cloud App Security solution detected and blocked 101,215 ransomware files — a 43.4% decrease compared to 2020’s detections.

The reason behind this continuing decline is possibly two-fold: One, unlike legacy ransomware that focuses on the quantity of victims, modern ransomware focuses on waging highly targeted and planned attacks to yield bigger profits. Since today’s ransomware actors no longer abide by the spray-and-pray ransomware model, the number of attacks are no longer as massive as the number that we witnessed in ransomware’s early days. We identified the other reason in our year-end roundup report: That is, it’s possible that ransomware detections are down because our cybersecurity solutions continue to block an increasing number of ransomware affiliate tools each year, including TrickBot and BazarLoader. This could have prevented ransomware attacks from being successfully executed on victim environments.

Known, unknown, and overall credential phishing attacks rose in 2021

Based on Trend Micro Cloud App Security data, 6,299,883 credential phishing attacks were detected and blocked in 2021, which accounts for a 15.2% overall increase. Similar to last year, the number of known credential phishing attacks is greater than the unknown ones. However, this year, the percentage of increase is at a staggering 72.8%.

When comparing 2020 and 2021’s numbers, we saw an 8.4% increase in the number of detections for known credential phishing links, while a 30% growth is observed in the number of detections for unknown credential phishing links.

Abnormal Security noted the increase in overall credential phishing attacks in one 2021 report and stated that credential phishing is attributed to 73% of all advanced threats that they’ve analyzed.

We have also documented the rise in credential phishing attacks from previous years. In fact, in the first half of 2019, the Trend Micro Cloud App Security solution detected and blocked 2.4 million credential phishing attacks alone.

BEC’s small numbers bring big business losses

The Trend Micro Cloud App Security solution intercepted a total of 283,859 BEC attacks in 2021. Compared with 2020’s BEC detections, this number represents a 10.61% decrease. Interestingly, there is an 82.7% increase in this year’s BEC attacks that were detected using Writing Style DNA, while there is a 38.59% decrease in attacks that have been blocked using the antispam engine.

Overall, BEC numbers have consistently been on a downward trend since 2020. But the reduction in BEC victims doesn’t equate to a dip in cybercriminal profits. According to the FBI’s IC3, BEC accounted for US$2.4 billion in adjusted losses for both businesses and consumers in 2021. According to the same organization, BEC losses have reached over US$43 billion between June 2016 and December 2021 for both domestic and international incidents.

We have also observed how BEC actors continuously tweak their tactics for ill gain. In August last year, our telemetry showed a gradual increase in BEC detections. Upon investigation, we discovered that instead of impersonating company executives and upper management personnel, this BEC-related email campaign impersonated and targeted ordinary employees for money transfers and bank payroll account changes.

Covid-19 lures, cybercriminal campaigns behind massive jump in phishing numbers

The Trend Micro Cloud App Security solution data shows that a total of 16,451,166 phishing attacks were detected and blocked in 2021. This is a 137.6% growth from 2020’s phishing numbers.

In contrast to last year’s numbers, we saw a significant jump in phishing attacks detected via spam count this year — a whopping 596% increase, to be specific. Meanwhile, we observed a notable 15.26% increase in credential phishing count compared to last year.

These high numbers reflect organizations’ sentiments about phishing attacks. According to a survey in an Osterman Research report titled “How to Reduce the Risk of Phishing and Ransomware,” organizations were “concerned” or “extremely concerned” about phishing attempts making their way to end users and employees failing to spot phishing and social engineering attacks before accessing a link or attachment.

While they kicked off majority of Covid-19-related phishing emails and sites in 2020, cybercriminals still exploited the global pandemic for financial gain. Last year, Mexico-based medical laboratory El Chopo shared that a fraudulent website that looked identical to the company’s had been launched. On that website, users could schedule a vaccination appointment after paying MXN2,700 (approximately US$130). To make the fake website appear credible, the malicious actors behind it added fake contact information such as email addresses and social media pages that victims can use for inquiries.

Early last year, we reported on a wave of phishing emails that pretended to be coming from national postal systems. This campaign attempted to steal credit card numbers from 26 countries. We also investigated a spear-phishing campaign that used Pegasus spyware-related emails to lead victims into downloading a file stealer. This campaign targeted high-ranking political leaders, activists, and journalists in 11 countries.

Protect emails, endpoints, and cloud-based services and apps from attacks with Trend Micro Cloud App Security

Organizations should consider a comprehensive multilayered security solution such as Trend Micro Cloud App Security. It supplements the preexisting security features in email and collaboration platforms like Microsoft 365 and Google Workspace (formerly known as G Suite) by using machine learning (ML) to analyze and detect any suspicious content in the message body and attachments of an email. It also acts as a second layer of protection after emails and files have passed through Microsoft 365 or Gmail’s built-in security.

Trend Micro Cloud App Security uses technologies such as sandbox malware analysis, document exploit detection, and file, email, and web reputation technologies to detect malware hidden in Microsoft 365 or PDF documents. It provides data loss prevention (DLP) and advanced malware protection for Box, Dropbox, Google Drive, SharePoint Online, OneDrive for Business, and Salesforce while also enabling consistent DLP policies across multiple cloud-based applications. It also offers seamless integration with an organization’s existing cloud setup, preserving full user and administrator functionality, providing direct cloud-to-cloud integration through vendor APIs, and minimizing the need for additional resources by assessing threat risks before sandbox malware analysis.

Trend Micro Cloud App Security stands on the cutting edge of email and software-as-a-service (SaaS) security, offering ML-powered features that combat two of the primary email-based threats: BEC and credential phishing. Writing Style DNA can help determine if an email is legitimate by using ML to check a user’s writing style based on past emails and then comparing suspicious emails against it. Computer vision, on the other hand, combines image analysis and ML to check branded elements, login forms, and other site content. It then pools this information with site reputation elements and optical character recognition (OCR) to check for fake and malicious sites — all while reducing instances of false positives to detect credential phishing email.

This security solution also comes with an option to rescan historical URLs in users’ email metadata and perform continued remediation (automatically taking configured actions or restoring quarantined messages) using newer patterns updated by Web Reputation Services.

This is a significant option since users’ email metadata might include undetected suspicious or dangerous URLs that have only recently been discovered. The examination of such metadata is thus an important part of forensic investigations that help determine if your email service has been affected by attacks. This solution also officially supports the Time-of-Click Protection feature to protect Exchange Online users against potential risks when they access URLs in incoming email messages.

Trend Micro Cloud App Security also comes with the advanced and extended security capabilities of Trend Micro XDR, providing investigation, detection, and response across your endpoints, email, and servers.

Source :

Trend Micro’s One Vision, One Platform

The world moves fast sometimes. Just two years ago, organizations were talking vaguely about the need to transform digitally, and ransomware began to make headlines outside the IT media circle. Fast forward to 2022, and threat actors have held oil pipelines and critical food supply chains hostage, while many organizations have passed a digital tipping point that will leave them forever changed. Against this backdrop, CISOs are increasingly aware of running disjointed point products’ cost, operational, and risk implications.

That’s why Trend Micro is transforming from a product- to a platform-centric company. From the endpoint to the cloud, we’re focused on helping our customers prepare for, withstand, and rapidly recover from threats—freeing them to go further and do more. Analysts seem to agree.

Unprecedented change

The digital transformation that organizations underwent during the pandemic was, in some cases, unprecedented. It helped them adapt to a new reality of remote and now hybrid working, supply chain disruption, and rising customer expectations. The challenge is that these investments in cloud infrastructure and services are broadening the corporate attack surface. In many cases, in-house teams are drowning in new attack techniques and cloud provider features. This can lead to misconfigurations which open the door to hackers.

Yet even without human error, there’s plenty for the bad guys to target in modern IT environments—from unpatched vulnerabilities to accounts protected with easy-to-guess or previously breached passwords. That means threat prevention isn’t always possible. Instead, organizations are increasingly looking to augment these capabilities with detection and response tooling like XDR to ensure incidents don’t turn into large-scale breaches. It’s important that these tools are able to prioritize alerts. Trend Micro found that as many as 70% of security operations (SecOps) teams are emotionally overwhelmed with the sheer volume of alerts they’re forced to deal with.

SecOps staff and their colleagues across the IT function are stretched to the limit by these trends, which are compounded by industry skills shortages. The last thing they need is to have to swivel-chair between multiple products to find the right information.

What Gartner says

Analyst firm Gartner is observing the same broad industry trends. In a recent report, it claimed that:

  • Vendors are increasingly divided into “platform” and “portfolio” providers—the latter providing products with little underlying integration
  • By 2025, 70% of organizations will reduce to a maximum of three the number of vendors they use to secure cloud-native applications
  • By 2027, half of the mid-market security buyers will use XDR to help consolidate security technologies such as endpoint, cloud, and identity
  • Vendors are increasingly integrating diverse security capabilities into a single platform. Those which minimize the number of consoles and configuration planes, and reuse components and information, will generate the biggest benefits

The power of one

This is music to our ears. It is why Trend Micro introduces a unified cybersecurity platform, delivering protection across the endpoint, network, email, IoT, and cloud, all tied together with threat detection and response from our Vision One platform. These capabilities will help customers optimize protection, detection, and response, leveraging automation across the key layers of their IT environment in a way that leaves no coverage gaps for the bad guys to hide in.

There are fewer overheads and hands-on decisions for stretched security teams with fewer vendors to manage, a high degree of automation, and better alert prioritization. Trend Micro’s unified cybersecurity platform vision also includes Trend Micro Service One for 24/7/365 managed detection, response, and support—to augment in-house skills and let teams focus on higher-value tasks.

According to Gartner, the growth in market demand for platform-based offerings has led some vendors to bundle products as a portfolio despite no underlying synergy. This can be a “worst of all worlds,” as products are neither best-of-breed nor do they reduce complexity and overheads, it claims.

We agree. That’s why Trend Micro offers a fundamentally more coherent platform approach. We help organizations continuously discover an ever-changing attack surface, assess risks and then take streamlined steps to mitigate that risk—applying the right security at the right time. That’s one vision, one platform, and total protection.

To find out more about Trend Micro One, please visit: https://www.trendmicro.com/platform-one

Source :