Active Directory and Active Directory Domain Services Port Requirements

Applies To: Windows Server 2000, Windows Server 2003, Windows Server 2003 R2, Windows Server 2003 with SP1, Windows Server 2003 with SP2, Windows Server 2008, Windows Server 2008 Foundation, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Vista

This guide contains port requirements for various Active Directory® and Active Directory Domain Services (AD DS) components. Both writable domain controllers and read-only domain controllers (RODCs) have the same port requirements. For more information about RODCs, see Designing RODCs in the Perimeter Network.

Default dynamic port range

In a domain that consists of Windows Server® 2003–based domain controllers, the default dynamic port range is 1025 through 5000. Windows Server 2008 R2 and Windows Server 2008, in compliance with Internet Assigned Numbers Authority (IANA) recommendations, increased the dynamic port range for connections. The new default start port is 49152, and the new default end port is 65535. Therefore, you must increase the remote procedure call (RPC) port range in your firewalls. If you have a mixed domain environment that includes a Windows Server 2008 R2 and Windows Server 2008 server and Windows Server 2003, allow traffic through ports 1025 through 5000 and 49152 through 65535.

When you see “TCP Dynamic” in the Protocol and Port column in the following table, it refers to ports 1025 through 5000, the default port range for Windows Server 2003, and ports 49152 through 65535, the default port range beginning with Windows Server 2008.

 Note

For more information about the change in the dynamic port range beginning in Windows Server 2008, see article 929851 in the Microsoft Knowledge Base (https://go.microsoft.com/fwlink/?LinkId=153117).
You can find additional information about this change on the Ask the Directory Services Team blog. See the blog entry Dynamic Client Ports in Windows Server 2008 and Windows Vista (https://go.microsoft.com/fwlink/?LinkId=153113).

Restricting RPC to a specific port

RPC traffic is used over a dynamic port range as described in the previous section, “Default dynamic port range.” To restrict RPC traffic to a specific port, see article 224196 in the Microsoft Knowledge Base (https://go.microsoft.com/fwlink/?LinkID=133489).

Communication to Domain Controllers

The following table lists the port requirements for establishing DC to DC communication in all versions of Windows Sever beginning with Windows Server 2003.

Additional ports are required for communication between a read-only domain controller (RODC) and a writeable DC.

Protocol and PortAD and AD DS UsageType of traffic
TCP and UDP 389Directory, Replication, User and Computer Authentication, Group Policy, TrustsLDAP
TCP 636Directory, Replication, User and Computer Authentication, Group Policy, TrustsLDAP SSL
TCP 3268Directory, Replication, User and Computer Authentication, Group Policy, TrustsLDAP GC
TCP 3269Directory, Replication, User and Computer Authentication, Group Policy, TrustsLDAP GC SSL
TCP and UDP 88User and Computer Authentication, Forest Level TrustsKerberos
TCP and UDP 53User and Computer Authentication, Name Resolution, TrustsDNS
TCP and UDP 445Replication, User and Computer Authentication, Group Policy, TrustsSMB,CIFS,SMB2, DFSN, LSARPC, NbtSS, NetLogonR, SamR, SrvSvc
TCP 25ReplicationSMTP
TCP 135ReplicationRPC, EPM
TCP DynamicReplication, User and Computer Authentication, Group Policy, TrustsRPC, DCOM, EPM, DRSUAPI, NetLogonR, SamR, FRS
TCP 5722File ReplicationRPC, DFSR (SYSVOL)
UDP 123Windows Time, TrustsWindows Time
TCP and UDP 464Replication, User and Computer Authentication, TrustsKerberos change/set password
UDP DynamicGroup PolicyDCOM, RPC, EPM
UDP 138DFS, Group PolicyDFSN, NetLogon, NetBIOS Datagram Service
TCP 9389AD DS Web ServicesSOAP
UDP 67 and UDP 2535DHCPNoteDHCP is not a core AD DS service but it is often present in many AD DS deployments.DHCP, MADCAP
UDP 137User and Computer Authentication,NetLogon, NetBIOS Name Resolution
TCP 139User and Computer Authentication, ReplicationDFSN, NetBIOS Session Service, NetLogon

Source :
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/dd772723(v=ws.10)

Google’s Virtual Desktop of the Future

Nick Yeager

Manager, Google Computing

Did you know that most Google employees rely on virtual desktops to get their work done? This represents a paradigm shift in client computing at Google, and was especially critical during the pandemic and the remote work revolution. We’re excited to continue enabling our employees to be productive, anywhere! This post covers the history of virtual desktops and details the numerous benefits Google has seen from their implementation. 

https://storage.googleapis.com/gweb-cloudblog-publish/images/image3_6PhPZT5.max-2000x2000.png

Background

In 2018, Google began the development of virtual desktops in the cloud. A whitepaper was published detailing how virtual desktops were created with Google Cloud, running on Google Compute Engine, as an alternative to physical workstations. Further research had shown that it was feasible to move our physical workstation fleet to these virtual desktops in the cloud. The research began with user experience analysis – looking into how employee satisfaction of cloud workstations compared with physical desktops. Researchers found that user satisfaction of cloud desktops was higher than that of their physical desktop counterparts! This was a monumental moment for cloud-based client computing at Google, and this discovery led to additional analyses of Compute Engine to understand if it could become our preferred (virtual) workstation platform of the future.

Today, Google’s internal use of virtual desktops has increased dramatically. Employees all over the globe use a mix of virtual Linux and Windows desktops on Compute Engine to complete their work. Whether an employee is writing code, accessing production systems, troubleshooting issues, or driving productivity initiatives, virtual desktops are providing them with the compute they need to get their work done. Access to virtual desktops is simple: some employees access their virtual desktop instances via Secure Shell (SSH), while others use Chrome Remote Desktop — a graphical access tool. 

In addition to simplicity and accessibility, Google has realized a number of benefits from virtual desktops. We’ve seen an enhanced security posture, a boost to our sustainability initiatives, and a reduction in maintenance effort associated with our IT infrastructure. All these improvements were achieved while improving the user experience compared to our physical workstation fleet.

https://storage.googleapis.com/gweb-cloudblog-publish/images/image1_0EHHfvd.max-2000x2000.jpg

Example of Google Data Center

Analyzing Cloud vs Physical Desktops

Let’s look deeper into the analysis Google performed to compare cloud virtual desktops and physical desktops. Researchers compared cloud and physical desktops on five core pillars: user experience, performance, sustainability, security, and efficiency.

https://storage.googleapis.com/gweb-cloudblog-publish/images/image4_6gvUvXe.max-1900x1900.png

User Experience

Before the transition to virtual desktops got underway, user experience researchers wanted to know more about how they would affect employee happiness. They discovered that employees embraced the benefits that virtual desktops offered. This included freeing up valuable desk space to provide an always-on, always available compute experience, accessible from anywhere in the world, and reduced maintenance overhead compared to physical desktops. 

Performance

From a performance perspective, cloud desktops are simply better than physical desktops. For example, running on Compute Engine makes it easy to spin-up on-demand virtual instances with predictable compute and performance – a task that is significantly more difficult with a physical workstation vendor. Virtual desktops rely on a mix of Virtual Machine (VM) families that Google developed based on the performance needs of our users. These include Google Compute Engine E2 high-efficiency instances, which employees might use for day-to-day tasks, to higher-performance N2/N2D instances, which employees might use for more demanding machine learning jobs. Compute Engine offers a VM shape for practically any computing workflow. Additionally, employees no longer have to worry about machine upgrades (to increase performance, for example) because our entire fleet of virtual desktops can be upgraded to new shapes (with more CPU and RAM) with a single config change and a simple reboot — all within a matter of minutes. Plus, Compute Engine continues to add features and new machine types, which means our capabilities only continue to grow in this space.

Sustainability

Google cares deeply about sustainability and has been carbon neutral since 2007. Moving from physical desktops to virtual desktops on Compute Engine brings us closer to Google sustainability goals of a net-neutral desktop computing fleet. Our internal facilities team has praised virtual desktops as a win for future workspace planning, because a reduction in physical workstations could also mean a reduction in first-time construction costs of new buildings, significant (up to 30%) campus energy reductions, and even further reductions in costs associated with HVAC needs and circuit size needs at our campuses. Lastly, a reduction in physical workstations also contributes to a reduction in physical e-waste and a reduction in the carbon associated with transporting workstations from their factory of origin to office locations. At Google’s scale, these changes lead to an immense win from a sustainability standpoint. 

Security

By their very nature, virtual desktops mitigate the ability for a bad actor to exfiltrate data or otherwise compromise physical desktop hardware since there is no desktop hardware to compromise in the first place. This means attacks such as USB attacks, evil maid attacks, and similar techniques for subverting security that require direct hardware access become worries of the past. Additionally, the transition to cloud-based virtual desktops also brings with it an enhanced security posture through the use of Google Cloud’s myriad security features including Confidential ComputingvTPMs, and more. 

Efficiency

In the past, it was not uncommon for employees to spend days waiting for IT to deliver new machines or fix physical workstations. Today, cloud-based desktops can be created instantaneously on-demand and resized on-demand. They are always accessible, and virtually immune from maintenance-related issues. IT no longer has to deal with concerns like warranty claims, break-fix issues, or recycling. This time savings enables IT to focus on higher priority initiatives all while reducing their workload. With an enterprise the size of Google, these efficiency wins added up quickly. 

Considerations to Keep in Mind

Although Google has seen significant benefits with virtual desktops, there are some considerations to keep in mind before deciding if they are right for your enterprise. First, it’s important to recognize that migrating to a virtual fleet requires a consistently reliable and performant client internet connection. For remote/global employees, it’s important they’re located geographically near a Google Cloud Region (to minimize latency). Additionally, there are cases where physical workstations are still considered vital. These cases include users who need USB and other direct I/O access for testing/debugging hardware and users who have ultra low-latency graphics/video editing or CAD simulation needs. Finally, to ensure interoperability between these virtual desktops and the rest of our computing fleet, we did have to perform some additional engineering tasks to integrate our asset management and other IT systems with the virtual desktops. Whether your enterprise needs such features and integration should be carefully analyzed before considering a solution such as this. However, should you ultimately conclude that cloud-based desktops are the solution for your enterprise, we’re confident you’ll realize many of the benefits we have!

Tying It All Together

Although moving Google employees to virtual desktops in the clouds was a significant engineering undertaking, the benefits have been just as significant.  Making this switch has boosted employee productivity and satisfaction, enhanced security, increased efficiency, and provided noticeable improvements in performance and user experience. In short, cloud-based desktops are helping us transform how Googlers get their work done. During the pandemic, we saw the benefits of virtual desktops in a critical time. Employees had access to their virtual desktop from anywhere in the world, which kept our workforce safer and reduced transmission vectors for COVID-19. We’re excited for a future where more and more of our employees are computing in the cloud as we continue to embrace the work-from-anywhere model and as we continue to add new features and enhanced capabilities to Compute Engine!

Source :
https://cloud.google.com/blog/topics/developers-practitioners/googles-virtual-desktop-future

How to Protect Your Microsoft Exchange Server 2019 with CrowdSec

Follow this step-by-step guide on installing CrowdSec on a Microsoft Exchange server to better protect against common cyberattacks and new threats.

This article is a direct translation of Florian Burnel’s article published on IT Connect. You can find the original article here.

We also have an article on installing CrowdSec on a Windows server with a tutorial on blocking brute force attacks on an RDP connection and blocking a scan of a website hosted on an IIS server.

I. Presentation

In this tutorial, we will dive into how to secure a Microsoft Exchange mail server with the CrowdSec collaborative firewall! Installing CrowdSec on a Microsoft Exchange server will allow you to protect against common attacks but also new threats.

A good example is the security breach ProxyNotShell which made headlines in October 2022: CrowdSec can detect exploit attempts and block malicious IP addresses, thanks to the fact that it contains a collection for IIS and attacks based on HTTP/HTTPS protocols. Other examples are more classic cases: brute force attacks on the Exchange webmail interface.

Due to how it functions, an Exchange server will be exposed to the Internet depending on the architecture of your IS (for example, the presence or absence of a reverse proxy). However, it must be able to communicate outward and also be reachable from the outside to send and receive emails to your users’ mailboxes.

This same server is also reachable through Webmail which allows users to check their emails from a browser. This implies the presence of an IIS web server that hosts both Webmail and Exchange Admin Center. Furthermore, when an Exchange server is compromised by a cyberattack, this mainly involves HTTP/HTTPS access: hence the interest in protecting yourself.

CrowdSec Windows - Protect OWA

This article is a continuation of my first article on installing an Exchange Server 2019 server. For the installation of the Microsoft Exchange Server itself, I invite you to read my previous tutorial.

In addition, I also encourage you to restrict access to the Exchange admin center.

II. Setting up CrowdSec on Windows

A. Installing the CrowdSec Agent

I already wrote about how to install CrowdSec on Windows in a previous article, but that was the Alpha version. Now, the CrowdSec agent for Windows is available in a stable version, which means that it is ready to be implemented in production.

Note: if you have previously installed the alpha version on your server, you must uninstall it before installing this new CrowdSec version.

First, you must download the MSI package from the official CrowdSec GitHub repository.

While it is installing, the CrowdSec MSI package will perform the following actions:

  • Install CrowdSec itself
  • Integrate the Windows Collection (details are available here)
  • Register the CrowdSec instance with the Central API
  • Register the CrowdSec service within Windows (automatic start)

Once done, begin the installation. Just follow the steps without making any changes. Then, allow about 2 minutes for the Agent to fully install. 

Install CrowdSec on Windows for Exchange Server

As soon as the CrowdSec Agent is in place, we have access to the “cscli” command line which allows you to manage your CrowdSec instance from it.

To list current collections:

cscli collections list

To list the current bouncers (none by default):

cscli bouncers list

CrowdSec Windows - List collections and bouncers

B. Installing the ISS Collection

On Windows, CrowdSec natively sets up the “crowdsecurity/windows“, but it is not enough to protect your Exchange server. We will need to add the IIS collection, which will also add two more collections to detect web attacks.

This collection is installed from this command:

cscli collections install crowdsecurity/iis

In just a few seconds after adding, we can list the installed collections to see the presence of the new collections.

CrowdSec Windows - Lister les collections

To justify what I said in the introduction about the ProxyNotShell vulnerability, we can look at the details of the “crowdsecurity/http-cve” collection. Here, we can see the presence of a detection scenario named “crowdsecurity/CVE-2022-41082” corresponding to this vulnerability.

cscli collections inspect crowdsecurity/http-cve

CrowdSec Windows - http-cve collection details

Let’s go to the next step.

C. Installing Windows Firewall Bouncer

Now, we must set up the “firewall” bouncer for Windows, otherwise, attacks will be detected, but not blocked. Click on the following link, then on the “Download” button to download the MSI package: https://hub.crowdsec.net/author/crowdsecurity/bouncers/cs-windows-firewall-bouncer

The installation is done in only a few clicks: just follow the wizard.

CrowdSec Windows - Installation du bouncer firewall

Once done, the command below will make it possible to see the presence of the bouncer.

cscli bouncers list

CrowdSec Windows - Lister les bouncers

Let’s go to the next step.

D. Add IIS log support

For CrowdSec to focus on the logs generated by IIS, and by extension, corresponding to the access to the OWA and ECP portals of Exchange, we must indicate to it the paths to the log files it will analyze.

To do this, you will need to edit the following: 

C:\ProgramData\CrowdSec\config\acquis.yaml

In order to add the following lines:

---
use_time_machine: true
filenames:
  - C:\inetpub\logs\LogFiles\*\*.log
labels:
  type: iis

You can see the presence of a “dynamic” path which is characterized by the presence of the wildcard character: “C:\inetpub\logs\LogFiles\*\*.log “. This value will allow CrowdSec to find and read log files located in the tree “C:\inetpub\logs\LogFiles\

In addition to the path to the log files, this configuration block we just added contains a parameter named use_time_machine. It is important because IIS does not write logs in real-time in the log file, but it writes new events in blocks, every minute. Thanks to this parameter, CrowdSec will read the date and time of each line to find its way and process the events chronologically, this avoids false positives. 

However, if you are not using the log files, but the event viewer, you should use this piece of code and not the one mentioned above:

---
source: wineventlog
event_channel: Microsoft-IIS-Logging/Logs
event_ids:  - 6200
event_level: information
labels:  
type: iis

Save the acquired.yaml file and you can close it.

Finally, we need to restart CrowdSec. This operation is done in PowerShell with this command:

Restart-Service crowdsec

CrowdSec setup is complete! Now let’s test it!

III. Is the Exchange server protected?

A. Brute force on OWA – Webmail Exchange 

There are several possible methods to perform a brute force attack on OWA. Of course, you could do this manually for testing, but you could also use something a bit more automated to simulate a brute-force attack. As for us, we will use a Bash script named “OWA BRUTE” that executes Hydra (an offensive tool compatible with many protocols to test a service’s authentication, equipment, etc. ) with specific parameters corresponding to Outlook Web Access.

The script is available on GitHub.

First, we need to install Hydra and Git. The first one is a prerequisite to use the script and perform our attack, while the second one will be used to clone the GitHub repository to get the Bash script (you can also copy and paste the script in a file…).

sudo apt-get update

sudo apt-get install hydra git

Once this is done, we clone the GitHub project in “/home/florian”:

cd /home/florian/

git clone

Then, we create a file “users.txt” in which we indicate some names of users. You can also recover a list on the Internet.

nano /home/florian/owabrute/users.txt

In the same sense, we create a file “passwords.txt” with the passwords to test.

nano /home/florian/owabrute/passwords.txt

Then, we move to the OWA BRUTE directory to add the execution rights on the Bash script.

cd /home/florian/owabrute/

chmod +x owabrute.sh

All that remains is to launch the attack by targeting “mail.domaine.fr” and then using our previously created files.

./owabrute.sh -d mail.domaine.fr -u ./users.txt -p ./passwords.txt

We can see that the script will test each combination. At the end, it will indicate if it has succeeded or not in finding a valid combination. However, CrowdSec will intervene…

We can see that the script will test each combination, in turn.  In the end, it will indicate whether or not it succeeded in finding a valid combination.  However, CrowdSec will intervene....

Indeed, if I look at my Exchange server, I can see that there is a new IP address blocked because of brute force (“crowdsecurity/windows-bf”). The CrowdSec agent has correctly blocked the IP address that caused this attack.

.

Since we are here to test, we can unblock our IP address manually:

cscli decisions delete –ip X.X.X.X

Let’s move on to a second test.

B. Scan Web on OWA

In the case where someone tries to scan your Web server, when IIS is used by Exchange, they can rely on various tools including Nikto which is used to analyze the security level of a Web server. For this example, OWA will be scanned with the Nikto tool: we will see if CrowdSec detects what is happening on the IIS server…

First of all, let’s install this tool:

sudo apt-get update

sudo apt-get install nikto

Then, we launch the scan to webmail:

nikto -h https://mail.domaine.fr/owa

The analysis will take several minutes…

The analysis will take several minutes...

…Except that after a while, CrowdSec will realize that this web client is performing suspicious actions and it will decide to block it. In the example below, we can see the reason “http-sensitive-files” which means that the client tried to access sensitive files.

In this second example, where we performed a completely different action compared to the first attempt, CrowdSec also managed to detect our malicious actions.

IV. Conclusion

We have just seen how to set up the CrowdSec agent on Windows to protect a Microsoft Exchange mail server! Here, I took the example of Exchange Server 2019, but it also applies to previous versions. With these two quick, but concrete examples, we could see the efficiency of CrowdSec!

I’ll also take this moment to remind you of the existence of the CrowdSec Console which allows you to follow the alerts raised by one or more CrowdSec Agents from a web-based console. To learn more about the implementation and all the functionalities, you can visit the Console page.

WRITTEN BY

Florian Burnel

Source :
https://www.crowdsec.net/blog/how-to-protect-microsoft-exchange-server-crowdsec

Palo Alto Networks Secures Nutanix Cloud Clusters for Microsoft Azure

Securing your hybrid multi-cloud environment just got easier. We are excited to announce Palo Alto Networks VM-Series Virtual Next-Generation Firewalls (NGFWs) are now available on Nutanix Cloud Clusters (NC2)™ for Microsoft Azure with Nutanix Flow Virtual Networking™.

NC2 on Azure leverages a new bare metal-as-a-service (BMaaS) offering, which is jointly engineered by Nutanix® and Microsoft® teams for cloud-like infrastructure consumption without the need to purchase more hardware up-front. It leverages the power of the hybrid cloud to extend workloads to Azure seamlessly from on-premises. NC2 provides a consistent experience to provision and manage Nutanix clusters on-premises or deployed in Azure, enabling workload mobility across clouds.

During last month’s Microsoft Ignite, Nutanix announced the availability of NC2 on Microsoft Azure to easily extend on-premises data and workloads to Azure, creating a true hybrid cloud. With Palo Alto Networks VM-Series virtual firewall insertion, you can secure your Nutanix AHV workloads on overlay networks deployed using VPCs (virtual private clouds) within Flow Virtual Networking. Nutanix AHV provides a modern, secure virtualization platform for all your virtual machines (VM) and container workloads without additional licensing or investment on Nutanix hyperconverged infrastructure (HCI).

Simplify Multi-Cloud Security with VM-Series Virtual NGFWs

With VM-Series virtual firewalls, your Nutanix AHV workloads will have advanced security features that deliver the required application layer of security for total coverage. Leverage network security and visibility across your hybrid cloud – both on-premises and on Microsoft Azure – without complex reconfiguration. With this validation, you can gain consistent security and visibility across your hybrid cloud environment.

You can find the perfect balance of security, speed and value through the advanced Cloud-Delivered Security Services available with the VM-Series Virtual Firewall. Get simple security for public clouds, private clouds and on-premises data for total coverage and protection from known and unknown threats.

Palo Alto Networks VM-Series Virtual Firewalls are monitored, configured and managed by Palo Alto Networks Panorama™ firewall management tools. With Panorama, you gain network security capabilities that provide a single pane of glass to manage security and policies while alleviating the need to jump between interfaces. You can now easily manage the security postures of their virtual environments, physical data centers and even public clouds.

Prevent Lateral Movement with Microsegmentation and Nutanix Flow Network Security™

As your virtualized and cloud environments grow, so does your attack surface. This increases the risk of bad actors gaining access to your internal network. Once attackers bypass perimeter security controls, they can move laterally across the environment in search of data to steal or hold for ransom. Because of this, it’s essential to redefine your security approach to include lateral, east-west, network traffic and perimeter network security.

With Nutanix Flow Network Security, you can leverage advanced network security using microsegmentation, or managed virtual-machine-level software firewalls, to gain visibility into your workloads on your virtual networks. Even when a VM moves across segments or clouds, the risk of network threats, malware and ransomware is reduced with a unified security policy approach.

Flow Network Security is an application-centric microsegmentation solution that protects east-west traffic to your environments by allowing you to control east-west VM-to-VM traffic. It reduces the risk of threats spreading laterally across the data center and enforces a perimeter around every individual VM.

Check It Out For Yourself

In this use case, all external traffic for subnets and VMs of the VPC traverse through the VM-Series Virtual Firewall. Configured application layer (L7) security policies are enforced via the policy-based routing capability available in the Flow Virtual Networking VPC’s section.

Flow chart showing Nutanix AHV Cluster, Flow Virtual Networking, External Network, Microsoft Azure.
Azure flow chart of Virtual Networking for Nutanix AHV Cluster.

Workload mobility doesn’t have to mean complex security reconfiguration. As NC2 on Microsoft Azure extends your on-premises deployments, Palo Alto Networks ensures that you have the seamless security and visibility you need to safeguard your hybrid cloud environment.

Find Out How to Do More

See how Palo Alto Networks and Nutanix work together to deliver enhanced security capabilities and integrated solutions that secure the enterprise. Learn more about our VM-Series Virtual Firewalls and other Nutanix integrations, which give customers access to next-generation security controls that stop threats before they cause damage.

Source :
https://www.paloaltonetworks.com/blog/2022/11/nutanix-cloud-clusters-for-microsoft-azure/

LockBit 3.0 ‘Black’ attacks and leaks reveal wormable capabilities and tooling

Reverse-engineering reveals close similarities to BlackMatter ransomware, with some improvements

A postmortem analysis of multiple incidents in which attackers eventually launched the latest version of LockBit ransomware (known variously as LockBit 3.0 or ‘LockBit Black’), revealed the tooling used by at least one affiliate. Sophos’ Managed Detection and Response (MDR) team has observed both ransomware affiliates and legitimate penetration testers use the same collection of tooling over the past 3 months.

Leaked data about LockBit that showed the backend controls for the ransomware also seems to indicate that the creators have begun experimenting with the use of scripting that would allow the malware to “self-spread” using Windows Group Policy Objects (GPO) or the tool PSExec, potentially making it easier for the malware to laterally move and infect computers without the need for affiliates to know how to take advantage of these features for themselves, potentially speeding up the time it takes them to deploy the ransomware and encrypt targets.

A reverse-engineering analysis of the LockBit functionality shows that the ransomware has carried over most of its functionality from LockBit 2.0 and adopted new behaviors that make it more difficult to analyze by researchers. For instance, in some cases it now requires the affiliate to use a 32-character ‘password’ in the command line of the ransomware binary when launched, or else it won’t run, though not all the samples we looked at required the password.

We also observed that the ransomware runs with LocalServiceNetworkRestricted permissions, so it does not need full Administrator-level access to do its damage (supporting observations of the malware made by other researchers).

Most notably, we’ve observed (along with other researchers) that many LockBit 3.0 features and subroutines appear to have been lifted directly from BlackMatter ransomware.

Is LockBit 3.0 just ‘improved’ BlackMatter?

Other researchers previously noted that LockBit 3.0 appears to have adopted (or heavily borrowed) several concepts and techniques from the BlackMatter ransomware family.

We dug into this ourselves, and found a number of similarities which strongly suggest that LockBit 3.0 reuses code from BlackMatter.

Anti-debugging trick

Blackmatter and Lockbit 3.0 use a specific trick to conceal their internal functions calls from researchers. In both cases, the ransomware loads/resolves a Windows DLL from its hash tables, which are based on ROT13.

It will try to get pointers from the functions it needs by searching the PEB (Process Environment Block) of the module. It will then look for a specific binary data marker in the code (0xABABABAB) at the end of the heap; if it finds this marker, it means someone is debugging the code, and it doesn’t save the pointer, so the ransomware quits.

After these checks, it will create a special stub for each API it requires. There are five different types of stubs that can be created (randomly). Each stub is a small piece of shellcode that performs API hash resolution on the fly and jumps to the API address in memory. This adds some difficulties while reversing using a debugger.

Screenshot of disassembler code
LockBit’s 0xABABABAB marker

SophosLabs has put together a CyberChef recipe for decoding these stub shellcode snippets.

Output of a CyberChef recipe
The first stub, as an example (decoded with CyberChef)

Obfuscation of strings

Many strings in both LockBit 3.0 and BlackMatter are obfuscated, resolved during runtime by pushing the obfuscated strings on to the stack and decrypting with an XOR function. In both LockBit and BlackMatter, the code to achieve this is very similar.

Screenshot of disassembler code
BlackMatter’s string obfuscation (image credit: Chuong Dong)

Georgia Tech student Chuong Dong analyzed BlackMatter and showed this feature on his blog, with the screenshot above.

Screenshot of disassembler code
LockBit’s string obfuscation, in comparison

By comparison, LockBit 3.0 has adopted a string obfuscation method that looks and works in a very similar fashion to BlackMatter’s function.

API resolution

LockBit uses exactly the same implementation as BlackMatter to resolve API calls, with one exception: LockBit adds an extra step in an attempt to conceal the function from debuggers.

Screenshot of disassembler code
BlackMatter’s dynamic API resolution (image credit: Chuong Dong)

The array of calls performs precisely the same function in LockBit 3.0.

Screenshot of disassembler code
LockBit’s dynamic API resolution

Hiding threads

Both LockBit and BlackMatter hide threads using the NtSetInformationThread function, with the parameter ThreadHideFromDebugger. As you probably can guess, this means that the debugger doesn’t receive events related to this thread.

Screenshot of disassembler code
LockBit employs the same ThreadHideFromDebugger feature as an evasion technique

Printing

LockBit, like BlackMatter, sends ransom notes to available printers.

Screenshot of disassembler code
LockBit can send its ransom notes directly to printers, as BlackMatter can do

Deletion of shadow copies

Both ransomware will sabotage the infected computer’s ability to recover from file encryption by deleting the Volume Shadow Copy files.

LockBit calls the IWbemLocator::ConnectServer method to connect with the local ROOT\CIMV2 namespace and obtain the pointer to an IWbemServices object that eventually calls IWbemServices::ExecQuery to execute the WQL query.

Screenshot of disassembler code
BlackMatter code for deleting shadow copies (image credit: Chuong Dong)

LockBit’s method of doing this is identical to BlackMatter’s implementation, except that it adds a bit of string obfuscation to the subroutine.

Screenshot of disassembler code
LockBit’s deletion of shadow copies

Enumerating DNS hostnames

Both LockBit and BlackMatter enumerate hostnames on the network by calling NetShareEnum.

Screenshot of disassembler code
BlackMatter calls NetShareEnum() to enumerate hostnames… (image credit: Chuong Dong)

In the source code for LockBit, the function looks like it has been copied, verbatim, from BlackMatter.

Screenshot of disassembler code
…as does LockBit

Determining the operating system version

Both ransomware strains use identical code to check the OS version – even using the same return codes (although this is a natural choice, since the return codes are hexadecimal representations of the version number).

Screenshot of disassembler code
BlackMatter’s code for checking the OS version (image credit: Chuong Dong)
Screenshot of disassembler code
LockBit’s OS enumeration routine

Configuration

Both ransomware contain embedded configuration data inside their binary executables. We noted that LockBit decodes its config in a similar way to BlackMatter, albeit with some small differences.

For instance, BlackMatter saves its configuration in the .rsrc section, whereas LockBit stores it in .pdata

Screenshot of disassembler code
BlackMatter’s config decryption routine (image credit: Chuong Dong)

And LockBit uses a different linear congruential generator (LCG) algorithm for decoding.

Screenshot of disassembler code
LockBit’s config decryption routine

Some researchers have speculated that the close relationship between the LockBit and BlackMatter code indicates that one or more of BlackMatter’s coders were recruited by LockBit; that LockBit bought the BlackMatter codebase; or a collaboration between developers. As we noted in our white paper on multiple attackers earlier this year, it’s not uncommon for ransomware groups to interact, either inadvertently or deliberately.

Either way, these findings are further evidence that the ransomware ecosystem is complex, and fluid. Groups reuse, borrow, or steal each other’s ideas, code, and tactics as it suits them. And, as the LockBit 3.0 leak site (containing, among other things, a bug bounty and a reward for “brilliant ideas”) suggests, that gang in particular is not averse to paying for innovation.

LockBit tooling mimics what legitimate pentesters would use

Another aspect of the way LockBit 3.0’s affiliates are deploying the ransomware shows that they’re becoming very difficult to distinguish from the work of a legitimate penetration tester – aside from the fact that legitimate penetration testers, of course, have been contracted by the targeted company beforehand, and are legally allowed to perform the pentest.

The tooling we observed the attackers using included a package from GitHub called Backstab. The primary function of Backstab is, as the name implies, to sabotage the tooling that analysts in security operations centers use to monitor for suspicious activity in real time. The utility uses Microsoft’s own Process Explorer driver (signed by Microsoft) to terminate protected anti-malware processes and disable EDR utilities. Both Sophos and other researchers have observed LockBit attackers using Cobalt Strike, which has become a nearly ubiquitous attack tool among ransomware threat actors, and directly manipulating Windows Defender to evade detection.

Further complicating the parentage of LockBit 3.0 is the fact that we also encountered attackers using a password-locked variant of the ransomware, called lbb_pass.exe , which has also been used by attackers that deploy REvil ransomware. This may suggest that there are threat actors affiliated with both groups, or that threat actors not affiliated with LockBit have taken advantage of the leaked LockBit 3.0 builder. At least one group, BlooDy, has reportedly used the builder, and if history is anything to go by, more may follow suit.

LockBit 3.0 attackers also used a number of publicly-available tools and utilities that are now commonplace among ransomware threat actors, including the anti-hooking utility GMER, a tool called AV Remover published by antimalware company ESET, and a number of PowerShell scripts designed to remove Sophos products from computers where Tamper Protection has either never been enabled, or has been disabled by the attackers after they obtained the credentials to the organization’s management console.

We also saw evidence the attackers used a tool called Netscan to probe the target’s network, and of course, the ubiquitous password-sniffer Mimikatz.

Incident response makes no distinction

Because these utilities are in widespread use, MDR and Rapid Response treats them all equally – as though an attack is underway – and immediately alerts the targets when they’re detected.

We found the attackers took advantage of less-than-ideal security measures in place on the targeted networks. As we mentioned in our Active Adversaries Report on multiple ransomware attackers, the lack of multifactor authentication (MFA) on critical internal logins (such as management consoles) permits an intruder to use tooling that can sniff or keystroke-capture administrators’ passwords and then gain access to that management console.

It’s safe to assume that experienced threat actors are at least as familiar with Sophos Central and other console tools as the legitimate users of those consoles, and they know exactly where to go to weaken or disable the endpoint protection software. In fact, in at least one incident involving a LockBit threat actor, we observed them downloading files which, from their names, appeared to be intended to remove Sophos protection: sophoscentralremoval-master.zip and sophos-removal-tool-master.zip. So protecting those admin logins is among the most critically important steps admins can take to defend their networks.

For a list of IOCs associated with LockBit 3.0, please see our GitHub.

Acknowledgments

Sophos X-Ops acknowledges the collaboration of Colin Cowie, Gabor Szappanos, Alex Vermaning, and Steeve Gaudreault in producing this report.

Source :
https://news.sophos.com/en-us/2022/11/30/lockbit-3-0-black-attacks-and-leaks-reveal-wormable-capabilities-and-tooling/

Best Practices for Securing Your Network from Ransomware

Discover the seven network security measures that can help mitigate the risk of a ransomware attack.

66% of organizations were hit by ransomware last year* demonstrating that adversaries have become considerably more capable at executing attacks at scale than ever before. 

Modern attacks leverage legitimate IT tools such as Remote Desktop Protocol (RDP) to gain access to networks, making initial detection notoriously difficult. The root of the problem is that there’s too much implicit trust in the use of these tools which has repeatedly proven unwise.  

Implementing robust network security measures is a sure-fire way to mitigate this risk. In our new whitepaper, Best Practices for Securing Your Network from Ransomware, and in this article, we share practical network security tips to help elevate your ransomware protection. 

1. Micro-segment your network

Micro-segmenting allows you to limit the lateral movement of threats. One way to achieve this is to create small zones or VLANs and connect them via managed switches and a firewall to apply anti-malware and IPS protection between segments. This lets you identify and block threats attempting to move laterally across your network. 

2. Replace remote-access VPN with a Zero Trust Network Access solution (ZTNA)

ZTNA is the modern replacement for remote-access VPN. It eliminates the inherent trust and broad access that VPN provides, instead using the principles of Zero Trust: trust nothing, verify everything. To learn more about the benefits of ZTNA over VPN, read our article here

3. Implement the strongest possible protection

Always deploy the highest level of protection on your firewall, endpoints, servers, mobile devices, and remote access tools. In particular: 

  • Ensure your firewall has TLS 1.3 inspection, next-gen IPS, and streaming DPI with machine learning and sandboxing for protection from the latest zero-day threats 
  • Ensure your endpoints have modern next-gen protection capabilities to guard against credential theft, exploits, and ransomware 

4. Reduce the surface area of cyberattacks

We recommend that you review your firewall rules and eliminate any remote access or RDP system access through VPN, NAT, or port-forwarding, and ensure that any traffic flows are properly protected. Eliminating exposure from remote access goes a long way in reducing the number of in-roads for attackers to launch ransomware attacks. 

5. Keep your firmware and software patched and up-to-date 

This is important for both your network infrastructure (such as your firewall or remote-access software or clients) and your systems given that every update includes important security patches for previously discovered vulnerabilities.  

6. Use multi-factor authentication (MFA)

Ensure your network operates on a zero-trust model where every user and device has to continually earn trust by verifying their identity. Also, enforce a strong password policy and consider adopting authentication solutions like Windows Hello for Business.  

7. Instantly respond to cyberattacks

Use automation technologies and human expertise to accelerate cyber incident response and remediation. Ensure your network security infrastructure helps you automatically respond to active attacks so you can isolate a compromised host before it can cause serious damage.  

An increasingly popular way to achieve this is via a managed detection and response (MDR) service. MDR is a fully managed, 24/7 service delivered by experts who specialize in detecting and responding to cyberattacks that technology solutions alone cannot prevent.  To learn more on the benefits of MDR, read our article here. 

Learn more

To explore these best practices in greater detail and to learn how Sophos network security solutions elevate your ransomware protection, download our whitepaper here

Sophos provides everything you need to fully secure your network from attacks, including firewalls, ZTNA, switches, wireless, remote-edge devices, messaging protection, MDR, next-gen endpoint protection, EDR and XDR. Plus, everything’s managed via a single cloud management console — Sophos Central — and works together to deliver Synchronized Security and cross-product threat detection and response. 

For more information and to discuss how Sophos can help you, speak with one of our advisors or visit www.sophos.com today. 

* The State of Ransomware 2022, Sophos

Source :
https://news.sophos.com/en-us/2022/11/28/best-practices-for-securing-your-network-from-ransomware/

Endpoint Best Practices to Block Ransomware

Discover the six endpoint security measures that can help mitigate the risk of a ransomware attack.

With 66% of organizations hit by attacks last year, ransomware remains one of greatest cyber threats to organizations across the globe.

The barrier to entry for would-be ransomware actors is now lower than ever, largely due to the seismic shift to the ‘as-a-service’ model that has put advanced threat tactics into the hands of nearly any criminal that wants them. Furthermore, as cyber defenses continue to get stronger, ransomware operators have evolved their approaches in an attempt to bypass today’s advanced protection technologies, abusing legitimate IT tools and even learning new programming languages to evade detection.

Endpoint protection remains one of the most effective ways to defend your devices from ransomware, but it must configured properly to deliver optimum protection. In our recently updated report Endpoint Best Practices to Block Ransomware, and in this article, we share practical endpoint security tips to help elevate your ransomware defenses.

1.Turn on all policies and ensure all features are enabled

Policies are designed to stop specific threats. Regularly checking that all protection options are enabled ensures your endpoints are protected against current and emerging ransomware.

Sophos customers managing their endpoint protection through Sophos Central benefit from the “Account Health Check” tool, which automatically assesses your account configuration to identify potential security gaps and guides you in how to optimize protection. You can learn more about this feature here.

2.Regularly review your exclusions

Exclusions prevent trustworthy directories and file types from being scanned for malware. They are sometimes used to reduce system delays and minimize the risk of false-positive security alerts. Over time, a growing list of excluded directories and file types can impact many people across a network. Malware that manages to make its way into excluded directories — perhaps accidentally moved by a user — will likely succeed. Regularly check your list of exclusions within your threat protection settings and limit the number of exclusions.

3.Enable multi-factor authentication (MFA)

MFA provides an additional layer of security after the first factor, which is often a password. Enabling MFA across your applications is critical for all users who have access to your security console. Doing so ensures access to your endpoint protection solution is secure and not prone to accidental or deliberate attempts to change your settings that can otherwise leave your endpoint devices vulnerable to attacks. MFA is also critical to secure RDP.

4.Ensure every endpoint is protected and up to date

Check your devices regularly to find out if they’re protected and up to date. A device not functioning correctly may not be protected and could be vulnerable to a ransomware attack. Endpoint security tools often provide this telemetry. An IT hygiene maintenance program is also helpful for regularly checking for any potential IT issues.

5.Maintain good IT hygiene

Regularly evaluating your IT hygiene ensures your endpoints and the software installed on them run at peak efficiency. It also mitigates your cybersecurity risk and can save you time when you remediate future incidents.

6.Proactively hunt for active adversaries across your network

In today’s threat landscape, malicious actors are more cunning than ever, often deploying legitimate tools and stolen credentials to avoid detection. To identify and stop these attacks, it’s essential to proactively hunt for advanced threats and active adversaries. Once found, you also need to be able to take appropriate actions to quickly stop them. Tools such as extended detection and response (XDR) enable security analysts to conduct threat hunting and neutralization. Organizations with these technologies should take full advantage of them.

Many organizations struggle to maintain round-the-clock coverage to defend against advanced ransomware attacks — that’s why managed detection and response (MDR) services are key. MDR services provide 24/7 threat hunting delivered by experts who specialize in detecting and responding to cyberattacks that technology solutions alone cannot prevent. They also provide the highest level of protection against advanced, human-led ransomware attacks. To learn more on the benefits of MDR, read our article here.

To explore these best practices in greater detail and to learn how Sophos security solutions elevate your ransomware protection, download our whitepaper here.

Learn More

Sophos Endpoint reduces the attack surface and prevents attacks from running. It combines anti-exploit, anti-ransomware, deep learning AI, and control technology to stop attacks before they impact your systems. It integrates powerful extended detection and response (XDR) with automated detections and investigations, so you can minimize the time to detect and respond to threats.

Source :
https://news.sophos.com/en-us/2022/12/06/endpoint-best-practices-to-block-ransomware/

The Art of Cyber War: Sun Tzu and Cybersecurity

Weighing the lessons of Sun Tzu and how they apply to cybersecurity.

Sun Tzu sought to revolutionize the way war was fought. That’s saying quite a bit, since he was born in 544 BCE and lived during an era when most wars were little more than gruesome bludgeoning events between one or more groups armed with axes, clubs and sharp sticks.

While not much information about Sun Tzu’s life has survived, we know he was employed by the then-ruler of the Kingdom of Wei in what is now the northeastern heart of China. He was a Chinese general and philosopher who envisioned the psychological aspects of war, which was a completely original approach to armed conflict in ancient China.

Many historians believe Sun Tzu’s book was intended to help his colleagues engage in the many regional conflicts they faced. Today, Sun Tzu’s the Art of War is a bestseller that has transcended 2,000 years and hundreds of wars. The book has become a kind of Rosetta Stone of military theory, cited by theorists and translated well beyond the battlefield to gain prevalence in business schools worldwide and now cybersecurity.

The Art of Cyberwar: preparation.

Adapting Sun Tzu’s many well-known quotes to cybersecurity is pretty straightforward. We looked for three that could best describe important aspects of cybersecurity: preparation, planning and knowledge. For preparation, we settled on a re-quote of this well-known warning:

Cyber warfare is of vital importance to any company. It is a matter of life and death, a road to safety or ruin.

Despite his military background, Sun Tzu claimed that direct fighting was not the best way to win battles. But when fighting was necessary, it was wise to carefully prepare for every possibility. That’s the lesson commonly ignored by companies who, after a severe breach, found themselves fined, shamed and scorned because they neglected their network security and failed to protect themselves from attackers. To prepare, we not only need the most advanced technology possible, but we must also train the workforce and make cybersecurity everyone’s business.

The Art of Cyberwar: planning.

In the realm of planning, we considered how the “art” is also a source of wisdom for attackers:

Where we intend to fight must not be made known. Force the enemy to prepare against possible attacks from several different points and cause them to spread their defenses in many directions; the numbers we shall have to face at any given moment will be proportionately few.

This re-quote relates to other stratagems where Sun Tzu urges his generals to never underestimate their enemies and to plan for all possibilities. The same goes for cyber attackers. They will pick the easy battles to ensure they have the upper-hand. Therefore, as we engage our defense, it is wise to plan our defenses as though we are already targeted and have been breached.

The Art of Cyberwar: knowledge.

Sun Tzu guides us away from making rash emotional decisions by emphasizing the importance of knowledge. He suggested that leaders gain as much knowledge as possible when preparing for battle, but not to limit themselves to the enemy’s strengths and weaknesses.

If you know the enemy and know yourself, you need not fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every battle.

This bit of advice is a direct quote and accurately describes how cybersecurity should operate. Businesses must maximize the power of threat intelligence by giving IT teams the means to analyze real-time analytics and transform every scrap of data into actionable insights. IT teams should also be empowered to consider everything that could happen and assess the best course of action before, during and after a breach.

Explore and learn about the Art of Cyber War.

War theorists have long-standing debates about categorizing military activity preparations and execution. General Carl von Clausewitz stands next to Sun Tzu as one of the best-known and most respected thinkers on the subject. Paraphrasing from Clausewitz’s book Von Kriege (On War) published in 1832), he observes that the preparation for war is scientific, but the conduct of battle is artistic. As a science, we study logistics, technology and other elements depending on need. As an art, we rely on individual talent and grit to exploit opportunities that increase the likelihood of victory. Clausewitz also believed that war belonged to the province of social life, as are all conflicts of great human interest.

Cyberwar also fits these definitions. For instance, consider business activity as a combination of science, art and social life. As businesses compete in the marketplace, they carefully analyze the competition, create ways to appeal to audiences and press for social engagement and interaction. Shouldn’t we apply the same level of attention and resources for our cybersecurity? We think Sun Tzu would rub his beard and nod profoundly.

Cyberattacks for this year already eclipse the full-year totals from 2017, 2018 and 2019, according to the mid-year update to the 2022 SonicWall Cyber Threat Report. And new attack vectors are coming online every day. Without adequate preparation, planning and knowledge, companies and their customers are at a high risk of falling victim to devastating cyberattacks.

Explore and learn about the art and understand the science. Book your seat for MINDHUNTER 11, “The Art of Cyber War,” and learn from experts on how you can keep your company safe in the coming cyberbattles.

Source :
https://blog.sonicwall.com/en-us/2022/11/the-art-of-cyber-war-sun-tzu-and-cybersecurity/

DSA-2022-024: Dell EMC PowerScale OneFS Security Update for Multiple Vulnerabilities

Summary: Dell EMC PowerScale OneFS remediation is available for multiple vulnerabilities that may potentially be exploited by malicious users to compromise the affected system.

Article Content


Impact

Critical

Overview

Proprietary Code CVEsDescriptionCVSS Base ScoreCVSS Vector String
CVE-2022-24411Dell PowerScale OneFS 8.2.2 and later contain an elevation of privilege vulnerability. A local attacker with ISI_PRIV_LOGIN_SSH and/or ISI_PRIV_LOGIN_CONSOLE may potentially exploit this vulnerability, leading to elevation of privilege. This may potentially allow users to circumvent PowerScale Compliance Mode guarantees.7.8CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVE-2022-24412Dell EMC PowerScale OneFS 8.2.x – 9.3.0.x contain an improper handling of value vulnerability. An unauthenticated remote attacker may potentially exploit this vulnerability, leading to denial-of-service.7.5CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVE-2022-23161Dell PowerScale OneFS versions 8.2.x – 9.3.0.x contain a denial-of-service vulnerability in SmartConnect. An unprivileged network attacker may potentially exploit this vulnerability, leading to denial-of-service.7.5CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVE-2022-23160Dell PowerScale OneFS 8.2.x – 9.3.0 contain an Improper Handling of Insufficient Permissions vulnerability. An remote malicious user may potentially exploit this vulnerability, leading to gaining write permissions on read-only files. 5.4CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L
CVE-2022-23159Dell PowerScale OneFS 8.2.x – 9.3.0.x contain a missing release of memory after effective lifetime vulnerability. An authenticated user with ISI_PRIV_LOGIN_SSH and/or ISI_PRIV_LOGIN_CONSOLE and ISI_PRIV_AUTH_PROVIDERS privileges may potentially exploit this vulnerability, leading to a Denial-Of-Service. This can also impact a cluster in Compliance mode. Dell recommends to update at the earliest opportunity.4.8CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H
CVE-2022-23163Dell PowerScale OneFS 8.2.x – 9.3.0.x contain a denial of service vulnerability. A local attacker with minimal privileges may potentially exploit this vulnerability, leading to denial of service/data unavailability.4.7CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
CVE-2022-24413Dell PowerScale OneFS 8.2.2-9.3.x contain a time-of-check-to-time-of-use vulnerability. A local user with access to the filesystem may potentially exploit this vulnerability, leading to data loss.4.4CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L
Third-Party ComponentCVEMore information
Apache Portable RuntimeCVE-2017-12613CVE-2021-35940

Dell Technologies recommends all customers consider both the CVSS base score and any relevant temporal and environmental scores that may impact the potential severity associated with a particular security vulnerability.

Affected Products and Remediation

CVEs Addressed Affected VersionsUpdated VersionsLink to Update
CVE-2022-244118.2.2, 9.0.0, 9.1.1.x, and 9.2.0.x.Upgrade your version of OneFSPowerScale OneFS Downloads Area











 
9.1.0.x, 9.2.1.x, and 9.3.0.x.Download and install the latest RUP
CVE-2022-244128.2.2, 9.0.0, 9.1.1.x, and 9.2.0.x.Upgrade your version of OneFS
9.1.0.x, 9.2.1.x, and 9.3.0.x.Download and install the latest RUP
CVE-2022-231618.2.2, 9.0.0, 9.1.1.x, and 9.2.0.x.Upgrade your version of OneFS
9.1.0.x, 9.2.1.x, and 9.3.0.x.Download and install the latest RUP
CVE-2017-126138.2.2, 9.0.0, 9.1.1.x, and 9.2.0.x.Upgrade your version of OneFS
9.1.0.x, 9.2.1.x, and 9.3.0.x.Download and install the latest RUP
CVE-2022-231608.2.2, 9.0.0, 9.1.1.x, and 9.2.0.x.Upgrade your version of OneFS
9.1.0.x, 9.2.1.x, and 9.3.0.x.Download and install the latest RUP
CVE-2022-231598.2.2, 9.0.0, 9.1.1.x, and 9.2.0.x.Upgrade your version of OneFS
9.1.0.x, 9.2.1.x, and 9.3.0.x.Download and install the latest RUP
CVE-2022-231638.2.2, 9.0.0, 9.1.1.x, and 9.2.0.x.Upgrade your version of OneFS
9.1.0.x, 9.2.1.x, and 9.3.0.x.Download and install the latest RUP
CVE-2022-244138.2.2, 9.0.0, 9.1.1.x, and 9.2.0.x.Upgrade your version of OneFS
9.1.0.x, 9.2.1.x, and 9.3.0.x.Download and install the latest RUP

Workarounds and Mitigations

CVEs addressedWorkaround or Mitigation
CVE-2022-24411none
CVE-2022-24412Disable netbios support if enabled (default setting: disabled):Open an SSH connection on any node in the cluster and log on using the “root” account.Run the following command:#isi smb settings global modify –support-netbios noTo verify that the service is disabled, run the following command:#isi smb settings global view | grep NetBIOSIf the service is disabled, the following output is displayed:#Support NetBIOS: No
CVE-2022-23161Configure a valid FQDN in the SmartConnect service name field for every SmartConnect subnet on the cluster:#isi network subnets modify <subnet> –sc-service-name cluster-sc.example.com
CVE-2017-12613none
CVE-2022-23160Configure SMB share permissions of any SyncIQ target directory to prevent writes.
CVE-2022-23159none
CVE-2022-23163none
CVE-2022-24413none
Revision History
RevisionDateDescription
1.02022-03-03Initial
1.12022-03-04Corrected Impact
Related Information

Dell Security Advisories and Notices
Dell Vulnerability Response Policy
CVSS Scoring Guide


The information in this Dell Technologies Security Advisory should be read and used to assist in avoiding situations that may arise from the problems described herein. Dell Technologies distributes Security Advisories to bring important security information to the attention of users of the affected product(s). Dell Technologies assesses the risk based on an average of risks across a diverse set of installed systems and may not represent the actual risk to your local installation and individual environment. It is recommended that all users determine the applicability of this information to their individual environments and take appropriate actions. The information set forth herein is provided “as is” without warranty of any kind. Dell Technologies expressly disclaims all warranties, either express or implied, including the warranties of merchantability, fitness for a particular purpose, title and non-infringement. In no event shall Dell Technologies, its affiliates or suppliers, be liable for any damages whatsoever arising from or related to the information contained herein or actions that you decide to take based thereon, including any direct, indirect, incidental, consequential, loss of business profits or special damages, even if Dell Technologies, its affiliates or suppliers have been advised of the possibility of such damages. Some states do not allow the exclusion or limitation of liability for consequential or incidental damages, so the foregoing limitation shall apply to the extent permissible under law.

Article Properties


Affected Product

PowerScale OneFS

Product

Product Security Information

Last Published Date

30 Nov 2022

Version

4

Article Type

Dell Security Advisory

Source :https://www.dell.com/support/kbdoc/en-us/000196009/dsa-2022-024-dell-emc-powerscale-onefs-security-update-for-multiple-vulnerabilities?lwp=rt

Industry 4.0: CNC Machine Security Risks Part 3

In this final installation of our three-part blog series, we lay out countermeasures that enterprises can do to protect their machines. We’ll also discuss our responsible disclosure as well as the feedback we got from the vendors we evaluated.

Countermeasures

We found that only two of the four vendors analyzed support authentication. Neither of them has authentication enabled by default, which leaves the machines vulnerable to attacks by malicious users. Enabling authentication is essential for protecting Industry 4.0 features from abuse.

Resource access control systems are important for reducing the impact of attacks. Many technologies allow access to all a controller’s resources, which can be dangerous. A correct approach is to adopt resource access control systems that grant limited access. This will help to ensure that only authorized users have access to the controller’s resources and that these resources are protected from unauthorized access.

When it comes to integrators and end users, we suggest these countermeasures:

  • Context-aware industrial intrusion prevention and detection systems (IPS/IDSs): These devices, which have recently seen a surge in popularity in the catalogues of security vendors, are equipped with network engines that can capture real-time traffic associated with industrial protocols to detect attacks.
  • Network segmentation: Correct network architecting is of great importance. As our research has revealed, all the tested machines expose interfaces that could be abused by miscreants.
  • Correct patching: Modern CNC machines are equipped with full-fledged operating systems and complex software, which might inevitably contain security vulnerabilities. This was indeed the case with the machines that we tested.

Responsible Disclosure

We contacted the affected vendors while tackling controllers sequentially, with our first contact in November 2021 and the last one in March 2022. The Industrial Control Systems Cyber Emergency Response Team (ICS CERT) at Cybersecurity & Infrastructure Security Agency extended invaluable help during the discussion which we are grateful for.

disclosure-process
Table 1. A summary of our responsible disclosure process

As of this writing, all four vendors have replied to our concerns and most of them have addressed, to varying degrees, our findings in a reasonable time frame. More importantly, all of them have expressed interest in our research and have decided to improve either their documentation or their communication efforts with their machine manufacturers, with the final effort of offering end users more secure solutions.

To learn more about the security risks faced by CNC machines, download our comprehensive report here.

Source :
https://www.trendmicro.com/en_us/research/22/l/cnc-machine-security-risks-part-3.html