High Severity Vulnerabilities in PageLayer Plugin Affect Over 200,000 WordPress Sites

A few weeks ago, our Threat Intelligence team discovered several vulnerabilities present in Page Builder: PageLayer – Drag and Drop website builder, a WordPress plugin actively installed on over 200,000 sites. The plugin is from the same creators as wpCentral, a plugin within which we recently discovered a privilege escalation vulnerability.

One flaw allowed any authenticated user with subscriber-level and above permissions the ability to update and modify posts with malicious content, amongst many other things. A second flaw allowed attackers to forge a request on behalf of a site’s administrator to modify the settings of the plugin which could allow for malicious Javascript injection.

We initially reached out to the plugin’s developer on April 30, 2020 and after establishing an appropriate communication channel, we provided the full disclosure on May 1, 2020. They responded quickly on May 2, 2020 letting us know that they were beginning to work on fixes. An initial patch was released on May 2, 2020 and an optimal patch was released on May 6, 2020.

These are considered high-level security issues that could potentially lead to attackers wiping your site’s content or taking over your site. We highly recommend an immediate update to the latest version available at the time of this publication, which is version 1.1.4.

Wordfence Premium customers received a new firewall rule on April 30, 2020, to protect against exploits targeting this vulnerability. Free Wordfence users will receive this rule after thirty days, on May 30, 2020.

Description: Unprotected AJAX and Nonce Disclosure to Stored Cross-Site Scripting and Malicious Modification
Affected PluginPage Builder: PageLayer – Drag and Drop website builder
Plugin Slug: pagelayer
Affected Versions: <= 1.1.1
CVE ID: Will be updated once identifier is supplied.
CVSS Score: 7.4 (High)
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:L
Fully Patched Version: 1.1.2

PageLayer is a very easy to use WordPress page builder plugin that claims to work with nearly all themes on the market and in the WordPress repository. It provides extended customization of pages through the use of widgets that can add page elements like buttons, tables, excerpts, products and more.

We discovered that nearly all of the AJAX action endpoints in this plugin failed to include permission checks. This meant that these actions could be executed by anyone authenticated on the site, including subscriber-level users. As standard, these AJAX endpoints only checked to see if a request was coming from /wp-admin through an authenticated session and did not check the capabilities of the user sending the request.

There were nonce checks in use in all of these functions, but nonces can be easily compromised if incorrectly implemented – for example, if a usable nonce is displayed within the source code of the site’s output. Unfortunately for the PageLayer plugin, this is precisely what happened. A usable nonce was visible in the header section of the source code of any page that had previously been edited using the PageLayer plugin. Any site visitor could find this nonce, whether they were logged in or not, allowing any unauthenticated user the ability to obtain a legitimate nonce for the plugin’s AJAX actions.

PageLayer nonce obtainable from page source.

Using a single nonce as the mechanism for authorization control caused various security issues in the functionalities of the page builder due to this nonce being so easily obtainable.

WordPress nonces should never be used as a means of authorization as they can easily be compromised if implemented improperly or if a loophole is found. WordPress nonces are designed to be used for CSRF protection, not authorization control. Implementing capability checks in conjunction with CSRF protection on sensitive functions for full verification provides protection to ensure a request is coming from an authorized user.

The Impact

As previously mentioned, several AJAX functions were affected, causing a large variety of potential impacts. A few of the most impactful actions were wp_ajax_pagelayer_save_contentwp_ajax_pagelayer_update_site_title, and wp_ajax_pagelayer_save_template.

122 add_action('wp_ajax_pagelayer_save_content', 'pagelayer_save_content');
314 add_action('wp_ajax_pagelayer_update_site_title', 'pagelayer_update_site_title');
940 add_action('wp_ajax_pagelayer_save_template', 'pagelayer_save_template');

The pagelayer_save_content function is used to save a page’s data through the page builder. The lack of permission checks on this function allowed authenticated users, regardless of permissions, the ability to change any data on a page edited with PageLayer.

123 124 125 126 127 128 129 130 131 132 133 134 function pagelayer_save_content(){     // Some AJAX security     check_ajax_referer('pagelayer_ajax', 'pagelayer_nonce');     $content = $_POST['pagelayer_update_content'];     $postID = (int) $_GET['postID'];     if(empty($postID)){         $msg['error'] =  __pl('invalid_post_id');     }

An attacker could wipe the pages completely or inject any content they would like on the site’s pages and posts. In addition, a few widgets allowed Javascript to be injected, including the “Button” widget. There is no sanitization on the “Button” widget’s text, which allows for malicious Javascript to be used as a text. This Javascript would execute once any user browsed to a page containing that button.

PageLayer button with alert JS injected.

The pagelayer_update_site_title function is used to update a site’s title. The lack of permission checks on this function allowed authenticated users the ability to change a site title to any title of their choosing. Though less detrimental, this could still affect your sites search engine ranking if unnoticed for an extended period of time.

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 function pagelayer_update_site_title(){     global $wpdb;     // Some AJAX security     check_ajax_referer('pagelayer_ajax', 'pagelayer_nonce');     $site_title = $_POST['site_title'];     update_option('blogname', $site_title);     $wpdb->query("UPDATE `sm_sitemeta`                 SET meta_value = '".$site_title."'                 WHERE meta_key = 'site_name'");     wp_die(); }

The pagelayer_save_template function is used to save PageLayer templates for the PageLayer Theme Builder. The lack of permission checks on this function allowed authenticated users the ability to create new PageLayer templates that were saved as new posts.

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 function pagelayer_save_template() {          // Some AJAX security     check_ajax_referer('pagelayer_ajax', 'pagelayer_nonce');          $done = [];          $post_id = (int) $_GET['postID'];          // We need to create the post     if(empty($post_id)){              // Get the template type         if(empty($_POST['pagelayer_template_type'])){             $done['error'] = __pl('temp_error_type');             pagelayer_json_output($done);         }                  $ret = wp_insert_post([             'post_title' => $_POST['pagelayer_lib_title'],             'post_type' => 'pagelayer-template',             'post_status' => 'publish',             'comment_status' => 'closed',             'ping_status' => 'closed'         ]);

Though this function was intended to be used in the PRO version of the plugin, the function could still be executed in the free version, affecting all 200,000+ users of the PageLayer plugin. An attacker could create a new template, which created a new page on the site, and inject malicious Javascript in the same way they could with the pagelayer_save_content function.

Malicious Javascript can be used to inject new administrative users, redirect site visitors, and even exploit a site’s user’s browser to compromise their computer.

The Patch

In the latest version of the plugin, the developers implemented permissions checks on all of the sensitive functions that could make changes to a site, and reconfigured the plugin to create separate nonces for the public and administrative areas of a WordPress site.

150 151 152 153 154 // Are you allowed to edit ? if(!pagelayer_user_can_edit($postID)){     $msg['error'][] =  __pl('no_permission');     pagelayer_json_output($msg); }
Description: Cross-Site Request Forgery to Stored Cross-Site Scripting
Affected PluginPage Builder: PageLayer – Drag and Drop website builder
Plugin Slug: pagelayer
Affected Versions: <= 1.1.1
CVE ID: Will be updated once identifier is supplied.
CVSS Score: 8.8 (High)
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
Fully Patched Version: 1.1.2

The PageLayer plugin registers a settings area where configuration changes can be made. This includes functionality such as where the editor is enabled, basic content settings, basic information configurations, and more.

PageLayer settings area.

The settings update function used a capability check to verify that a user attempting to make any changes had the appropriate permissions. However, there was no CSRF protection to verify the legitimacy of any request attempting to update a site’s settings. This made it possible for attackers to trick an administrator into sending a request to update any of the PageLayer settings.

156 157 158 159 160 161 162 163 164 165 166 167 function pagelayer_settings_page(){     $option_name = 'pl_gen_setting' ;     $new_value = '';     if(isset($_REQUEST['pl_gen_setting'])){         $new_value = $_REQUEST['pl_gen_setting'];                  if ( get_option( $option_name ) !== false ) {                  // The option already exists, so we just update it.             update_option( $option_name, $new_value );

The “Information” tab in the settings area provides site owners with a way to set a default address, telephone number, and contact email address that are displayed whenever the corresponding widgets were used on a page. There was no sanitization on the address or telephone number settings, and due to the administrator’s capability to use unfiltered_html, Javascript could be injected into these settings.

PageLayer Address updated with alert JS.

The Impact

This allowed attackers the ability to inject malicious scripts while exploiting the CSRF vulnerability in the settings. If the widget was already enabled, any injected malicious scripts would execute whenever someone browsed to a page containing that widget. If the widget was not yet enabled, the malicious scripts could be executed once an administrator started editing and inserting the widget into a page. As always, these scripts can do things like create a new administrative account and redirect users to malicious sites.

The Patch

In the patched version of the plugin, the developers implemented CSRF protection consisting of a WordPress nonce and verification of that nonce when updating settings.

176 177 178 if(isset($_REQUEST['submit'])){     check_admin_referer('pagelayer-options'); }

PoC Walkthrough: pagelayer_save_content

Disclosure Timeline

April 24, 2020 to April 30, 2020 – Initial discovery of minor security flaw and deeper security analysis of plugin.
April 30, 2020 – Firewall rule was released for Wordfence Premium customers. We made our initial contact attempt with the plugin’s development team.
May 1, 2020 – The plugin’s development team confirms appropriate inbox for handling discussion. We provide full disclosure.
May 2, 2020 – Developer acknowledges receipt and confirms that they are beginning to work on fixes. An update is released the same day.
May 4, 2020 – We analyze the fixes and discover a few security issues left unpatched and responsibly disclose these issues to the developer.
May 6, 2020 – Developer releases the final sufficient patch.
May 30, 2020 – Free Wordfence users receive firewall rule.

Conclusion

In today’s post, we detailed several flaws related to unprotected AJAX actions and nonce disclosure that allowed for attackers to make several malicious modifications to a site’s pages and posts in addition to providing attackers with the ability to inject malicious Javascript. These flaws have been fully patched in version 1.1.2. We recommend that users immediately update to the latest version available, which is version 1.1.4 at the time of this publication.

Sites running Wordfence Premium have been protected from attacks against this vulnerability since April 30, 2020. Sites running the free version of Wordfence will recieve this firewall rule update on May 30, 2020. If you know a friend or colleague who is using this plugin on their site, we highly recommend forwarding this advisory to them to help keep their sites protected.

Source :
https://www.wordfence.com/blog/2020/05/high-severity-vulnerabilities-in-pagelayer-plugin-affect-over-200000-wordpress-sites/

Large Scale Attack Campaign Targets Database Credentials

Between May 29 and May 31, 2020, the Wordfence Firewall blocked over 130 million attacks intended to harvest database credentials from 1.3 million sites by downloading their configuration files.

The peak of this attack campaign occurred on May 30, 2020. At this point, attacks from this campaign accounted for 75% of all attempted exploits of plugin and theme vulnerabilities across the WordPress ecosystem.

A graph showing the spike in attacks
We were able to link these attacks to the same threat actor previously targeting XSS vulnerabilities at a similar scale. All Wordfence users, including Wordfence Premium and those still using the free version of Wordfence, are protected by our firewall’s built-in directory traversal protection.

Different vulnerabilities, same IPs

The previously reported XSS campaigns sent attacks from over 20,000 different IP addresses. The new campaign is using the same IP addresses, which accounted for the majority of the attacks and sites targeted. This campaign is also attacking nearly a million new sites that weren’t included in the previous XSS campaigns.

As with the XSS campaigns, almost all of the attacks are targeted at older vulnerabilities in outdated plugins or themes that allow files to be downloaded or exported. In this case the attackers are attempting to download wp-config.php, a file critical to all WordPress installations which contains database credentials and connection information, in addition to authentication unique keys and salts. An attacker with access to this file could gain access to the site’s database, where site content and users are stored.

Indicators of Compromise

Attacks by this campaign should be visible in your server logs. Look for any log entries containing wp-config.php in the query string that returned a 200 response code.

The top 10 attacking IP addresses in this campaign are listed below.

200.25.60.53
51.255.79.47
194.60.254.42
31.131.251.113
194.58.123.231
107.170.19.251
188.165.195.184
151.80.22.75
192.254.68.134
93.190.140.8

What should I do?

Sites running Wordfence are protected against this campaign. If your site is not running Wordfence, and you believe you have been compromised, change your database password and authentication unique keys and salts immediately.

If your server is configured to allow remote database access, an attacker with your database credentials could easily add an administrative user, exfiltrate sensitive data, or delete your site altogether. Even if your site does not allow remote database access, an attacker who knows your site’s authentication keys and salts may be able to use them to more easily bypass other security mechanisms.

If you’re not comfortable making the changes above, please contact your host, since changing your database password without updating the wp-config.php file can temporarily take down your site.

Conclusion

In today’s post, we covered another large-scale attack campaign against WordPress sites by a threat actor we have been tracking since February. All Wordfence users, including sites running the free version of Wordfence, and Wordfence Premium, are protected against these attacks. Nonetheless, we urge you to make sure that all plugins and themes are kept up to date, and to share this information with any other site owners or administrators you know. Attacks by this threat actor are evolving and we will continue to share additional information as it becomes available.

Source :
https://www.wordfence.com/blog/2020/06/large-scale-attack-campaign-targets-database-credentials/

WordPress 5.4.2 Patches Multiple XSS Vulnerabilities

WordPress Core version 5.4.2 has just been released. Since this release is marked as a combined security and bug fix update, we recommend updating as soon as possible. With that said, most of the security fixes themselves are for vulnerabilities that would require specific circumstances to exploit. All in all this release contains 6 security fixes, 3 of which are for XSS (Cross-Site Scripting) vulnerabilities. Both the free and Premium versions of Wordence have robust built-in XSS protection which will protect against potential exploitation of these vulnerabilities.

A Breakdown of each security issue

An XSS issue where authenticated users with low privileges are able to add JavaScript to posts in the block editor

This flaw would have made it possible for an attacker to inject JavaScript into a post by manipulating the attributes of Embedded iFrames. This would be exploitable by users with the edit_posts capability, meaning users with the Contributor role or higher in most configurations.

The changeset in question is:
https://core.trac.wordpress.org/changeset/47947/

This issue was discovered and reported by Sam Thomas (jazzy2fives)

An XSS issue where authenticated users with upload permissions are able to add JavaScript to media files

This flaw would have made it possible for an attacker to inject JavaScript into the “Description” field of an uploaded media file. This would be exploitable by users with the upload_files capability, meaning users with the Author role or higher in most configurations.

The changeset in question is:
https://core.trac.wordpress.org/changeset/47948/

This issue was discovered and reported by Luigi – (gubello.me)

An open redirect issue in wp_validate_redirect()

For this flaw, the wp_validate_redirect function failed to sufficiently sanitize URLs supplied to it. As such it would have been possible under certain circumstances for an attacker to craft a link to an impacted site that would redirect visitors to a malicious external site. This would not require specific capabilities, but it would typically require either social engineering or a separate vulnerability in a plugin or theme to exploit.

The changeset in question is:
https://core.trac.wordpress.org/changeset/47949/

This issue was discovered and reported by Ben Bidner of the WordPress Security Team.

An authenticated XSS issue via theme uploads

This flaw would have made it possible for an attacker to inject JavaScript into the stylesheet name of a broken theme, which would then be executed if another user visited the Appearance->Themes page on the site. This would be exploitable by users with the install_themes or edit_themes capabilities, which are only available to administrators in most configurations.

The changeset in question is:
https://core.trac.wordpress.org/changeset/47950/

This issue was discovered and reported by Nrimo Ing Pandum

An issue where set-screen-option can be misused by plugins leading to privilege escalation

For this flaw, a plugin incorrectly using the set-screen-option filter to save arbitrary or sensitive options could potentially be used by an attacker to gain administrative access. We are not currently aware of any plugins that are vulnerable to this issue.

The changeset in question is:
https://core.trac.wordpress.org/changeset/47951/

This issue was discovered and reported by Simon Scannell of RIPS Technologies

An issue where comments from password-protected posts and pages could be displayed under certain conditions

For this flaw, comment excerpts on password-protected posts could have been visible on sites displaying the “Recent Comments” widget or using a plugin or theme with similar functionality.

The changeset in question is:
https://core.trac.wordpress.org/changeset/47984/

This issue was discovered and reported by Carolina Nymark

Note: This is unrelated to an issue where unmoderated spam comments were briefly visible and indexable by search engines.

What should I do?

Most of these vulnerabilities appear to be exploitable only under limited circumstances or by trusted users, but we recommend updating as soon as possible. Attackers may find ways to exploit them more easily, or the researchers who discovered these vulnerabilities may publish Proof of Concept code that allows simpler exploitation. This is a minor WordPress release, so most sites will automatically update to the new version.

Conclusion

We’d like to thank the WordPress core team and the researchers who discovered and responsibly reported these vulnerabilities for making WordPress safer for everyone.

You can find the official announcement of the WP 5.4.2 release on this page. If you have any questions or comments, please don’t hesitate to post them below and we’ll do our best to answer them in a timely manner. If you are one of the researchers whose work is included above and would like to provide additional detail or corrections, we welcome your comments.

Source :
https://www.wordfence.com/blog/2020/06/wordpress-5-4-2-patches-multiple-xss-vulnerabilities/

Inadequate security makes WordPress sites a land of opportunity for hackers

The famous American robber Willie Sutton was asked once why he robbed banks. His answer was humorous, direct, and revealing: “Because that’s where the money is.

For hackers, WordPress sites represent a similar rich vein of opportunity. WordPress is one of the world’s most popular web publishing platforms. Its ease of publishing is popular with smaller businesses and organizations looking to establish a quick and easy presence on the internet.

Unfortunately, that same ease lends itself to insecure web practices, such as web platforms that aren’t properly protected, weak passwords, and lack of administrative controls. The latter can also make it easy for increased lateral movement once an initial web server is compromised. This can greatly increase the scale of damage, making WordPress infrastructure very lucrative for hackers.

Cisco Umbrella threat researchers have been analyzing attacks on various WordPress sites recently. We found some interesting examples of how attackers are compromising WordPress sites. Let’s look into it.

How do attackers compromise a WordPress site?

Generally, what we’ve seen are variations of land-and-expand techniques. Hackers seek opportunities to infiltrate weakly protected WordPress sites, identify associated assets through phishing and other subterfuge, and expand their network of compromised assets for further expansion of opportunities to monetize their activities.

There are several ways to infiltrate WordPress infrastructure. But, generally, we’ve seen attackers progress by these sorts of actions:

  1. Take control of the WordPress site through brute force attacks, trojans inside themes and plug-ins, and exploitation of poorly protected admin controls
  2. Host malware
  3. Host phishing pages that mimic popular brands to collect more information
  4. Host spam pages to create more intelligence-gathering opportunities
  5. Most importantly, use the compromised site to attack other WordPress sites

How does an attacker find and select a site to attack?

An attacker can use systems that are designed to scan the internet for vulnerable WordPress sites and then notify the attacker’s command-and-control server.

Another method to discover vulnerable sites for attack is open source domain intelligence. For example, an attacker could find a domain by using Google Dorks.

When our researchers examined the compromised machines, they found a lot of malicious PHP scripts and malware.

First, an attacker would append the malicious code in the index page. So when a customer visits the WordPress site, it redirects to spam pages — or it may trigger the server to do something else.

 An example of such spam page redirection follows:

Example of spam page redirection - Cisco Umbrella Blog

This attack type is not new — we have been seeing attacks like this for a while.

We also observed cases where malware was hosted on the website. In one case, we found a trojan that made contact with the domain detroidcliper[.]at.

example of a command-and-control server whose domain has very high query volume - Cisco Umbrella Blog

This particular domain is a command-and-control server. It receives a lot of queries, with high query volumes reaching a max of 94k queries. We also observed a login panel hosted at this domain, that matches the login panel of Sarwent.

Example of a login panel that matches the login panel of sarwent, which is implicated in prior attacks - Cisco Umbrella Blog

Let’s take a closer look at malicious scripts that were hosted on a compromised WordPress site. Most of them are PHP scripts which are obfuscated heavily. The most commonly used obfuscation method is eval(gzuncompress(base64_decode(Endoded_content)));

Example of the most commonly used obfuscation method - Cisco Umbrella Blog

After decoding, we found the following script.

Example of obfuscated PHP script found after decoding - Cisco Umbrella Blog

This PHP code contains an executable file delivered via Base64 encoding. When the PHP code runs, the executable file executes directly in the memory.

Example of WordPress site with PHP code containing an executable file delivered via Base64 encoding - Cisco Umbrella Blog

Another function in the PHP code also searches for an exploit in order to perform privilege escalation.

Example of a function in the PHP code searching for an exploit to escalate the privilege in WordPress - Cisco Umbrella Blog

The remainder of the malicious scripts perform various tasks. Some of these redirect to spam sites, give shell access to attackers, and others are used to attempt to compromise other WordPress sites. Generally, the objectives are to collect more intelligence in search of further opportunities to exploit, and compromise more sites to continue the cycle.

A brute force WordPress attack is an ongoing process. On average, a single compromised WordPress site tries to brute force about 2,000 other domains per day. Not every WordPress site will be compromised, but enough WordPress sites have easy-to-guess common passwords to make this type of attack worthwhile. Usually, attackers keep a list of simple passwords and use them to launch a brute force attack on a site.

During an analysis of network traffic, we noticed that one of the compromised sites was contacting another domain continuously.

The domain was styleofphucet[.]at. Surprisingly, this one also has high query volume.

Example showing that the higher the query volume of the command-and-control server, the more the sites have been compromised - Cisco Umbrella Blog

This domain was repeatedly contacted during the same compromise that included network callouts to detroidcliper[.]at.

While we were researching more about this attack, we found a domain that was embedded in pages of many compromised domains. We found that it hosted an open directory that was very revealing. Inside the directory, we found almost all of the WordPress domains related to the attacks.

Example of a WordPress directory where we found almost all the domains involved in the attacks - Cisco Umbrella Blog
Example of a massive amount of random text that may be browser history of victims - Cisco Umbrella Blog

We observed that a massive amount of random text was collected and stored by the attacker. After closer analysis, we realized that it may be browser history of victims.

Why would an attacker store a random massive list of browser history? Isn’t this strange?

We believe that attackers use this browser history to search in various search engines for vulnerable domains using a bot. Any of those domains may become the target.

Also, the attackers use the sitemap for the pages they have hosted and let the bots crawl them. This way, when a user searches for a website, they get the pages that are hosted by the attackers instead of what they intended to visit.

How can WordPress administrators protect themselves from these kinds of exploits? Whenever a WordPress site is being hosted, the administrator has to make sure that all security requirements are met. So many attacks that are happening today are because of a lack of security controls, use of weak passwords, and because of vulnerable themes and plugins.

Here are some best practices to protect WordPress sites:

  1. Use a strong password and change it regularly
  2. Use adequate access controls
  3. Update plugins and themes

By taking these types of measures, you can reduce the attack surface so that your site is less likely to be compromised.

With Cisco Umbrella, you get instant access to interactive threat intelligence that lets you conduct investigations and uncover attacks before they start. Our recursive DNS servers resolve more than 200 billion requests per day, so we can see the relationships between malware, domains, IPs, and networks across the internet. Our threat analysis learns from internet activity patterns to automatically identify attacker infrastructure being staged for the next threat.

Learn more about how predictive intelligence can make a difference in your ability to stop threats by reading our technical paper, The Role of Predictive Intelligence in the Fight Against Cyber Attacks.

Check out our recent article on threat intelligence to dive into pandemic-themed phishing attacks and uncover how attackers orchestrate sophisticated campaigns to take advantage of the current pandemic.

IOCS

Possible Compromised sites:
https://github.com/minakushi/Domains

Hash:
593b2c9292dc36ab619453bb7d8480f78d5d1e04e811f5f1f8d9b612de771718

Uris:
/15hftjsefg.php
/wp-ss.php
/jtyergd
/jtyergd
/hoinudh12jshs
/qoclekrjs
/alekfjwh62jshd.php
/xlvkfjehq
/bzk7md
/l3x7zxz9dsv3rt.php
/zzz.php
/wp_butt.php
/wp_class_datalib.php
/runargg.php
/shathagg.php
/roman.php
/wp-less
/story2.php Source :
https://umbrella.cisco.com/blog/inadequate-security-makes-wordpress-sites-a-land-of-opportunity-for-hackers

Australian researchers record world’s fastest internet speed from a single optical chip

Researchers from Monash, Swinburne and RMIT universities have successfully tested and recorded Australia’s fastest internet data speed, and that of the world, from a single optical chip – capable of downloading 1000 high definition movies in a split second.

Published in the prestigious journal Nature Communications, these findings have the potential to not only fast-track the next 25 years of Australia’s telecommunications capacity, but also the possibility for this home-grown technology to be rolled out across the world.

In light of the pressures being placed on the world’s internet infrastructure, recently highlighted by isolation policies as a result of COVID-19, the research team led by Dr Bill Corcoran (Monash), Distinguished Professor Arnan Mitchell (RMIT) and Professor David Moss (Swinburne) were able to achieve a data speed of 44.2 Terabits per second (Tbps) from a single light source.

This technology has the capacity to support the high-speed internet connections of 1.8 million households in Melbourne, at the same time, and billions across the world during peak periods.

Demonstrations of this magnitude are usually confined to a laboratory. But, for this study, researchers achieved these quick speeds using existing communications infrastructure where they were able to efficiently load-test the network.

They used a new device that replaces 80 lasers with one single piece of equipment known as a micro-comb, which is smaller and lighter than existing telecommunications hardware. It was planted into and load-tested using existing infrastructure, which mirrors that used by the NBN.

The micro-comb chip over a A$2 coin. This tiny chip produces an infrared rainbow of light, the equivalent of 80 lasers. The ribbon to the right of the image is an array of optical fibres connected to the device. The chip itself measures about 3x5 mm.
The micro-comb chip over a A$2 coin. This tiny chip produces an infrared rainbow of light, the equivalent of 80 lasers. The ribbon to the right of the image is an array of optical fibres connected to the device. The chip itself measures about 3×5 mm.

It is the first time any micro-comb has been used in a field trial and possesses the highest amount of data produced from a single optical chip.

“We’re currently getting a sneak-peak of how the infrastructure for the internet will hold up in two to three years’ time, due to the unprecedented number of people using the internet for remote work, socialising and streaming. It’s really showing us that we need to be able to scale the capacity of our internet connections,” says Dr Bill Corcoran, co-lead author of the study and Lecturer in Electrical and Computer Systems Engineering at Monash University.

“What our research demonstrates is the ability for fibres that we already have in the ground, thanks to the NBN project, to be the backbone of communications networks now and in the future. We’ve developed something that is scalable to meet future needs.

“And it’s not just Netflix we’re talking about here – it’s the broader scale of what we use our communication networks for. This data can be used for self-driving cars and future transportation and it can help the medicine, education, finance and e-commerce industries, as well as enable us to read with our grandchildren from kilometres away.”

To illustrate the impact optical micro-combs have on optimising communication systems, researchers installed 76.6km of ‘dark’ optical fibres between RMIT’s Melbourne City Campus and Monash University’s Clayton Campus. The optical fibres were provided by Australia’s Academic Research Network.

Within these fibres, researchers placed the micro-comb – contributed by Swinburne, as part of a broad international collaboration – which acts like a rainbow made up of hundreds of high quality infrared lasers from a single chip. Each ‘laser’ has the capacity to be used as a separate communications channel.

Researchers were able to send maximum data down each channel, simulating peak internet usage, across 4THz of bandwidth.

Distinguished Professor Mitchell said reaching the optimum data speed of 44.2 Tbps showed the potential of existing Australian infrastructure. The future ambition of the project is to scale up the current transmitters from hundreds of gigabytes per second towards tens of terabytes per second without increasing size, weight or cost.

“Long-term, we hope to create integrated photonic chips that could enable this sort of data rate to be achieved across existing optical fibre links with minimal cost,” Distinguished Professor Mitchell says.

“Initially, these would be attractive for ultra-high speed communications between data centres. However, we could imagine this technology becoming sufficiently low cost and compact that it could be deployed for commercial use by the general public in cities across the world.”

Professor Moss, Director of the Optical Sciences Centre at Swinburne, says: “In the 10 years since I co-invented micro-comb chips, they have become an enormously important field of research.

“It is truly exciting to see their capability in ultra-high bandwidth fibre optic telecommunications coming to fruition. This work represents a world-record for bandwidth down a single optical fibre from a single chip source, and represents an enormous breakthrough for part of the network which does the heaviest lifting. Micro-combs offer enormous promise for us to meet the world’s insatiable demand for bandwidth.”

To download a copy of the paper, please visit: https://doi.org/10.1038/s41467-020-16265-x

Source :
http://www.swinburne.edu.au/news/latest-news/2020/05/australian-researchers-record-worlds-fastest-internet-speed-from-a-single-optical-chip.php

DoH! What’s all the fuss about DNS over HTTPS?

Cisco Umbrella now supports DoH

Not all DNS services are created equally. Some break. Some fail to connect to domain servers. Speeds can vary, and if not kept up-to-date, some DNS services can affect the ability to work efficiently. But with more than a decade of leadership in recursive DNS services (13+ years and counting!) Cisco Umbrella boasts significant advantages when it comes to understanding how both legitimate and non-legitimate parties register domains, provision infrastructure, and route internet traffic. Back in the old days when we were known as OpenDNS, we started with the mission to deliver the most reliable, safest, smartest, and fastest DNS resolution in the world. It was a pretty tall order, but we did it — and we’re still doing it today under our new name, Cisco Umbrella. (Here’s one for the trivia champions: OpenDNS was acquired by Cisco on August 27, 2015.) In fact, TechRadar Pro recognized us as having the best free and public DNS server for 2020. You don’t have to take our word for it — check it out here. But just because we’re the best doesn’t mean we’ll stop innovating. We recently announced support for DNS over HTTPS, commonly referred to as DoH, a standard published by the Internet Engineering Task Force (IETF). Cisco Umbrella offers DNS resolution over an HTTPS endpoint as part of our home and enterprise customer DNS services. Users may now choose to use the DoH endpoint instead of sending DNS queries over plaintext for increased security and privacy. DoH can increase user privacy and security by preventing eavesdropping and manipulation of DNS data by man-in-the-middle attacks. In addition, when DoH is enabled, it ensures that your ISP can’t collect personal information related to your browsing history. It can often improve performance, too.

How does it work?

DoH works just like a normal DNS request, except that it uses Transmission Control Protocol (TCP) to transmit and receive queries. Both requests take a domain name that a user types into their browser and send a query to a DNS server to learn the numerical IP address of the web server hosting that site. The key difference is that DoH takes the DNS query and sends it to a DoH-compatible DNS server (resolver) via an encrypted HTTPS connection on port 443, rather than plaintext on port 53. DoH prevents third-party observers from sniffing traffic and understanding what DNS queries users have run or what websites users are intending to access. Since the DoH (DNS) request is encrypted, it’s even invisible to cybersecurity software that relies on passive DNS monitoring to block requests to known malicious domains.

DoH is a choice, not a requirement

So what’s all the fuss about DoH? It all comes down to user privacy. And since privacy is a hot topic, it will continue to be blogged and chatted about wildly. To block or not to block DoH is a personal choice. Mozilla blazed the trail with the Firefox browser, but other vendors like Microsoft and Google recently announced plans to add support for DoH in future releases of Windows and Chrome. Mozilla started enabling DoH by default in version 69 of Firefox, and started rolling it out gradually in September 2019. Cisco Umbrella supports Mozilla’s ‘use-application-dns.net‘ canary domain, meaning that Firefox will disable DoH for users of Cisco Umbrella. Because DoH is configured within the application, the DNS servers configured by the operating system are not used. This means that the protection provided by Cisco Umbrella may be bypassed by applications using DoH. But don’t worry… you can block this feature easily with Umbrella, too. Most of our enterprise customers choose not to utilize DoH. It isn’t right for everyone.

Protect your Umbrella settings

Our team at Cisco Umbrella recommends that companies use enterprise policies to manage DoH on endpoints they control. For detailed help on how to proceed, check out this helpful article, GPO and DoH. To block DoH providers and keep your Umbrella deployment settings follow these simple steps: 1. Navigate to Policies > Content Categories 2. Select your in use category setting. 3. Ensure that “Proxy/Anonymizer” is selected
Example of settings to block DNS over HTTPS (DoH) providers - Cisco Umbrella Blog
4. Save. Your users will now remain covered by Umbrella as Firefox gradually rolls out this change to their users.

How to disable DoH in Firefox

Firefox allows users (via settings) and organizations (via enterprise policies and a canary domain lookup) to disable DoH when it interferes with a preferred policy. For existing Firefox users that are based in the United States, the notification below will display if and when DoH is first enabled, allowing the user to choose not to use DoH and instead continue using their default OS DNS resolver.
Example of a Mozilla warning, regarding DNS over HTTPS (DoH) - Cisco Umbrella Blog

Reliable, effective protection with Cisco Umbrella

Cisco Umbrella is the leading provider of network security and DNS services, enabling the world to connect to the internet with confidence on any device. When connecting directly to the internet, organizations need security that is incredibly reliable and eliminates performance problems for end users. Umbrella is built upon a global cloud infrastructure that has delivered 100% uptime since 2006 and we provide automated failover for simplified deployment and management. By leveraging our extensive peering relationships with the top internet service providers (ISPs), content delivery networks (CDNs), and SaaS platforms, such as O365, Umbrella optimizes the routes between core networks and our cloud hubs, providing superior performance and user satisfaction. Umbrella’s support for DoH is just another demonstration of our commitment to delivering the best, most reliable, and fastest internet experience to more than 100 million enterprise and consumer users (and counting). For more information on DoH, visit our knowledge base. Source :
https://umbrella.cisco.com/blog/doh-whats-all-the-fuss-about-dns-over-https

5 reasons to move your endpoint security to the cloud now

As the world adapts work from home initiatives, we’ve seen many organizations accelerate their plans to move from on-premises endpoint security and Detection and Response (EDR/XDR) solutions to Software as a Service versions. And several customers who switched to the SaaS version last year, recently wrote us to tell how glad to have done so as they transitioned to working remote. Here are 5 reasons to consider moving to a cloud managed solution:

  1. No internal infrastructure management = less risk

If you haven’t found the time to update your endpoint security software and are one or two versions behind, you are putting your organization at risk of attack. Older versions do not have the same level of protection against ransomware and file-less attacks. Just as the threats are always evolving, the same is true for the technology built to protect against them.

With Apex One as a Service, you always have the latest version. There are no software patches to apply or Apex One servers to manage – we take care of it for you. If you are working remote, this is one less task to worry about and less servers in your environment which might need your attention.

  1. High availability, reliability

With redundant processes and continuous service monitoring, Apex One as a Services delivers the uptime you need with 99.9% availability. The operations team also proactively monitors for potential issues on your endpoints and with your prior approval, can fix minor issues with an endpoint agent before they need your attention.

  1. Faster Detection and Response (EDR/XDR)

By transferring endpoint telemetry to a cloud data lake, detection and response activities like investigations and sweeping can be processed much faster. For example, creating a root cause analysis diagram in cloud takes a fraction of the time since the data is readily available and can be quickly processed with the compute power of the cloud.

  1. Increased MITRE mapping

The unmatched power of cloud computing also enables analytics across a high volume of events and telemetry to identify a suspicious series of activities. This allows for innovative detection methods but also additional mapping of techniques and tactics to the MITRE framework.  Building the equivalent compute power in an on- premises architecture would be cost prohibitive.

  1. XDR – Combined Endpoint + Email Detection and Response

According to Verizon, 94% of malware incidents start with email.  When an endpoint incident occurs, chances are it came from an email message and you want to know what other users have messages with the same email or email attachment in their inbox? You can ask your email admin to run these searches for you which takes time and coordination. As Forrester recognized in the recently published report: The Forrester Wave™ Enterprise Detection and Response, Q1 2020:

“Trend Micro delivers XDR functionality that can be impactful today. Phishing may be the single most effective way for an adversary to deliver targeted payloads deep into an infrastructure. Trend Micro recognized this and made its first entrance into XDR by integrating Microsoft office 365 and Google G suite management capabilities into its EDR workflows.”

This XDR capability is available today by combining alerts, logs and activity data of Apex One as a Service and Trend Micro Cloud App Security. Endpoint data is linked with Office 365 or G Suite email information from Cloud App Security to quickly assess the email impact without having to use another tool or coordinate with other groups.

Moving endpoint protection and detection and response to the cloud, has enormous savings in customer time while increasing their protection and capabilities. If you are licensed with our Smart Protection Suites, you already have access to Apex One as a Service and our support team is ready to help you with your migration. If you are an older suite, talk to your Trend Micro sales rep about moving to a license which includes SaaS.

Source :

https://blog.trendmicro.com/5-reasons-to-move-your-endpoint-security-to-the-cloud-now/

This Week in Security News: 5 Reasons to Move Your Endpoint Security to the Cloud Now and ICEBUCKET Group Mimics Smart TVs to Steal Ad Money

Welcome to our weekly roundup, where we share what you need to know about the cybersecurity news and events that happened over the past few days. This week, learn about 5 reasons your organization should consider moving to a cloud managed solution. Also, read about a massive online fraud operation that has been mimicking smart TVs to fool online advertisers and gain unearned profits from online ads.

 

Read on:

Letter from the CEO: A Time of Kindness and Compassion

As a global company with headquarters in Japan, Trend Micro has been exposed to COVID-19 from the very early days when it first erupted in Asia. During these difficult times, Trend Micro has also witnessed the amazing power of positivity and kindness around the world. In this blog, read more about the importance of compassion during these unprecedented times from Trend Micro’s CEO, Eva Chen.

What Do Serverless Compute Platforms Mean for Security?

Developers deploying containers to restricted platforms or “serverless” containers to the likes of AWS Fargate, for example, should think about security differently – by looking upward, looking left and also looking all-around your cloud domain for opportunities to properly security your cloud native applications. 

April Patch Tuesday: Microsoft Battles 4 Bugs Under Active Exploit

Microsoft released its April 2020 Patch Tuesday security updates, its first big patch update released since the work-from-home era began, with a whopping 113 vulnerabilities. Microsoft has seen a 44% increase in the number of CVEs patched between January to April 2020 compared to the same time period in 2019, according to Trend Micro’s Zero Day Initiative – a likely result of an increasing number of researchers looking for bugs and an expanding portfolio of supported products.

5 Reasons to Move Your Endpoint Security to the Cloud Now

As the world adopts work from home initiatives, we’ve seen many organizations accelerate their plans to move from on-premises endpoint security and detection and response (EDR/XDR) solutions to SaaS versions. In this blog, learn about 5 reasons you should consider moving to a cloud managed solution.

Why Running a Privileged Container is Not a Good Idea

Containers are not, by any means, new. They have been consistently and increasingly adopted in the past few years, with security being a popular related topic. It is well-established that giving administrative powers to server users is not a good security practice. In the world of containers, we have the same paradigm. In this article, Trend Micro’s Fernando Cardoso explains why running a privileged container is a bad idea.

Why CISOs Are Demanding Detection and Response Everywhere

Over the past three decades, Trend Micro has observed the industry trends that have the biggest impact on its customers. One of the big things we’ve noticed is that threats move largely in tandem with changes to IT infrastructure. As digital transformation continues to remain a priority, it also comes with an expanded corporate attack surface, driving security leaders to demand enhanced visibility, detection and response across the entire enterprise — not just the endpoint.

Shift Well-Architecture Left. By Extension, Security Will Follow

Using Infrastructure as Code (IaC) is the norm in the cloud. From CloudFormation, CDK, Terraform, Serverless Framework and ARM, the options are nearly endless. IaC allows architects and DevOps engineers to version the application infrastructure as much as the developers are already versioning the code. So, any bad change, no matter if on the application code or infrastructure, can be easily inspected or, even better, rolled back.

Work from Home Presents a Data Security Challenge for Banks

The mass relocation of financial services employees from the office to their couch, dining table or spare room to stop the spread of the deadly novel coronavirus is a significant data security concern, according to several industry experts. In this article, learn how managers can support security efforts from Trend Micro’s Bill Malik.

Principles of a Cloud Migration – Security, The W5H

For as long as cloud providers have been in business, discussing the Shared Responsibility Model has been priority when it comes to customer operation teams. It defines the different aspects of control, and with that control, comes the need to secure, manage, and maintain. In this blog, Trend Micro highlights some of the requirements and discusses the organization’s layout for responsibility.

Coronavirus Update App Leads to Project Spy Android and iOS Spyware

Trend Micro discovered a potential cyberespionage campaign, dubbed Project Spy, that infects Android and iOS devices with spyware. Project Spy uses the COVID-19 pandemic as a lure, posing as an app called ‘Coronavirus Updates’. Trend Micro also found similarities in two older samples disguised as a Google service and, subsequently, as a music app. Trend Micro noted a small number of downloads of the app in Pakistan, India, Afghanistan, Bangladesh, Iran, Saudi Arabia, Austria, Romania, Grenada and Russia.

Exposing Modular Adware: How DealPly, IsErIk, and ManageX Persist in Systems

Trend Micro has observed suspicious activities caused by adware, with common behaviors that include access to random domains with alternating consonant and vowel names, scheduled tasks, and in-memory execution via WScript that has proven to be an effective method to hide its operations. In this blog, Trend Micro walks through its analysis of three adware events linked to and named as Dealply, IsErIk and ManageX. 

ICEBUCKET Group Mimicked Smart TVs to Steal Ad Money

Cybersecurity firm and bot detection platform White Ops has discovered a massive online fraud operation that for the past few months has been mimicking smart TVs to fool online advertisers and gain unearned profits from online ads. White Ops has named this operation ICEBUCKET and has described it as “the largest case of SSAI spoofing” known to date.

Fake Messaging App Installers Promoted on Fraudulent Download Sites, Target Russian Users

Fake installers of popular messaging apps are being propagated via fraudulent download sites, as disclosed in a series of tweets by a security researcher from CronUp. Trend Micro has also encountered samples of the files. The sites and the apps are in Russian and are aiming to bait Russian users.

“Twin Flower” Campaign Jacks Up Network Traffic, Downloads Files, Steals Data

A campaign dubbed “Twin Flower” has been detected by Jinshan security researchers in a report published in Chinese and analyzed by Trend Micro. The files are believed to be downloaded unknowingly when visiting malicious sites or dropped into the system by another malware. The potentially unwanted application (PUA) PUA.Win32.BoxMini.A files are either a component or the main executable itself of a music downloader that automatically downloads music files without user consent.

Undertaking Security Challenges in Hybrid Cloud Environments

Businesses are now turning to hybrid cloud environments to make the most of the cloud’s dependability and dynamicity. The hybrid cloud gives organizations the speed and scalability of the public cloud, as well as the control and reliability of the private cloud. A 2019 Nutanix survey shows that 85% of its respondents regard the hybrid cloud as the ideal IT operating model.

How to Secure Video Conferencing Apps

What do businesses have to be wary of when it comes to their video conferencing software? Vulnerabilities, for one. Threat actors are not shy about using everything they have in their toolbox and are always on the lookout for any flaw or vulnerability they can exploit to pull off malicious attacks. In this blog, learn about securing your video conferencing apps and best practices for strengthening the security of work-from-home setups.

Monitoring and Maintaining Trend Micro Home Network Security – Part 4: Best Practices

In the last blog of this four-part series, Trend Micro delves deeper into regular monitoring and maintenance of home network security, to ensure you’re getting the best protection that Trend Micro Home Network Security can provide your connected home.

Surprised by the ICEBUCKET operation that has described as “the largest case of SSAI spoofing” known to date? Share your thoughts in the comments below or follow me on Twitter to continue the conversation: @JonLClay.

Source :
https://blog.trendmicro.com/this-week-in-security-news-5-reasons-to-move-your-endpoint-security-to-the-cloud-now-and-icebucket-group-mimics-smart-tvs-to-steal-ad-money/

Effective Business Continuity Plans Require CISOs to Rethink WAN Connectivity

As more businesses leverage remote, mobile, and temporary workforces, the elements of business continuity planning are evolving and requiring that IT professionals look deep into the nuts and bolts of connectivity.

CISOs and their team members are facing new challenges each and every day, many of which have been driven by digital transformation, as well as the adoption of other productivity-enhancing technologies.

A case in point is the rapidly evolving need to support remote and mobile users as businesses change how they interact with staffers.

For example, the recent COVID-19 crisis has forced the majority of businesses worldwide to support employees that work from home or other remote locations.

Many businesses are encountering numerous problems with connection reliability, as well as the challenges presented by rapidly scaling connectivity to meet a growing number of remote workers.

Add to that security and privacy issues, and it becomes evident that CISOs may very well face what may become insurmountable challenges to keep things working and secure.

It is the potential for disruption that is bringing Business Continuity Planning (BCP) to the forefront of many IT conversations. What’s more, many IT professionals are quickly coming to the conclusion that persistent WAN and Internet connectivity prove to be the foundation of an effective business continuity plan.

VPNs are Failing to Deliver

Virtual Private Networks (VPNs) are often the first choice for creating secure connections into a corporate network from the outside world.

However, VPNs have initially been designed to allow a remote endpoint to attach to an internal local area network and grant that system access to data and applications stored on the network.

For occasional connectivity, with a focus on ease of use.

Yet, VPNs are quickly beginning to show their limitations when placed under the demand for supporting a rapidly deployed remote workforce.

One of the most significant issues around VPNs comes in the context of scalability; in other words, VPNs can be complicated to scale quickly.

For the most part, VPNs are licensed by connection and are supported by an appliance on the network side to encrypt and decrypt traffic. The more VPN users that are added, the more licenses and processing power that is needed, which ultimately adds unforeseen costs, as well as introducing additional latency into the network.

Eventually, VPNs can break under strain, and that creates an issue around business continuity. Simply put, if VPNs become overwhelmed by increased traffic, connectivity may fail, and the ability for employees to access the network may be impacted, the concept of business continuity suffers as a result.

VPNs are also used for site to site connections, where the bandwidth may be shared not only from a branch office to a headquarters office but also with remote users. A situation such as that can completely derail an organization’s ability to do business if those VPNs fail.

Perhaps an even bigger concern with VPNs comes in the form of cybersecurity. VPNs that are used to give remote users access to a network are only as reliable as the credentials that are given to those remote users.

In some cases, users may share password and login information with others, or carelessly expose their systems to intrusion or theft. Ultimately, VPNs may pave the way for attacks on the corporate network by allowing bad actors to access systems.

ZTNA Moves Beyond VPNs

With VPN technology becoming suspect in the rapid expansion of remote workforces, CISOs and IT pros are looking for alternatives to ensure reliable and secure connections into the network from remote workers.

The desire to bridge security and reliability is driven by continuity, as well as operational issues. CISOs are looking to keep costs down, provide a level of security, without compromising performance, and still meet projected growth.

Many enterprises thought that the answer to the VPN dilemma could be found in SDP (Software Defined Perimeters) or ZTNA (Zero Trust Network Access), two acronyms that have become interchangeable in the arena of cybersecurity.

ZTNA has been built for the cloud as a solution that shifted security from the network to the applications. In other words, ZTNA is application-centric, meaning that users are granted access to applications and not the complete network.

Of course, ZTNA does much more than that. ZTNA can “hide” applications, while still granting access to authorized users. Unlike VPNs, ZTNA technology does not broadcast any information outside of the network for authentication, whereas VPN concentrators sit at the edge of the network for all to see, making them a target for malicious attackers.

What’s more, ZTNA uses inside-out connections, which means IP addresses are never exposed to the internet. Instead of granting access to the network like a VPN, ZTNA technology uses a micro-segmentation approach, where a secure segment is created between the end-user and the named application.

ZTNA creates an access environment that provides private access to an application for an individual user, and only grants the lowest level of privileges to that user.

ZTNA technology decouples access to applications from access to the network, creating a new paradigm of connectivity. ZTNA based solutions also capture much more information than a VPN, which helps with analytics and security planning.

While a VPN may only track a device’s IP address, port data, and protocols, ZTNA solutions capture data around the user identity, named application, latency, locations, and much more. It creates an environment that allows administrators to be more proactive and more easily consume and analyze the information.

While ZTNA may be a monumental step forward from legacy VPN systems, ZTNA solutions are not without their own concerns. ZTNA solutions do not address performance and scalability issues and may lack the core components of continuity, such as failover and automated rerouting of traffic.

In other words, ZTNA may require those additional third-party solutions to be added to the mix to support BCP.

Resolving ZTNA and VPN issues with SASE

A newer technology, which goes by the moniker of SASE (Secure Access Service Edge), may very well have the answer to the dilemmas of security, continuity, and scale that both ZTNA and VPNs introduce into the networking equation.

The Secure Access Service Edge (SASE) model was proposed by Gartner’s leading security analysts, Neil MacDonald, Lawrence Orans, and Joe Skorupa. Gartner presents SASE as a way to collapse the networking and security stacks of SD-WANs into a fully integrated offering that is both easy to deploy and manage.

Gartner sees SASE as a game-changer in the world of wide-area networking and cloud connectivity. The research house expects 40% of enterprises to adopt SASE by 2024. However, a significant challenge remains, networking and cybersecurity vendors are still building their SASE offerings, and very few are actually available at this time.

One such vendor is Cato Networks, which offers a fully baked SASE solution and has been identified as one of the leaders in the SASE game by Gartner.

SASE differs significantly from the VPN and ZTNA models by leveraging a native cloud architecture that is built on the concepts of SD-WAN (Software-Defined Wide Area Network). According to Gartner, SASE is an identity-driven connectivity platform that uses a native cloud architecture to support secure connectivity at the network edge that is globally distributed.

SASE gives organizations access to what is essentially a private networking backbone that runs within the global internet. What’s more, SASE incorporates automated failover, AI-driven performance tuning, and multiple secure paths into the private backbone.

SASE is deployed at the edge of the network, where the LAN connects to the public internet to access cloud or other services. And as with other SD-WAN offerings, the edge has to connect to something beyond the four walls of the private network.

In Cato’s case, the company has created a global private backbone, which is connected via multiple network providers. Cato has built a private cloud that can be reached over the public internet.

SASE also offers the ability to combine the benefits of SDP with the resiliency of an SD-WAN, without introducing any of the shortcomings of a VPN.

Case in point is Cato’s Instant Access, a clientless connectivity model that uses a Software-Defined Perimeter (SDP) solution to grant secure access to cloud-delivered applications for authorized remote users.

Instant access offers multi-factor authentication, single sign-on, least privileged access, and is incorporated into the combined networking and security stacks. Since it is built on SASE, full administrator visibility is a reality, as well as simplified deployment, instant scalability, integrated performance management, and automated failover.

Cato Networks’ Remote Access Product Demo

In Cato’s case, continuous threat protection keeps remote workers, as well as the network, safe from network-based threats. Cato’s security stack includes NGFW, SWG, IPS, advanced anti-malware, and Managed Threat Detection and Response (MDR) service. Of course, Cato isn’t the only player in the SASE game; other vendors pushing into SASE territory include Cisco, Akamai, Palo Alto Networks, Symantec, VMWare, and Netskope.

SASE Address the Problems of VPNs, ZTNA — and More

With VPNs coming up short and ZTNA lacking critical functionality, such as ease of scale and performance management, it is quickly becoming evident that CISOs may need to take a long hard look at SASE.

SASE addresses the all too common problems that VPNs are introducing into a rapidly evolving remote work paradigm, while still offering the application-centric security that ZTNA brings to the table.

What’s more, SASE brings with it advanced security, enhanced visibility, and reliability that will go a long way to improving continuity, while also potentially lowering costs.

Source :
https://thehackernews.com/2020/05/rethink-wan-connectivity.html

British Airline EasyJet Suffers Data Breach Exposing 9 Million Customers’ Data

easyjet data breach British low-cost airline EasyJet today admitted that the company has fallen victim to a cyber-attack, which it labeled “highly sophisticated,” exposing email addresses and travel details of around 9 million of its customers.

In an official statement released today, EasyJet confirmed that of the 9 million affected users, a small subset of customers, i.e., 2,208 customers, have also had their credit card details stolen, though no passport details were accessed.

The airline did not disclose precisely how the breach happened, when it happened, when the company discovered it, how the sophisticated attackers unauthorizedly managed to gain access to the private information of its customers, and for how long they had that access to the airline’s systems.

However, EasyJet assured its users that the company had closed off the unauthorized access following the discovery and that it found “no evidence that any personal information of any nature has been misused” by the attackers.

“As soon as we became aware of the attack, we took immediate steps to respond to and manage the incident and engaged leading forensic experts to investigate the issue,” the company said in a statement published today.

EasyJet has also notified the Information Commissioner’s Office (ICO), Britain’s data protection agency, and continues to investigate the breach incident to determine its extent and further enhance its security environment.

“We take the cybersecurity of our systems very seriously and have robust security measures in place to protect our customers’ personal information. However, this is an evolving threat as cyber attackers get ever more sophisticated,” says EasyJet Chief Executive Officer Johan Lundgren.

“Since we became aware of the incident, it has become clear that owing to COVID-19, there is heightened concern about personal data being used for online scams. Every business must continue to stay agile to stay ahead of the threat.”

As a precautionary measure recommended by the ICO, the airline has started contacting all customers whose travel and credit card details were accessed in the breach to advise them to be “extra vigilant, particularly if they receive unsolicited communications.”

Affected customers will be notified by May 26.

Last year, the ICO fined British Airways with a record of £183 million for failing to protect the personal information of around half a million of its customers during a 2018 security breach incident involving a Magecart-style card-skimming attack on its website.

Affected customers should be suspicious of phishing emails, which are usually the next step of cybercriminals to trick users into giving away further details of their accounts like passwords and banking information.

Affected customers exposing their credit card details are advised to block the affected cards and request a new one from their respective financial institution, and always keep a close eye on your bank and payment card statements for any unusual activity and report to the bank if you find any.

Source :
https://thehackernews.com/2020/05/easyjet-data-breach-hacking.html
Exit mobile version