Critical Patch Released for ‘Wormable’ SMBv3 Vulnerability — Install It ASAP!

Microsoft today finally released an emergency software update to patch the recently disclosed very dangerous vulnerability in SMBv3 protocol that could let attackers launch wormable malware, which can propagate itself from one vulnerable computer to another automatically.

The vulnerability, tracked as CVE-2020-0796, in question is a remote code execution flaw that impacts Windows 10 version 1903 and 1909, and Windows Server version 1903 and 1909.

Server Message Block (SMB), which runs over TCP port 445, is a network protocol that has been designed to enable file sharing, network browsing, printing services, and interprocess communication over a network.

The latest vulnerability, for which a patch update (KB4551762) is now available on the Microsoft website, exists in the way SMBv3 protocol handles requests with compression headers, making it possible for unauthenticated remote attackers to execute malicious code on target servers or clients with SYSTEM privileges.

Compression headers is a feature that was added to the affected protocol of Windows 10 and Windows Server operating systems in May 2019, designed to compress the size of messages exchanged between a sever and clients connected to it.

"To exploit the vulnerability against a server, an unauthenticated attacker could send a specially crafted packet to a targeted SMBv3 server. To exploit the vulnerability against a client, an unauthenticated attacker would need to configure a malicious SMBv3 server and convince a user to connect to it," Microsoft said in the advisory.

At the time of writing, there is only one known PoC exploit that exists for this critical remotely exploitable flaw, but reverse engineering new patches could now also help hackers find possible attack vectors to develop fully weaponized self-propagating malware.

A separate team of researchers have also published a detailed technical analysis of the vulnerability, concluding a kernel pool overflow as the root cause of the issue.

As of today, there are nearly 48,000 Windows systems vulnerable to the latest SMB compression vulnerability and accessible over the Internet.

Since a patch for the wormable SMBv3 flaw is now available to download for affected versions of Windows, it's highly recommended for home users and businesses to install updates as soon as possible, rather than merely relying on the mitigation.

In cases where immediate patch update is not applicable, it's advised to at least disable SMB compression feature and block SMB port for both inbound and outbound connections to help prevent remote exploitation.

Source :
https://thehackernews.com/2020/03/patch-wormable-smb-vulnerability.html

How to convert OST to PST in Microsoft Outlook 2019/2016/2013/2010

To convert OST to PST in Outlook 2019/2016/2013/2010 a lot of users search for a perfect way. Numerous reasons are here that initiate users to convert OST to PST; the main is, PST files are easy to port and accessible. Here, by this blog, we will understand know-how to convert OST to PST in Outlook 2019/2016/2013/2010.

OST stands for Offline Storage Tables. The OST is a format that records Exchange Server mailbox organizers and folders in the disconnected zone or when web accessibility isn’t available. The OST format offers to execute the Outlook mailbox usefulness in the disconnected mode i.e., without interfacing with the Server. Despite the fact that Offline Storage Table records can’t be efficacy through external aggravations or some other disturbance, that makes it more best and impressive for standard business tasks.

Notwithstanding the Outlook version, regardless of whether it is Microsoft Outlook 2019, 2016, 2013, 2010, 2007 or any more seasoned ANSI release, inaccessible OST format file requires troubleshooting so as to recapture access to the information put away inside in the system. The most effortless approach to fix a wide range of OST issues, irrespective of harm or misfortune is to change over the OST record to Outlook PST document.

There are numerous strategies to execute the conversion process of OST data to PST file format; however, some strategies are harder while some are the most secure approaches to convert OST to PST in Outlook 2019/2016/2013/2010.

Know before Convert OST to PST in Outlook 2019/2010/2013/2010

You can’t extract information from the OST document to a PST legitimately. That implies you should sign in with the first profile so as to export the OST document information to PST. So, you’ll get a strategy given beneath.

OST file format is a duplicate copy of your Exchange mailbox; you can reproduce it by re-syncing with the mailbox.

There is no real way to change over an OST file format to a PST file format by utilizing Microsoft devices. If your unique email account isn’t accessible or if your OST file format deprives. For this situation, there’s just a single way you can change over the OST record to PST—by utilizing a professional third-party tool.

No. 1 Strategy: Utilize Outlook Archive feature

The first strategy to duplicate or move mailbox things into PST is based on the utilization of the Archive option given in Outlook. The option of Outlook offers to copy entire data of OST file into PST file format; however, it will not copy contact of OST file.

To get the copy of the OST file format, go with beneath commands.

  • Open Outlook profile that has that particular OST file.
  • Then, Click on the File tab, then, click on Info, and after that Click on the Clean-up Tools button.
  • Next, choose Archive from the choices
  • In the Archive comment box that shows up, guarantee that Archive this organizer and all subfolders alternative is chosen (it is chosen by default)
  • Next, choose the organizer that you have to export to PST (e.g.: Outbox)
  • In the Archive things more established than a box, give a date. Entire things that sent before till the predefined date will archive
  • Under Archive file: choice, provide the path destination to save the new PST
  • Finally, Click on the OK button to complete the execution of exportation.

No.2 Strategy: Drag and Drop Mailbox Items

Surely, drag and drop of Mailbox items are one of the best ways to relocate the OST file format into PST file format. To do the relocation through Drag and Drop mailbox items process, you need to Open a blank PST file in the Microsoft Outlook interface and then choose and drag the required mailbox from OST data into the PST blank page.

Although, with the drag and drop items technique, there are a few constraints too. This is time taking process. It will need to repeat the procedure for every OST file item that required to be relocated in the PST file format. This expects tender loving care as the procedure is tedious; thusly, a solitary slip-up will prompt a superfluous redundancy of the procedure.

Also, the organizer hierarchy, just as the default organizers, for example, Calendars, Contacts, Inbox, and so forth., can’t be legitimately moved and you have to make another PST document to deal with the whole information in an organized way.

No. 3 Strategy: Outlook Import & Export Wizard

Microsoft Outlook Import and Export wizard is a compelling method to change over OST information to PST file format in Outlook 2010 and different variants. With the procedure, you can move OST information to Excel and CSV documents. Although, you would need to be cautious while executing the means as this is a manual technique.

Additionally, you should be in fact capable to execute the built-in import/export technique. Any misstep may result in loss of access to your important information So, it is prescribed to back up the OST document before beginning the exporting procedure with the goal that you can reestablish the information if the need is while execution.

No.4 Strategy: Use Shoviv OST to PST Converter

As, there are many reasons as well strategies to save your OST data into PST file format; however, I’ve told you three strategies to convert OST file format to PST format. Although, those manual strategies have few risks of failure and take a lot of time of the client with tediousness. So, this tactic is for professionals, who just want to do their OST conversion with no time and misfortune.

Use Shoviv OST to PST Converter to do conversion hassle-free and efficient. The prominent OST to PST Converter tool gives a programmed utility to export numerous OST documents to Outlook PSTs, also extract entire mailbox items unblemished. The software additionally split and compact the PST documents to enable you to oversee them in a progressively organized way. Furthermore, it additionally straightforwardly export the OST file information to Office 365, which enormously assists on the off chance that you’re relocating your mailboxes to the cloud environment. Consequently, Microsoft MVPs suggest the product based OST transformation technique.

Professionally Convert OST to PST in Outlook 2019/2016/2013/2010:

Step 1: Download Shoviv OST to PST to Converter and Install and launch it on your system.

Step 2: Click on the Add OST Files button of Ribbon bar.

Step3: Using Add, Remove, Remove All and Search button, add required OST files and check them. Also, browse the temp path.

Note: If your OST file is highly corrupted or you want to recover the deleted items from your OST file go for the ‘Advance Scan’ option. Commonly it takes time to examine a document relies on the volume of information it incorporates. You can likewise abort the scan process by using the given Stop button in the interface.

Step 4: Now users can view the selected files in the folder list; the user can also expand the folder by making a right-click and can see the content of it.

 

Step 5: Make a right-click on selected files or click the OST to PST button of the ribbon bar and go with the “Save all Files in Outlook PST” option.

Step6: Check/Uncheck Subfolders option will appear, check the subfolder and proceed by clicking the Next.

Step 7: Now, you will be prompted to Filter page. apply the filter using Process Message Class and Process Item Date Range. Click the Next Button.

Step 8: In this page, users have the option to choose if a user wants to migrate in an existing PST or wants to create new PST and want to migrate in it. Here, user can also set size for the PST file, after given size resultant PST file will split. Provide the priority and click on the Next button.

Step 9: The conversion of OST to PST proceeds now, after successful conversion, a message “Process Completed Successfully” will appear, click Ok. Option to save the report is also given. Click on the Save Report button for this. Click Finish when all is done.

At variance with sparing Exchange OST mailboxes to Outlook PST file format, Convert OST to PST tool from Shoviv permits changing over the Offline records to numerous document arrangements including MSG, HTML, EML, and RTF.

 

Source :
https://www.shoviv.com/blog/convert-ost-to-pst-in-outlook-2007-2010-2013-2016/

Microsoft Active Directory How to Create a Group Policy Central Store

Group Policy is used in Active Directory (AD) domain environments to centrally manage Windows Server and client configuration settings. By default, when using Group Policy management tools, like the Group Policy Management Console (GPMC), the Group Policy settings you see available are taken from a set of Group Policy template files found in the local %systemroot%\PolicyDefinitions folder.

Group Policy templates are language-neutral XML files with an .admx file extension. The descriptions for each policy setting are stored separately in .adml files. There is one .adml file for each language corresponding to the respective .admx Group Policy template. Bear in mind that .admx files are just templates and the actual settings applied to Windows are stored in registry.pol files. Before Windows Vista Service Pack 1, Group Policy templates used a different file format and file extension (.adm).

Some applications, like Google Chrome, Microsoft Office, and the new version of Microsoft Edge, come with their own Group Policy templates that you can download and add to PolicyDefinitions. But adding or modifying templates in the local PolicyDefinitions folder means that you will only see the new or changed settings in GPMC on the device where the Group Policy template was added or changed.

Create a central Group Policy store

So that all Group Policy administrators see the same settings in GPMC, regardless of which device they are using, you can create a PolicyDefinitions folder in your domain’s SYSVOL folder. This is sometimes referred to as a Group Policy central store. GPMC will then use this domain network location to retrieve templates instead of using the local PolicyDefinitions folder. SYSVOL, and any child folders, is automatically replicated to all domain controllers in your AD domain.

To create a PolicyDefinitions folder in your domain, log in to a domain controller as a domain administrator. Then create a folder called PolicyDefinitions in the Policies folder in the UNC path shown below. You will need to replace ad.contoso.com with the Fully Qualified Domain Name (FQDN) of your AD domain.

\\ad.contoso.com\SYSVOL\ad.contoso.com\Policies\

How to Create a Group Policy Central Store (Image Credit: Russell Smith)
How to Create a Group Policy Central Store (Image Credit: Russell Smith)

Adding Group Policy templates to the central store

Once the folder has been created as shown in the screenshot above, all that’s left to do is populate it with Group Policy templates and .adml language files. There are two ways you can do this. You can copy the contents of the C:\Windows\PolicyDefinitions folder on a Windows 8.1 or Windows 10 computer to the domain SYSVOL PolicyDefinitions folder.

Alternatively, Microsoft makes Group Policy templates, for each supported version of Windows and Windows Server, available on its website here. Download the contents of the required template CAB and copy the extracted files to the domain SYSVOL PolicyDefinitions folder.

How to Create a Group Policy Central Store (Image Credit: Russell Smith)
How to Create a Group Policy Central Store (Image Credit: Russell Smith)

Next time you open GPMC, it will check for a SYSVOL PolicyDefinitions folder. If it exists, it will use the templates from the domain folder instead of the local version of the templates. When you expand Administrative Templates in GPMC, you’ll see Policy definitions (ADMX files) retrieved from the central store written to the left if GPMC was able to detect a central store. If nothing additional is written, the templates are being retrieved from the PCs local store.

How to Create a Group Policy Central Store (Image Credit: Russell Smith)
How to Create a Group Policy Central Store (Image Credit: Russell Smith)

For more information on how to use GPMC to create Group Policy objects, see How to Create and Link a Group Policy Object in Active Directory on Petri.

There can only be one central Group Policy store

The central Group Policy store is a good idea in principle. But you can only have one central store, and you need to back it up and update it when Windows is patched or upgraded. If you are managing different versions of Windows in your environment, using one central Group Policy store can lead to issues. Especially now that there are so many supported versions of Windows 10 that you could potentially have in your environment at once.

In principle, Group Policy templates for the latest version of Windows are backwards compatible with previous versions of the operating system. But sometimes Microsoft changes Group Policy setting names and drops settings that might still be required in older versions of Windows. This can lead to errors parsing Group Policy on your systems if a central store is used.

To avoid this issue, you can dedicate a PC or virtual machine for the management of Group Policy for a specific version of Windows, without using a central Group Policy store. It might not be as convenient from a management perspective, but it does ensure separation of Group Policy templates for each version of Windows and that you are using the latest versions of the templates. And it is more likely to ensure that policy settings are applied as expected.

 

Source :
https://www.petri.com/how-to-create-a-group-policy-central-store

Cybersecurity Terms and Threats You Need to Know in 2020

Let’s do a show of hands — who loves jargon? Anyone?

I didn’t think so.

Face it, aside from trivia champions, jargon doesn’t make life any easier for us. If you’re attending your first security conference this year, you might feel like you need an interpreter to make sense of the technical terminology and acronyms you’ll find around every corner.

At Cisco Umbrella, we’re fluent in cybersecurity – and we want to help you make sense of the often-confusing security landscape! In this post, we define key cybersecurity terms that everyone should know in 2020 — and beyond.

Part 1: Threats

Backdoor: A backdoor is an access point designed to allow quick and undetected entrance to a program or system, usually for malicious purposes. A backdoor can be installed by an attacker using a known security vulnerability, and then used later to gain unfettered access to a system.

Botnet: A botnet is a portmanteau for “robot network.” It’s a collection of infected machines that can be used for any number of questionable activities, from cryptomining to DDoS attacks to automated spam comments on blogs.

Command-and-control (C2) attacks: Command-and-control attacks are especially dangerous because they are launched from inside your network. Security technologies like firewalls are designed to recognize and stop malicious activity or files from entering your network. However, a command-and-control attack is trickier than a standard threat. A file doesn’t start out showing any malicious behavior, so it is deemed harmless by your firewall and permitted to enter your network. Once inside, the file stays dormant for a set period of time or after being triggered remotely. Then, the file reaches out to a malicious domain and downloads harmful data, infecting your network.

Denial of Service (DoS) Attack: This type of attack consumes all of the resources of a target so that it can no longer be used or reached, effectively taking it down. DoS attacks are designed to take a website or server offline, whether for monetary, political, or other reasons. A DDoS, or Distributed Denial of Service attack, is a subcategory of DoS attack that is carried out using two or more hosts, often via a botnet.

Drive-by download: A drive-by download installs malware invisibly in the background when the user visits a malicious webpage, without the user’s knowledge or consent. Often, drive-by downloads take advantage of browser or browser plug-in vulnerabilities that accept a download under the assumption that it’s a benign activity. Using an up-to-date secure browser can help protect you against this type of attack.

Exploit: An exploit is any attack that takes advantage of a weakness in your system. It can make use of software, bits of data, and even social engineering (like pretending to be someone from your IT team who needs your password to perform a security update). To minimize exploits, it’s important to keep your software up-to-date and to be aware of social engineering techniques (see below).

Malware: Malware is a generic term for any program installed on a system with the intent to corrupt, damage, or disable that system. Razy, TeslaCry, NotPetya, and Emotet are a few recent examples.

  • Cryptomining malware: Cryptomining by itself is not necessarily malicious — many people mine crypto currency on their own systems. Malicious cryptomining, however, is a browser- or software-based threat that enables bad actors to hijack system resources to generate crypto currencies. Cryptomining malware is an easy way for bad actors to generate cash while remaining anonymous and without having to use their own resources. Learn more about the cryptomining malware threat.
  • Ransomware: Ransomware is malware used to encrypt a victim’s data with an encryption key that is known only to the attacker. The data becomes unusable until the victim pays a ransom to decrypt the data (usually in cryptocurrency). Ransomware is a fast-growing and serious threat — learn more in our newly updated guide to ransomware defense.
  • Rootkits: A rootkit is a malicious piece of code that hides itself in your system, prevents detection, and enables bad actors to gain continued access to your system. If attackers gain full access to your system once, they can use rootkits to continue that access over a long period of time.
  • Spyware: Malicious code that gathers information about you and your browsing habits, and then sends that information to a third party.
  • Trojans: A trojan is a seemingly innocuous program that acts as a front for malicious code hiding inside. Trojans can do any number of things, from stealing data to allowing remote system control.  These programs take their name from the famous Grecian “Trojan Horse” that took advantage of a similar vulnerability.
  • Viruses: Often used as a blanket term, a virus is a piece of code that attaches itself to files, such as email attachments or files you download online. Once it infects your system, it can cause all kinds of problems, whether that means deleting system files or corrupting your data. Computer viruses also replicate and spread across networks – just like viruses in the physical world.
  • Worms: A worm is a type of malware that clones itself in order to spread to other computers, performing various damaging actions on whatever system it infects. Unlike a virus, a worm exists as a standalone entity — it isn’t hidden inside something else like an attachment.

MitM or Man-in-the-Middle Attack: A MitM attack is pretty much what it sounds like. An attacker will intercept, relay, and potentially change messages between two parties without their knowledge. MitM can be used to break encryption, compromise account details, or gain access to systems by impersonating a user.

Phishing: Phishing is a technique that mimics a legitimate communication (like an email from your online bank) to steal sensitive information. Like fishermen with a lure, attackers will attempt to take your personal information by using fake emails, forms, and web pages to coax you to provide it to them.

  • Spear phishing is a form of phishing that targets one specific individual by using publicly accessible data about them, like from a business card or social media profile.
  • Whale phishing goes one step further than spear phishing and describes a targeted attack on a high-ranking individual, like a CEO or government official.

Social engineering: A general term for any activity in which an attacker is trying to manipulate you into revealing information, whether over email, phone, web forms, or social media platforms. Passwords, account credentials, social security numbers — we often don’t think twice about giving this information away to someone we can trust, but who’s really on the other end of the line? Protect yourself, and think twice before sharing. It’s always OK to verify the request for information in another way, like calling an official customer support number.

Zero-day (0day): A zero day attack is when a bad actor exploits a new, previously unknown software vulnerability for which there is no patch. It’s a constant struggle to stay ahead of attackers, but you don’t have to do it alone — you can get help from the security experts at Cisco Talos.

Part 2: Solutions

Anti-malware: Anti-malware software is a broad category of software designed to block, root out, and destroy viruses, worms, and other nasty things that are described in this list. These products need to be updated regularly to ensure that they remain effective against new threats. They can be deployed at various points in the network chain (email, endpoint, data center, cloud) and either on-premises or delivered from the cloud.

Cloud access security broker (CASB): This is software that provides the ability to detect and report on the cloud applications that are in use across your environment. It provides visibility into cloud apps in use as well as their risk profiles, and the ability to block/allow specific apps. Read more about securing cloud apps here.

Cloud security: this is a subcategory of information security and network security. It is a broad term that can include security policies, technologies, applications, and controls that are used to protect sensitive company and user data wherever it is exposed in a public, private, or hybrid cloud environment.

DNS-layer security: This is the first line of defense against threats because DNS resolution is the first step in establishing a connection to the internet. It blocks requests to malicious and unwanted destinations before a connection is even established — stopping threats over any port or protocol before they reach your network or endpoints. Learn more about DNS-layer security here.

Email security: This refers to the technologies, policies, and practices used to secure the access and content of email messages within an organization. Many attacks are launched via email messages, whether through targeted attacks (see note on phishing above) or malicious attachments or links. A robust email security solution protects you from attacks whether email is in transit across your network or when it is on a user’s device.

Encryption: This is the process of scrambling messages so that they cannot be read until they are decrypted by the intended recipient. There are several types of encryption, and it’s an important component of a robust security strategy.

Endpoint security: if DNS-layer security is the first line of defense against threats, then you might think of endpoint security as the last line of defense! Endpoints can include desktop computers, laptop computers, tablets, mobile phones, desk phones, and even wearable devices — anything with a network address is a potential attack path. Endpoint security software can be deployed on an endpoint to protect against file-based, fileless, and other types of malware with threat detection, prevention, and remediation capabilities.

Firewall: Imagine all the nasty, malicious stuff on the Internet without anything to stop it. A firewall stands between your trusted entities and whatever lies beyond, controlling access based on security rules. A firewall can be hardware or software, a standalone security appliance or a cloud-delivered solution.

Next-generation firewall (NGFW): This is the industry’s new solution for an evolved firewall.  It is typically fully integrated with the rest of the security stack, threat-focused, and delivers comprehensive, unified policy management of firewall functions, application control, threat prevention, and advanced malware protection from the network to the endpoint.

Security information and event management (SIEM): This is a broad term for products that deal with security information management (SIM) and security event management (SEM). These systems allow for aggregation of information and events into a single “pane of glass” for security teams to use.

Secure web gateway (SWG): This is a proxy that can log and inspect all of your web traffic for greater transparency, control, and protection. It allows for real-time inspection of inbound files for malware, sandboxing, full or selective SSL decryption, content filtering, and the ability to block specific user activities in select apps.

Secure internet gateway (SIG): This is a cloud-delivered solution that unifies a variety of connectivity, content control, and access technologies to provide users with safe access to the internet, both on and off the network. By operating from the cloud, a SIG protects user access anywhere and everywhere, with traffic routing to the gateway for inspection and policy enforcement regardless of what users are connecting to, or where they’re connecting from. Because a SIG extends security beyond the edge of the traditional network — and without the need for additional hardware or software — thousands of enterprises have adopted it as a modern catch-all for ensuring that users, devices, endpoints, and data have robust protection from threats.

Secure access service edge (SASE): Gartner introduced an entirely new enterprise networking and security category called “secure access service edge.” SASE brings together networking and security services into one unified solution designed to deliver strong security from edge to edge — in the data center, at remote offices, with roaming users, and beyond. By consolidating a variety of powerful point solutions into one solution that can be deployed anywhere from the cloud, SASE can provide better protection and faster network performance, while reducing the cost and work it takes to secure the network.

Cybersecurity is always evolving, and it can be hard to keep up with the rapid pace of changes. Be sure to bookmark this blog post – we’ll keep it up to date as new threats and technologies emerge. To learn more, check out our recent blog posts about cybersecurity research, or come chat with our security experts in person in Barcelona at Cisco Live EMEA this month. Don’t be shy!

 

Source :
https://umbrella.cisco.com/blog/2020/01/14/cybersecurity-terms-and-threats-you-need-to-know-in-2020/

What is DNSSEC and Why Is It Important?

If you’re like most companies, you probably leave your DNS resolution up to your ISP. But as employees bypass the VPN, and even more organizations adopt direct internet access, it’s more than likely that you have a DNS blind spot. So what steps can you take to ensure your visibility remains free and clear?

One simple and easy thing you can start doing right away is to mine your DNS data. Each time a browser contacts a domain name, it has to contact the DNS server first. Since DNS requests precede the IP connection, DNS resolvers log requested domains regardless of the connection’s protocol or port. That’s an information gold mine! Just by monitoring DNS requests and subsequent IP connections you will eliminate the blind spot and easily gain better accuracy and detection of compromised systems and improve your security visibility and network protection.

But what about those pesky cache poisoning attacks, also known as DNS spoofing?

DNS cache poisoning attacks locate and then exploit vulnerabilities that exist in the DNS, in order to draw organic traffic away from a legitimate server toward a fake one.This type of attack is dangerous because the client an be redirected, and since the attack is on the DNS server, it will impact a very large number of users.

Back in the early nineties, the era of the world-wide-web, Sony Discmans and beepers (we’ve come a long way kids!), the Internet Engineering Task Force, or  IETF started thinking about ways to make DNS more secure. The task force proposed ways to harden DNS and in 2005, Domain Name System Security Extensions, aka DNSSEC, was formally introduced.

DNS Security Extensions, better known as DNSSEC, is a technology that was developed to, among other things, protect against [cache poisoning] attacks by digitally ‘signing’ data so you can be assured [the DNS answer] is valid. DNSSEC uses cryptographic signatures similar to using GPG to sign an email; it proves both the validity of the answer and the identity of the signer. Special records are published in the DNS allowing recursive resolvers or clients to validate signatures. There is no central certificate authority, instead parent zones provide certificate hash information in the delegation allowing for proof of validity.

Cisco Umbrella now supports DNSSEC by performing validation on queries sent from Umbrella resolvers to upstream authorities. Customers can have the confidence that Cisco Umbrella is protecting their organization from cache poisoning attacks, without having to perform validation locally.

Cisco Umbrella supports DNSSEC

Cisco Umbrella delivers the best, most reliable, and fastest internet experience to every single one of our more than 100 million users. We are the leading provider of network security and DNS services, enabling the world to connect to the internet with confidence on any device.

Get the details on how Cisco Umbrella supports DNSSEC.

 

Source :
https://umbrella.cisco.com/blog/2020/01/28/what-is-dnssec-and-why-is-it-important/

Emotet Malware Now Hacks Nearby Wi-Fi Networks to Infect New Victims

Emotet, the notorious trojan behind a number of botnet-driven spam campaigns and ransomware attacks, has found a new attack vector: using already infected devices to identify new victims that are connected to nearby Wi-Fi networks.

According to researchers at Binary Defense, the newly discovered Emotet sample leverages a "Wi-Fi spreader" module to scan Wi-Fi networks, and then attempts to infect devices that are connected to them.

The cybersecurity firm said the Wi-Fi spreader has a timestamp of April 16, 2018, indicating the spreading behavior has been running "unnoticed" for close to two years until it was detected for the first time last month.

The development marks an escalation of Emotet's capabilities, as networks in close physical proximity to the original victim are now susceptible to infection.

How Does Emotet's Wi-Fi Spreader Module Work?

The updated version of the malware works by leveraging an already compromised host to list all the nearby Wi-Fi networks. To do so, it makes use of the wlanAPI interface to extract the SSID, signal strength, the authentication method (WPA, WPA2, or WEP), and mode of encryption used to secure passwords.

On obtaining the information for each network this way, the worm attempts to connect to the networks by performing a brute-force attack using passwords obtained from one of two internal password lists. Provided the connection fails, it moves to the next password in the list. It's not immediately clear how this list of passwords was put together.

Emotet malware cybersecurity

But if the operation succeeds, the malware connects the compromised system on the newly-accessed network and begins enumerating all non-hidden shares. It then carries out a second round of brute-force attack to guess the usernames and passwords of all users connected to the network resource.

After having successfully brute-forced users and their passwords, the worm moves to the next phase by installing malicious payloads — called "service.exe" — on the newly infected remote systems. To cloak its behavior, the payload is installed as a Windows Defender System Service (WinDefService).

In addition to communicating with a command-and-control (C2) server, the service acts as a dropper and executes the Emotet binary on the infected host.

The fact that Emotet can jump from one Wi-Fi network to the other puts onus on companies to secure their networks with strong passwords to prevent unauthorized access. The malware can also be detected by actively monitoring processes running from temporary folders and user profile application data folders.

Emotet: From Banking Trojan to Malware Loader

Emotet, which was first identified in 2014, has morphed from its original roots as a banking Trojan to a "Swiss Army knife" that can serve as a downloader, information stealer, and spambot depending on how it's deployed.

Over the years, it has also been an effective delivery mechanism for ransomware. Lake City's IT network was crippled last June after an employee inadvertently opened a suspicious email that downloaded the Emotet Trojan, which in turn downloaded TrickBot trojan and Ryuk ransomware.

Although Emotet-driven campaigns largely disappeared throughout the summer of 2019, it made a comeback in September via "geographically-targeted emails with local-language lures and brands, often financial in theme, and using malicious document attachments or links to similar documents, which, when users enabled macros, installed Emotet."

"With this newly discovered loader-type used by Emotet, a new threat vector is introduced to Emotet's capabilities," Binary Defense researchers concluded. "Emotet can use this loader-type to spread through nearby wireless networks if the networks use insecure passwords."

Coronavirus Affecting Business as Remote Workforces Expand Beyond Expected Capacity

The novel coronavirus epidemic is a major global health concern. To help prevent the spread of the new virus, organizations, businesses and enterprises are protecting their workforce and allowing employees to work remotely. This practice helps limit individual contact with large groups or crowds (e.g., restaurants, offices, transit) where viruses can easily spread.

As such, ‘stay at home’ is a common phrase in many health-conscious regions this week. According to the BBC, the city of Suzhou said businesses would remain closed until Feb 8, if not longer. As of 2018, Suzhou had a population of more than 10.7 million people.

On Jan. 30, the World Health Organization labeled the outbreak as a global health emergency. In response, the U.S. Department of issued a Level 4 travel advisory to China (do not travel).

Precautions like these are causing unexpected increases in mobile workers; many organizations don’t have enough virtual private network (VPN) licenses to accommodate the increase of users. This is a serious risk as employees will either not have access to business resources or, worse, they will do so via non-secure connections.

Organizations and enterprises in affected areas should review their business continuity plans. The National Law Review published a useful primer for employers and organizations managing workforces susceptible to coronavirus outbreaks. In addition, leverage SonicWall’s ‘5 Core Practices to Ensure Business Continuity.”

What is the coronavirus?

Coronavirus (2019-nCoV) is a respiratory illness first identified in Wuhan, China, but cases have since been reported in the U.S., Canada, Australia, Germany, France, Thailand, Japan, Hong Kong, and nine other countries. In an effort to contain the virus, the Chinese authorities have suspended air and rail travel in the area around Wuhan.

According to Centers for Disease Control and Prevention (CDC), early patients in the outbreak in China “reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people.”

The latest situation summary updates are available via the CDC: 2019 Novel Coronavirus, Wuhan, China.

Change Product Key Windows Server 2019 – Windows 10 1809

When installing Windows Server 2019, as with previous versions of Windows, you are prompted to enter the product key during installation, however if you are waiting for licensing to arrive, you can skip this and continue building your server. Once the licensing arrives, you can enter the product key from the Settings app, but in my case, clicking the Change Product Key button resulted in absolutely nothing. The window did not pop up, no error in the event logs, nothing at all. In this article, I will show you how to enter your product key manually using command line utilities, then activating using the same utility.

  1. Click Start and type CMD in the Start Search menu
  2. Right Click and choose Run as administrator
  3. To remove any existing product key (in case you used a trial key), enter and run the command slmgr.vbs /upk .
  4. Clear the product key from registry by running slmgr.vbs /cpky
  5. To enter your new product key, use the command: slmgr.vbs /ipk xxxxx-xxxxx-xxxxx-xxxxx where the x’s are your actual product key.
  6. Lastly, activate Windows by entering the command slmgr.vbs /ato
  7. Windows is now activated.

From my research, this appears to be a fairly common issue. Some users reported completely reloading Windows and entering the key from the start to resolve the issue, but if you have already configured the server or workstation, that’s not really an option. After running the above commands, my servers were activated and running normally. So far, this is my only hiccup with Server 2019.

 

Source :
https://technogecko.net/guides/change-product-key-does-nothing-windows-server-2019-windows-10-1809/

Smarter Cybersecurity: How SecOps Can Simplify Security Management, Oversight & Real-Time Decision-Making

Organizations continue to be alarmed by how easily cybercriminals can circumvent security defenses as malware, ransomware, cryptojacking and phishing attacks make headline news.

In addition, security operations lack visibility and awareness of unsafe network and user activities, network traffic irregularities, and unusual data access and utilization. This exacerbates the situation and creates a dangerous condition where security teams are too late or unable to:

  • Respond to security alerts or incidents at the speed and accuracy they need
  • Conduct thorough and effective investigations
  • Find answers fast enough to take corrective actions

Through close engagements with our top channel partners and key customers, SonicWall learned and understood these challenges first-hand. And through that collaboration, SonicWall developed and introduced the SonicWall Capture Security Center and two powerful risk management tools ­— Analytics and Risk Meters — to help customers solve these difficult problems.

Govern, comply and manage risk

The Capture Security Center is grounded on three core objectives:

‘Govern Centrally’ focuses on improving operational efficiencies and reducing overhead, while ‘Compliance’ and ‘Risk Management’ concentrate on the business value. These core objectives are interdependent as each leverages a common set of information, processes and technologies that help SecOps establish and deliver a strong, federated security defense and response services at the core of their security program.

Work faster and smarter — with less effort

Capture Security Center is a cloud solution organizations use to avoid operational overhead associated with software and hardware installation, upgrades and maintenance. This solution provides SecOps teams secure single sign-on (SSO) access to license, provision and manage their entire SonicWall security suite, including networkwirelessendpointemailmobile and cloud security products and services.

Think of it as a high-productivity tool that provides authorized users access to all available security services based on their role and access rules. The command console is assessible from any location and from any web-enabled PC. Once signed in, users are automatically granted access to everything — and are able do everything securely — using one cloud app.

The different tiles (shown below) are exactly what you’ll see when you log in to your Capture Security Center account. Users can easily navigate between tenants presented on the left panel and, on the right panel, manage any licensed cloud services registered to that tenant.

Available in January 2020, Capture Security Center version 1.8 adds capabilities for security teams to:

Study risks and threats in real time with real-world data

SonicWall Risk Meters is a threat monitoring and risk-rating tool we’ve integrated into the Capture Security Center. The tool is available to all SonicWall Capture Security Center customers at no additional cost.

Risk Meters, shown below, gives a direct line of sight into the cyberattacks affecting your security posture. Threat vectors are represented by colored arrows while threat types are shown as icons.

Clicking on an icon pops up an information panel that provides a detailed description of the threat. A tenant drop-down list allows you to view threat metrics at the tenant level. Visibility into the attacks targeting various defense layers helps guide your response to where immediate defensive actions are needed for a specific environment.

The first defense layer captures attacks blocked by the firewallsCapture Advanced Threat Protection (ATP) sandbox and WAF.

The second defense layer reveals attacks targeting your SaaS appliances and email environments.

The third defense layer shows threats attacking your users’ devices. The DEFCON and Shield Level ratings displayed at the top-right corner provide the computed risk scores based on existing defense layers. Scores are adjusted as you toggle to activate or deactivate available services.

Taking this a step further, Risk Meters gains several important improvements in Capture Security Center 1.8. A new control panel presents users with customization functionalities to run analysis on a variety of threat data.

This new feature allows for experimenting “what-if” simulations at a more granular level to see how the risk score dynamically changes when sub-components of certain layer or multiple layers are added or removed.

Up until this release, risk scores were calculated based solely on security services from SonicWall. To give a more accurate account of customer security environments, CSC now factors in all security controls when calculating the risk scores, including non-SonicWall services.

The Risk Meters Control Panel allows users to configure and weigh third-party security controls into the calculated risk scores. Users can now review trends of different threat types and then compare them against regional and global averages to help identify which threat vectors to focus on and where to prepare their defenses.

Transforming threat data into decisions, decisions into actions

In conjunction with Capture Security Center 1.8, SonicWall releases Analytics 2.5 to introduce a new user-based analytics and reporting function to helps security teams visualize and conduct investigations into users’ actions and application and data usage.

Security teams can monitor or drill-down into the security data for more details about the user network traffic, access and connections, and what applications are being used and websites are frequently visited.

Also, security teams can investigate attacks that target a certain group of users and bandwidth costs associated with resource utilization to determine if policy-tuning or added configurations are needed to reduce their risk profile or optimize network performance.


About the SonicWall Capture Security Center

Capture Security Center is a scalable cloud security management system that’s a built-in and ready-to-use component of your SonicWall product or service. It features single-sign-on and ‘single-pane-of-glass’ management. It integrates the functionality of the Capture Cloud Platform to deliver robust security management, analytics and real-time threat intelligence for your entire portfolio of network, email, endpoint, mobile and cloud security resources.

Capture Security Center delivers a valuable team resource to help organizations control assets and defend entire networks from cyberattacks. Unify and synchronize updates and support, monitor security risks and fulfill regulatory compliance — all with greater clarity, precision and speed.

source :
https://blog.sonicwall.com/en-us/2019/12/smarter-cybersecurity-how-secops-can-simplify-security-management/

Amazon Echo Hacked at Pwn2Own Tokyo 2019 and Ransomware Attacks Hit Spanish Companies

Welcome to our weekly roundup, where we share what you need to know about the cybersecurity news and events that happened over the past few days. This week, learn about a ransomware that is attacking Spanish companies and how nearly 50 adware apps were found on Google Play. Also, read about how an Amazon Echo was hacked on the first day of Pwn2Own Tokyo 2019.

Read on:

Facebook Portal Survives Pwn2Own Hacking Contest, Amazon Echo Got Hacked

Amazon Echo speakers, Samsung and Sony smart TVs, the Xiaomi Mi9 phone, and Netgear and TP-Link routers were all hacked on the first day of ZDI’s Pwn2Own Tokyo 2019 hacking contest.

New Exploit Kit Capesand Reuses Old and New Public Exploits and Tools, Blockchain Ruse

In October 2019, Trend Micro discovered a new exploit kit named Capesand, which attempts to exploit recent vulnerabilities in Adobe Flash and Microsoft Internet Explorer. Based on our investigation, it also exploits a 2015 vulnerability for Internet Explorer.

Inside the Microsoft Team Tracking the World’s Most Dangerous Hackers

Microsoft’s latest win over cloud rival Amazon for the lucrative military contact means that an intelligence-gathering apparatus among the most important in the world is based in the woods outside Seattle. Now in this corner of Washington state, dozens of engineers and intelligence analysts are watching and stopping the government-sponsored hackers proliferating around the world.

Halloween Exploits Scare: BlueKeep, Chrome’s Zero-Days in the Wild

On October 31, Chrome posted that a stable channel security update for Windows, Mac, and Linux versions of Chrome will be rolled out in order to fix two use-after-free flaws in audio and PDFium. The U.S. Department of Homeland Security’s Cybersecurity and Infrastructure Security Agency (CISA) has released a statement advising users and administrators to apply the updates.

A Stranger’s TV Went on Spending Spree with My Amazon Account – and Web Giant Did Nothing About it for Months

After a fraudster exploited a bizarre weakness in Amazon’s handling of customer devices to hijack an account and go on spending sprees with their bank cards, it was discovered that it is possible to add a non-Amazon device to your Amazon customer account and it won’t show up in the list of gadgets associated with the profile.

Ransomware Attacks Hit Spanish Companies, Paralyzes Government Services in Canadian Territory of Nunavut

A ransomware campaign recently hit companies in Spain, including Cadena Sociedad Española de Radiodifusión (SER), the country’s largest radio network. In another part of the globe, threat actors managed to infect government systems with ransomware in the Canadian territory of Nunavut.

Amazon’s Ring Video Doorbell Lets Attackers Steal Your Wi-Fi Password

Security researchers at Bitdefender have discovered a high-severity security vulnerability in Amazon’s Ring Video Doorbell Pro devices that could allow nearby attackers to steal your WiFi password and launch a variety of cyberattacks using MitM against other devices connected to the same network.

Unpatched Remote Code Execution rConfig Flaws Could Affect Millions of Servers and Network Devices

Details on the proof-of-concept (PoC) exploit for two unpatched, critical remote code execution (RCE) vulnerabilities in the network configuration management utility rConfig have recently been disclosed. At least one of the flaws could allow remote compromise of servers and connected network devices.

California DMV Data Breach Exposed Thousands of Drivers’ Information, Agency Says

A data breach at the California Department of Motor Vehicles may have exposed some drivers’ Social Security number information to seven government entities, according to the DMV. The breach affects about 3,200 individuals over at least the last four years, the agency said in a statement.

49 Disguised Adware Apps with Optimized Evasion Features Found on Google Play

Trend Micro recently found 49 new adware apps on Google Play, disguised as games and stylized cameras. These apps are no longer live, but before they were taken down by Google, the total number of downloads was more than 3 million. This Trend Micro blog discusses solutions and security recommendations for protecting against adware apps.

CVE-2019-2114: Patched Android Bug That Allows Possible Installation of Malicious Apps

An Android bug that could allow threat actors to bypass devices’ security mechanisms was discovered by Nightwatch Cybersecurity. Successful abuse of the bug can allow threat actors to transfer a malicious application to a nearby Near Field Communication (NFC)-enabled device via the Android Beam. The bug affects Android version 8 (Oreo) or higher.


Surprised by the devices that were hacked on the first day of Pwn2Own Tokyo 2019? Share your thoughts in the comments below or follow me on Twitter to continue the conversation: @JonLClay.

Source :
https://blog.trendmicro.com/this-week-in-security-news-amazon-echo-hacked-at-pwn2own-tokyo-2019-and-ransomware-attacks-hit-spanish-companies/