Blog

QNAP Urges Users to Update NAS Devices to Prevent Deadbolt Ransomware Attacks

Taiwanese network-attached storage (NAS) devices maker QNAP on Thursday warned its customers of a fresh wave of DeadBolt ransomware attacks.

The intrusions are said to have targeted TS-x51 series and TS-x53 series appliances running on QTS 4.3.6 and QTS 4.4.1, according to its product security incident response team.

“QNAP urges all NAS users to check and update QTS to the latest version as soon as possible, and avoid exposing their NAS to the internet,” QNAP said in an advisory.

This development marks the third time QNAP devices have come under assault from DeadBolt ransomware since the start of the year.

Deadbolt Ransomware Attacks

In late January, as many as 4,988 DeadBolt-infected QNAP devices were identified, prompting the company to release a forced firmware update. A second uptick in new infections was observed in mid-March.

DeadBolt attacks are also notable for the fact that they allegedly leverage zero-day flaws in the software to gain remote access and encrypt the systems.

Ransomware Attacks

According to a new report published by Group-IB, exploitation of security vulnerabilities in public-facing applications emerged as the third most used vector to gain initial access, accounting for 21% of all ransomware attacks investigated by the firm in 2021.

Source :
https://thehackernews.com/2022/05/qnap-urges-users-to-update-nas-devices.html

Millions of Attacks Target Tatsu Builder Plugin

The Wordfence Threat Intelligence team has been tracking a large-scale attack against a Remote Code Execution vulnerability in Tatsu Builder, which is tracked by CVE-2021-25094 and was publicly disclosed on March 24, 2022 by an independent security researcher. The issue is present in vulnerable versions of both the free and premium Tatsu Builder plugin. Tatsu Builder is a proprietary plugin that is not listed on the WordPress.org repository, so reliable installation counts are not available, but we estimate that the plugin has between 20,000 and 50,000 installations. Tatsu sent an urgent email notification to all of their customers on April 7th advising them to update, but we estimate that at least a quarter of remaining installations are still vulnerable.

All Wordfence users with the Wordfence Web Application Firewall active, including Wordfence free customers, are protected against attackers trying to exploit this vulnerability.

We began seeing attacks on May 10, 2022. The attacks are ongoing with the volume ramping up to a peak of 5.9 million attacks against 1.4 million sites on May 14, 2022. The attack volume has declined but the attacks are still ongoing at the time of publication.

The following is a graph showing the total volume of attacks targeting the vulnerability in Tatsu Builder.

Graph showing attack volume against CVE-2021-25094

While the following is a graph showing the total number of sites being targeted by attackers trying to exploit the vulnerability in Tatsu Builder.


Description: Unauthenticated Remote Code Execution
Affected Plugin: Tatsu Builder
Plugin Slug: tatsu
Plugin Developer: BrandExponents
Affected Versions: < 3.3.13
CVE ID:CVE-2021-25094
CVSS Score: 8.1 (High)
CVSS Vector:CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H
Researcher/s: Vincent Michel (darkpills)
Fully Patched Version: 3.3.13

Indicators of Attack

Most of the attacks we have seen are probing attacks to determine the presence of a vulnerable plugin. These may appear in your logs with the following query string:

/wp-admin/admin-ajax.php?action=add_custom_font

The vast majority of attacks are the work of just a few IP addresses.

The top 3 attacking IPs have each attacked over 1 million sites:

148.251.183.254
176.9.117.218
217.160.145.62

An additional 15 IPs have each attacked over 100,000 sites:

65.108.104.19
62.197.136.102
51.38.41.15
31.210.20.170
31.210.20.101
85.202.169.175
85.202.169.71
85.202.169.86
85.202.169.36
85.202.169.83
85.202.169.92
194.233.87.7
2.56.56.203
85.202.169.129
135.181.0.188

Indicators of Compromise

The most common payload we’ve seen is a dropper used to place additional malware located in a randomly-named subfolder of wp-content/uploads/typehub/custom/ such as wp-content/uploads/typehub/custom/vjxfvzcd.

The dropper is typically named .sp3ctra_XO.php and has an MD5 hash of 3708363c5b7bf582f8477b1c82c8cbf8.

Note the dot at the beginning as this indicates a hidden file, which is necessary to exploit the vulnerability as it takes advantage of a race condition.

This file is detected by the Wordfence scanner.

What Should I Do?

All Wordfence users with the Wordfence Web Application Firewall active, including Wordfence free customers, are protected against this vulnerability. Nonetheless, if you use the Tatsu Builder plugin, we strongly recommend updating to the latest version available, which is 3.3.13 at the time of this writing. Please note that version 3.3.12 contained a partial patch but did not fully address all issues.

If you know anyone using the Tatsu Builder plugin on their site, we urge you to forward this article to them as this is a large-scale attack and any vulnerable sites that are not updated and not using some form of a Web Application Firewall are at risk of complete site takeover.

If you believe your site has been compromised as a result of this vulnerability or any other vulnerability, we offer Incident Response services via Wordfence Care. If you need your site cleaned immediately, Wordfence Response offers the same service with 24/7/365 availability and a 1-hour response time. Both these products include hands-on support in case you need further assistance.

Source :
https://www.wordfence.com/blog/2022/05/millions-of-attacks-target-tatsu-builder-plugin/

Researchers Find Potential Way to Run Malware on iPhone Even When it’s OFF

A first-of-its-kind security analysis of iOS Find My function has identified a novel attack surface that makes it possible to tamper with the firmware and load malware onto a Bluetooth chip that’s executed while an iPhone is “off.”

The mechanism takes advantage of the fact that wireless chips related to Bluetooth, Near-field communication (NFC), and ultra-wideband (UWB) continue to operate while iOS is shut down when entering a “power reserve” Low Power Mode (LPM).

While this is done so as to enable features like Find My and facilitate Express Card transactions, all the three wireless chips have direct access to the secure element, academics from the Secure Mobile Networking Lab (SEEMOO) at the Technical University of Darmstadt said in a paper entitled “Evil Never Sleeps.”

“The Bluetooth and UWB chips are hardwired to the Secure Element (SE) in the NFC chip, storing secrets that should be available in LPM,” the researchers said.

“Since LPM support is implemented in hardware, it cannot be removed by changing software components. As a result, on modern iPhones, wireless chips can no longer be trusted to be turned off after shutdown. This poses a new threat model.”

The findings are set to be presented at the ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec 2022) this week.

The LPM features, newly introduced last year with iOS 15, make it possible to track lost devices using the Find My network even when run out of battery power or have been shut off. Current devices with Ultra-wideband support include iPhone 11, iPhone 12, and iPhone 13.

A message displayed when turning off iPhones reads thus: “iPhone remains findable after power off. Find My helps you locate this iPhone when it is lost or stolen, even when it is in power reserve mode or when powered off.”

Malware

Calling the current LPM implementation “opaque,” the researchers not only sometimes observed failures when initializing Find My advertisements during power off, effectively contradicting the aforementioned message, they also found that the Bluetooth firmware is neither signed nor encrypted.

By taking advantage of this loophole, an adversary with privileged access can create malware that’s capable of being executed on an iPhone Bluetooth chip even when it’s powered off.

However, for such a firmware compromise to happen, the attacker must be able to communicate to the firmware via the operating system, modify the firmware image, or gain code execution on an LPM-enabled chip over-the-air by exploiting flaws such as BrakTooth.

Put differently, the idea is to alter the LPM application thread to embed malware, such as those that could alert the malicious actor of a victim’s Find My Bluetooth broadcasts, enabling the threat actor to keep remote tabs on the target.

“Instead of changing existing functionality, they could also add completely new features,” SEEMOO researchers pointed out, adding they responsibly disclosed all the issues to Apple, but that the tech giant “had no feedback.”

With LPM-related features taking a more stealthier approach to carrying out its intended use cases, SEEMOO called on Apple to include a hardware-based switch to disconnect the battery so as to alleviate any surveillance concerns that could arise out of firmware-level attacks.

“Since LPM support is based on the iPhone’s hardware, it cannot be removed with system updates,” the researchers said. “Thus, it has a long-lasting effect on the overall iOS security model.”

“Design of LPM features seems to be mostly driven by functionality, without considering threats outside of the intended applications. Find My after power off turns shutdown iPhones into tracking devices by design, and the implementation within the Bluetooth firmware is not secured against manipulation.”

Source :
https://thehackernews.com/2022/05/researchers-find-way-to-run-malware-on.html

Europe Agrees to Adopt New NIS2 Directive Aimed at Hardening Cybersecurity

The European Parliament announced a “provisional agreement” aimed at improving cybersecurity and resilience of both public and private sector entities in the European Union.

The revised directive, called “NIS2” (short for network and information systems), is expected to replace the existing legislation on cybersecurity that was established in July 2016.

The revamp sets ground rules, requiring companies in energy, transport, financial markets, health, and digital infrastructure sectors to adhere to risk management measures and reporting obligations.

Among the provisions in the new legislation are flagging cybersecurity incidents to authorities within 24 hours, patching software vulnerabilities, and readying risk management measures to secure networks, failing which can incur monetary penalties.

“The directive will formally establish the European Cyber Crises Liaison Organization Network, EU-CyCLONe, which will support the coordinated management of large-scale cybersecurity incidents,” the Council of the European Union said in a statement last week.

The development closely follows the European Commission’s plans to “detect, report, block, and remove” child sexual abuse images and videos from online service providers, including messaging apps, prompting concerns that it may undermine end-to-end encryption (E2EE) protections.

The draft version of NIS2 explicitly spells out that the use of E2EE “should be reconciled with the Member States’ powers to ensure the protection of their essential security interests and public security, and to permit the investigation, detection and prosecution of criminal offenses in compliance with Union law.”

It also stressed that “Solutions for lawful access to information in end-to-end encrypted communications should maintain the effectiveness of encryption in protecting privacy and security of communications, while providing an effective response to crime.”

That said, the directive will not apply to organizations in verticals such as defense, national security, public security, law enforcement, judiciary, parliaments, and central banks.

As part of the proposed agreement, the European Union member states are mandated to incorporate the provisions into their national law within a period of 21 months from when the directive goes into force.

“The number, magnitude, sophistication, frequency and impact of cybersecurity incidents are increasing, and present a major threat to the functioning of network and information systems,” the Council noted in the draft.

“Cybersecurity preparedness and effectiveness are therefore now more essential than ever to the proper functioning of the internal market.”

Source :
https://thehackernews.com/2022/05/europe-agrees-to-adopt-new-nis2.html

Portless iPhones will be the future for most, but USB-C iPhones still make sense

Apple has long been expected to transition to fully portless iPhones at some point, and for most users that makes perfect sense. But we’re seeing growing reports that the iPhone maker is first going to switch from Lightning to USB-C, and that raises a key question.

Is USB-C just a brief interim stage before iPhones go fully wireless, or do USB-C iPhones have a longer future … ?

Recent reports

Two recent reports suggest that Apple plans to switch to a USB-C iPhone port next year. Ming-Chi Kuo made the initial report, before Bloomberg corroborated.

Note that neither report means this is definitely happening. Kuo based his on supply-chain reports, and we noted at the time the uncertainties regarding these.

Apple likes to have multiple suppliers wherever possible, to allow it to negotiate better prices, and to reduce risk. If, for example, a major supplier of Lightning ports were to report Apple was planning to cut orders next year, that could mean nothing more than a rejigging of competing suppliers.

Similarly, USB-C suppliers talking about expecting a major boost in orders next year might again simply be Apple or other companies increasing orders with some suppliers while reducing them with others.

Bloomberg’s report was instead based on internal testing of a USB-C iPhone. I’m sure that report is accurate, but again, it doesn’t amount to proof. There is precisely a 100% chance that there have been USB-C iPhone prototypes within Apple’s labs for years now. Does ‘testing’ mean simply experimenting with these, or something on a more formal and larger scale?

However, both sources seem reasonably confident in their predictions, so let’s assume for now that they are correct. What does this mean for the future of iPhone ports? Here are my brief thoughts.

It would be an overdue move

I’m a big fan of port standardization in general, and of USB-C in particular. My ideal is a day when absolutely all wired connections are USB-C to USB-C, and I can finally ditch five of the six trays of cables I have, not to mention the additional one with assorted adapters.

I was a bit skeptical of Kuo’s report for this reason. While I’d welcome it, my immediate question was ‘why now?’. Apple started the switched to USB-C in the Mac back in 2016, and the iPad in 2018, so why wait another four years before the iPhone belatedly follows suit?

In particular, if Apple is heading toward portless iPhones, why go through the disruption now of a wired port change that would last for perhaps two or three years before a fully wireless iPhone?

If the reports are accurate, this is a very overdue move.

Most will be happy with portless iPhones

One possible explanation for the latter point is simply that the portless reports aren’t true, and Apple plans to stick with a wired charging and data-transfer connection option for the foreseeable future. However, I don’t buy that, for several reasons.

First, a portless iPhone is absolutely in line with Apple’s design direction. Sure, things have changed a little since Jony Ive left, but I do believe that his “single slab of glass” vision is Apple’s ultimate goal.

Second, eliminating a port reduces manufacturing cost and complexity. This, too, is absolutely in line with the company’s ethos – as the removal of the headphone jack demonstrated.

Third, removing the port improves reliability. It takes away the biggest entry point for dust and water, which will likely significantly boost the waterproofing standard. Additionally, it ends the fraying Lightning cable issue!

Finally, most iPhone owners don’t need a port – and even fewer will do so in the future. Few iPhone owners ever do any wired data-transfer, and most people can get their charging needs met through overnight wireless charging. For top-up charges, we’re seeing a growing number of wireless charging pads in cars, coffee shops, hotels, airports, offices … you name it. This trend will only continue. Same for power banks with MagSafe charging capabilities.

But there are still people who need a wired port

Apple cannot have things both ways: argue that the iPhone is a suitable camera for professional video use (albeit mostly as a B-cam or C-cam) while at the same time removing the only practical way to transfer significant amounts of 4K (and later 8K) video footage.

If you’re using an iPhone for pro video shoots, a wired port is a necessity, and USB-C is much better than Lightning.

Similarly, there will be a minority of people for whom wireless charging isn’t practical. If you are a really heavy iPhone user, and need to go significant periods between charges, then the faster speed of wireless charging may be a necessity rather than a luxury.

So there will always be some who need a wired connection (at least until wireless charging and wireless data transfer offer speed much closer to wired connections), even if they are a minority.

What’s my best guess?

I can see one of two things happening, at the point where Apple feels ready to make the change to portless iPhones.

First, the standard iPhone model(s) go portless, while the Pro models retain a wired port. This would make for a worthwhile point of differentiation for more serious iPhone users, while the vast majority of consumers will remain happy with wireless charging and AirDrop.

Or second, have the iPhone Pro Max be the only model to continue to offer a USB-C port. This would again be consistent with certain features being exclusive to the largest and most expensive model – like sensor shift and 2.5x optional zoom being exclusive to the iPhone 12 Pro Max.

I think Apple could probably take the second approach without upsetting too many people. Videographers are likely to appreciate the larger screen of the Pro Max, while anyone needing to push battery usage to the limits will obviously be buying the Pro Max for its longer battery life. So the two groups who most benefit from a wired port are already likely to choose the top-end model.

So that’s my bet. Sometime within the next few years, all but the iPhone Pro Max go portless, while the Pro Max gets or keeps a USB-C port. What’s your view? Please take our poll and share your thoughts in the comments.

Source :
https://9to5mac.com/2022/05/16/portless-iphones-usb-c-iphones/

Apple releases iOS 15.5 with enhancements to Apple Cash and Podcasts app

Apple on Monday released iOS 15.5 and iPadOS 15.5 to the public following the release of the RC build last week. The update doesn’t bring significant changes, but it does improve the Apple Cash and Podcasts app.

iOS 15.5 new features

Apple says that iOS 15.5 makes enhancements to Apple Cash, with support for more easily requesting and sending money from the Apple Cash card in the Wallet app. There’s also a new feature in Apple Podcasts to help preserve your iPhone’s storage space and some bug fixes for HomeKit. 

Here are the full release notes for iOS 15.5 according to Apple: 

iOS 15.5 includes the following improvements and bug fixes:

  • Wallet now enables Apple Cash customers to send and request money from their Apple Cash card
  • Apple Podcasts includes a new setting to limit episodes stored on your iPhone and automatically delete older ones
  • Fixes an issue where home automations, triggered by people arriving or leaving, may fail

Here are some other changes in iOS 15.5 we’ve spotted so far, not mentioned in Apple’s release notes: 

You can update your devices by going to the Settings app, then General > Software Update. Check out Apple’s website for more details about the security patches included with iOS 15.5.

It’s unclear whether this update will be the last before the first iOS 16 beta, which should arrive shortly after WWDC 2022 in June.

Source :
https://9to5mac.com/2022/05/16/apple-releases-ios-15-5-with-enhancements-to-the-apple-cash-and-podcasts-app/

USB-C iPhone 15 in the works, claims Kuo, following supply-chain survey

The only examples of a USB-C iPhone we’ve seen to date have been DIY versions, but Ming-Chi Kuo claims that Apple will make the switch from Lightning to USB-C next year, in the iPhone 15.

The report comes as something of a surprise, as although Apple has adopted USB-C for Mac and iPad, it had seemed the company planned to stick with Lightning until it switches to a completely portless phone …

Background

Apple began its adoption of USB-C for Macs back in 2015, with the 12-inch MacBook. It then went all-in with the 2016 MacBook Pro, before backtracking a little last year by restoring MagSafe, HDMI and SD card slots.

The iPad made the switch from Lightning to USB-C in 2018, with the 11-inch and 12.9-inch iPad Pro models.

That left the iPhone as the sole core Apple product with a Lightning socket. Since the iPhone retained the older connector for years after the Mac and iPad adoption of USB-C, the consensus view appeared to be that it would continue to do so until the first portless model.

USB-C iPhone 15 report

Apple analyst Ming-Chi Kuo tweeted today that Apple will make the switch to USB-C for iPhone in the second half of next year, which is to say the iPhone 15.

My latest survey indicates that 2H23 new iPhone will abandon Lightning port and switch to USB-C port. USB-C could improve iPhone’s transfer and charging speed in hardware designs, but the final spec details still depend on iOS support.

It’s expected to see existing USB-C-related suppliers of Apple’s ecosystem (e.g., IC controller, connector) become the market’s focus in the next 1-2 years, thanks to vast orders from iPhones and accessories’ adoption of USB-C ports.

The reference to USB-C suppliers benefiting for ‘1-2 years’ may indicate that Kuo then anticipates Apple will drop the port altogether.

9to5Mac’s Take

This is a somewhat odd report. Apple made the switch to USB-C iPads in back 2018, so if it planned to do with the iPhone too, we would have expected that to have happened by now.

It should be noted that although Kuo has a decent track record, he has more recently taken to tweeting simply thoughts or opinions about what Apple might do, rather than anything based on evidence. However, this tweet does specifically say that it’s based on his ‘latest survey,’ which means talking to suppliers.

Supply-chain reports can be of varying reliability. Apple likes to have multiple suppliers wherever possible, to allow it to negotiate better prices, and to reduce risk. If, for example, a major supplier of Lightning ports were to report Apple was planning to cut orders next year, that could mean nothing more than a rejigging of competing suppliers.

Similarly, USB-C suppliers talking about expecting a major boost in orders next year might again simply be Apple or other companies increasing orders with some suppliers while reducing them with others.

Kuo does seem confident in his interpretation of what he’s hearing from suppliers. It’s entirely possible that he’s right, but we wouldn’t count on it yet.

Source :
https://9to5mac.com/2022/05/11/usb-c-iphone-15/

SonicWall Releases Patches for New Flaws Affecting SSLVPN SMA1000 Devices

SonicWall has published an advisory warning of a trio of security flaws in its Secure Mobile Access (SMA) 1000 appliances, including a high-severity authentication bypass vulnerability.

The weaknesses in question impact SMA 6200, 6210, 7200, 7210, 8000v running firmware versions 12.4.0 and 12.4.1. The list of vulnerabilities is below –

  • CVE-2022-22282 (CVSS score: 8.2) – Unauthenticated Access Control Bypass
  • CVE-2022-1702 (CVSS score: 6.1) – URL redirection to an untrusted site (open redirection)
  • CVE-2022-1701 (CVSS score: 5.7) – Use of a shared and hard-coded cryptographic key

Successful exploitation of the aforementioned bugs could allow an attacker to unauthorized access to internal resources and even redirect potential victims to malicious websites.

Tom Wyatt of the Mimecast Offensive Security Team has been credited with discovering and reporting the vulnerabilities.

SonicWall noted that the flaws do not affect SMA 1000 series running versions earlier than 12.4.0, SMA 100 series, Central Management Servers (CMS), and remote access clients.

SonicWall

Although there is no evidence that these vulnerabilities are being exploited in the wild, it’s recommended that users apply the fixes in the light of the fact that SonicWall appliances have presented an attractive bullseye in the past for ransomware attacks.

“There are no temporary mitigations,” the network security company said. “SonicWall urges impacted customers to implement applicable patches as soon as possible.”

Source :
https://thehackernews.com/2022/05/sonicwall-releases-patches-for-new.html

Enjoy the Speed and Safety of TLS 1.3 Support

SonicWall NGFWs offer full TLS 1.3 support — ensuring your network can handle the latest encryption protocols.

The best products tend to stick around for a while. In the first two years that the Ford Mustang was manufactured, 1965 and 1966, roughly 1.3 million cars rolled off assembly lines in Dearborn, Mich.; Metuchen, N.J.; and Milpitas, Calif. Of those, a remarkable 350,000 are still on the road today — and with proper care, still getting from Point A to Point B just as well as they did during the Johnson Administration.

But aesthetics aside, does that make them a good choice for a daily driver today? In a crash test with any modern vehicle (or a race with any of today’s Mustangs), the first-generation Mustang would be completely overwhelmed. Safety features we take for granted, such as airbags, lane-keep assist, blind spot detection and anti-lock brakes, are absent. These cars might do fine for the occasional Sunday spin around town. But would you put your family in one?

When a product forms the boundary between something precious and grave disaster, you want that product to be as safe as possible. This also holds true for another Milpitas innovation: SonicWall firewalls. To know whether your current choice is still the right choice, it helps to look at what innovations have occurred since then, and whether they were incremental improvements or giant leaps forward. In the case of TLS 1.3 encryption support, it’s unquestionably the latter.

TLS 1.3 is the latest version of transport layer security, which offers reliable encryption for digital communications over the internet. And as with the Mustang before it, modern innovations have led to sizeable leaps in two areas: safety and performance.

TLS 1.3: Safety First

Since the original SSL technology was introduced in 1994, each new version has worked to solve the problems of the previous versions while also maintaining compatibility with those versions. But, unfortunately, maintaining backward compatibility meant leaving in many unnecessary or vulnerable ciphers.

These legacy ciphers made the encryption susceptible to attack, offering attackers a vector through which to circumvent newer security advances in favor of older and weaker protection. A few of the ciphers that persisted up through TLS 1.2 were so weak that they allow an attacker to decrypt the data’s contents without having the key.

TLS 1.3 represents a fundamental shift in this philosophy. Due to a sharp increase in attacks, such as Lucky13, BEAST, POODLE, Logjam and FREAK, which depend on such vulnerabilities for transmission, the Internet Engineering Task Force (IETF) opted to remove these ciphers altogether — and the resulting TLS 1.3 is vastly more secure because of it.

It’s also more private. In previous versions, including 1.2, digital signatures weren’t used to ensure a handshake’s integrity — they only protected the part of the handshake after the cipher-suite negotiation, allowing attackers to manipulate the negotiation and access the entire conversation.

In TLS 1.3, the entire handshake is encrypted, and only the sender and the recipient can decrypt the traffic. This not only makes it virtually impossible for outsiders to eavesdrop on client/server communications and much harder for attackers to launch man-in-the-middle attacks, it also protects existing communications even if future communications are compromised.

TLS 1.3: Safety Fast

With TLS 1.3, the handshake process isn’t just more secure — it’s faster, too. The four-step handshake required with TLS 1.2 necessitated two round-trip exchanges between systems, introducing latency and taking up bandwidth and power.

These slowdowns especially affected the growing class of Internet of Things (IoT) devices, which have trouble handling connections requiring lots of bandwidth or power, but also tend to need encryption most due to weak onboard security.

However, with just a single key exchange and significantly fewer supported ciphers, TLS 1.3 uses considerably less bandwidth. And because it requires just one round trip to complete the handshake, it’s significantly faster. TLS 1.3’s zero round trip time (0-RTT) feature is even quicker: On subsequent visits, it offers a latency time equal to that of unencrypted HTTP.

Is Your Firewall Up to the Task?

Experts estimate that 80-90% of all network traffic today is encrypted. But many legacy firewalls lack the capability or processing power to detect, inspect and mitigate cyberattacks sent via HTTPs traffic at all, let alone using TLS 1.3 — making this a highly successful avenue for hackers to deploy and execute malware.

According to the 2022 SonicWall Cyber Threat Report, from 2020 to 2021, malware sent over HTTPS rose a staggering 167%. All told, SonicWall recorded 10.1 million encrypted attacks in 2021 — almost as many as in 2018, 2019 and 2020 combined.

https://e.infogram.com/e3c6d4f2-5828-4326-8c3d-b5bb992a1321?parent_url=https%3A%2F%2Fblog.sonicwall.com%2Fen-us%2F2022%2F05%2Fenjoy-the-speed-and-safety-of-tls-1-3-support%2F&src=embed#async_embed

With an average of 7% of customers seeing an encrypted attack in a given month, the odds your organization will be targeted by an attack this year are enormous. But if your firewall cannot inspect encrypted traffic — and increasingly, if it cannot inspect TLS 1.3 — you’ll never know it until it’s too late.

SonicWall Supports TLS 1.3 Encryption

SonicWall Gen 7 firewalls bring a lot to the table: They combine higher port density and greater threat throughput with comprehensive malware analysis, unmatched simplicity and industry-leading performance. But among the biggest game-changers in Gen 7 (and its predecessors capable of running SonicOS Gen 6.5) is its support for TLS 1.3 encryption.

SonicWall NGFWs with SonicOS Gen 6.5 and later offer full TLS inspection, decrypting data, checking it for potential threats, and then re-encrypting it for secure transmission — all while ensuring you retain optimal performance and comprehensive visibility.

After all, as in the case of the classic Mustang, there’s no blind spot detection for firewalls that can’t handle today’s encrypted traffic — and these legacy solutions are easily outclassed when going head-to-head. Don’t let yesterday’s firewalls leave unprotected gaps in your network: Upgrade to SonicWall Gen 7 today.

Source :
https://blog.sonicwall.com/en-us/2022/05/enjoy-the-speed-and-safety-of-tls-1-3-support/

Anti-Ransomware Day: What Can We Do to Prevent the Next WannaCry?

This Anti-Ransomware Day, SonicWall looks at how cybersecurity has changed since WannaCry — and what we can do to ensure we never see such a widespread, devastating and preventable attack again.

On May 12, 2017, attackers identified a vulnerability in a Windows device somewhere in Europe — and in the process, set off an attack that would ultimately impact roughly 200,000 victims and over 300,000 endpoints across 150 countries. The devastation wrought by WannaCry caused financial losses of roughly $4 billion before the strain was halted by an unlikely hero just hours later. But perhaps most devastating of all was that it was completely preventable.

To help raise awareness about ransomware strains like WannaCry and the steps needed to combat them, INTERPOL in 2020 teamed up with cybersecurity firm Kaspersky to declare May 12 Anti-Ransomware Day. By taking a few important steps, organizations can help stop the next major ransomware attack, averting the potential for downtime, reputational damage, fines and more.

“Cybercrime and cybersecurity may seem like a complex issue that is difficult to understand unless you are an expert in the field — this is not the case. INTERPOL’s campaign aims to demystify these cyberthreats and offer simple, concrete steps which everybody can take to protect themselves,” INTERPOL’s Director of Cybercrime Craig Jones said.

What’s Changed Since WannaCry?

In the years since the infamous attack, ransomware has continued to grow. In 2021, SonicWall Capture Labs threat researchers recorded 623.3 million ransomware attempts on customers globally. This represents an increase of 105% from 2020’s total and a staggering 232% since 2019.

And while ransomware was a hot topic worldwide due to attacks such as WannaCry and NotPetya, which would begin its own savage trek across the globe just six weeks later, ransomware volume in 2017 was less than a third of what it was in 2021.

Weakened, but Still Wreaking Havoc

While variants such as Ryuk, SamSam and Cerber made up 62% of the ransomware attacks recorded by SonicWall in 2021, WannaCry lives on — and in surprising numbers. By now, five years on, the number of vulnerable Windows systems should be virtually zero. A patch for the EternalBlue vulnerability exploited by WannaCry was released two months prior to the attack, and Microsoft later took the unusual step of also releasing patches for Windows systems that were old and no longer supported.

But in 2020, SonicWall observed 233,000 instances of WannaCry, and in 2021, 100,000 hits were observed — indicating that there are still vulnerable Windows systems in the wild that need to be patched.

We Can Worry … Or Get to Work

What made WannaCry so successful was that many organizations at the time took a set-it-and-forget-it approach to IT, leaving vulnerable hundreds of thousands of endpoints that could otherwise have been patched prior to the attack. But while patching is a crucial part of any cybersecurity strategy, it can’t work alone — there are still a number of other steps organizations need to take to bolster their odds against the next big ransomware attack.

  • Update: Whenever possible, enable automatic updates on applications and devices on your network — both for operating systems and for any other apps in your ecosystem.
  • Upgrade: The older an operating system gets, the more malware and other threats are created to target them. Retire any software or hardware that is obsolete or no longer supported by the vendor.
  • Duplicate: All important data should be backed up to a place inaccessible by attackers. Having adequate and up-to-date backups on hand significantly eases recovery in the event of a ransomware attack.
  • Educate: A staggering 91% of all cyberattacks start with someone opening a phishing email. Teach employees to be wary any time they receive an email, particularly one with an attachment or link.
  • Safeguard: By taking the above steps, most attacks can be prevented, but not all. They’re called “best practices” and not “universal practices” for a reason: If any are allowed to lapse — or new methods are found to circumvent them — organizations will need a strong last line of defense. An advanced, multi-layer platform that includes endpoint security, next-gen firewall services, email security and secure mobile access can work to eliminate blind spots and eradicate both known and unknown threats.

“In the past two years, we have seen how cybercriminals have become bolder in using ransomware. Organizations targeted by such attacks are not limited to corporations and governmental organizations — ransomware operators are ready to hit essentially any business regardless of size,” Jones said. “To fight them, we need to educate ourselves on how they work and fight them as one. Anti-Ransomware Day is a good opportunity to highlight this need and remind the public of how important it is to adopt effective security practices.”

Source :
https://blog.sonicwall.com/en-us/2022/05/anti-ransomware-day-what-can-we-do-to-prevent-the-next-wannacry/