IT threat evolution Q2 2022

Targeted attacks

New technique for installing fileless malware

Earlier this year, we discovered a malicious campaign that employed a new technique for installing fileless malware on target machines by injecting a shellcode directly into Windows event logs. The attackers were using this to hide a last-stage Trojan in the file system.

The attack starts by driving targets to a legitimate website and tricking them into downloading a compressed RAR file that is booby-trapped with the network penetration testing tools Cobalt Strike and SilentBreak. The attackers use these tools to inject code into any process of their choosing. They inject the malware directly into the system memory, leaving no artifacts on the local drive that might alert traditional signature-based security and forensics tools. While fileless malware is nothing new, the way the encrypted shellcode containing the malicious payload is embedded into Windows event logs is.

The code is unique, with no similarities to known malware, so it is unclear who is behind the attack.

WinDealer’s man-on-the-side spyware

We recently published our analysis of WinDealer: malware developed by the LuoYu APT threat actor. One of the most interesting aspects of this campaign is the group’s use of a man-on-the-side attack to deliver malware and control compromised computers. A man-on-the-side attack implies that the attacker is able to control the communication channel, allowing them to read the traffic and inject arbitrary messages into normal data exchange. In the case of WinDealer, the attackers intercepted an update request from completely legitimate software and swapped the update file with a weaponized one.

Observed WinDealer infection flow

The malware does not contain the exact address of the C2 (command-and-control) server, making it harder for security researchers to find it. Instead, it tries to access a random IP address from a predefined range. The attackers then intercept the request and respond to it. To do this, they need constant access to the routers of the entire subnet, or to some advanced tools at ISP level.

Geographic distribution of WinDealer victims

The vast majority of WinDealer’s targets are located in China: foreign diplomatic organizations, members of the academic community, or companies active in the defense, logistics or telecoms sectors. Sometimes, though, the LuoYu APT group will infect targets in other countries: Austria, the Czech Republic, Germany, India, Russia and the US. In recent months, they have also become more interested in businesses located in other East Asian countries and their China-based offices.

ToddyCat: previously unknown threat actor attacks high-profile organizations in Europe and Asia

In June, we published our analysis of ToddyCat, a relatively new APT threat actor that we have not been able to link to any other known actors. The first wave of attacks, against a limited number of servers in Taiwan and Vietnam, targeted Microsoft Exchange servers, which the threat actor compromised with Samurai, a sophisticated passive backdoor that typically works via ports 80 and 443. The malware allows arbitrary C# code execution and is used alongside multiple modules that let the attacker administer the remote system and move laterally within the targeted network. In certain cases, the attackers have used the Samurai backdoor to launch another sophisticated malicious program, which we dubbed Ninja. This is probably a component of an unknown post-exploitation toolkit exclusively used by ToddyCat.

The next wave saw a sudden surge in attacks, as the threat actor began abusing the ProxyLogon vulnerability to target organizations in multiple countries, including Iran, India, Malaysia, Slovakia, Russia and the UK.

Subsequently, we observed other variants and campaigns, which we attributed to the same group. In addition to affecting most of the previously mentioned countries, the threat actor targeted military and government organizations in Indonesia, Uzbekistan and Kyrgyzstan. The attack surface in the third wave was extended to desktop systems.

SessionManager IIS backdoor

In 2021, we observed a trend among certain threat actors for deploying a backdoor within IIS after exploiting one of the ProxyLogon-type vulnerabilities in Microsoft Exchange. Dropping an IIS module as a backdoor enables threat actors to maintain persistent, update-resistant and relatively stealthy access to the IT infrastructure of a target organization — to collect emails, update further malicious access or clandestinely manage compromised servers.

We published our analysis of one such IIS backdoor, called Owowa, last year. Early this year, we investigated another, SessionManager. Developed in C++, SessionManager is a malicious native-code IIS module. The attackers’ aim is for it to be loaded by some IIS applications, to process legitimate HTTP requests that are continuously sent to the server. This kind of malicious modules usually expects seemingly legitimate but specifically crafted HTTP requests from their operators, triggers actions based on the operators’ hidden instructions and then transparently passes the request to the server for it to be processed just as any other request.

Figure 1. Malicious IIS module processing requests

As a result, these modules are not easily spotted through common monitoring practices.

SessionManager has been used to target NGOs and government organizations in Africa, South America, Asia, Europe and the Middle East.

We believe that this malicious IIS module may have been used by the GELSEMIUM threat actor, because of similar victim profiles and the use of a common OwlProxy variant.

Other malware

Spring4Shell

Late in March, researchers discovered a critical vulnerability (CVE-2022-22965) in Spring, an open-source framework for the Java platform. This is a Remote Code Execution (RCE) vulnerability, allowing an attacker to execute malicious code remotely on an unpatched computer. The vulnerability affects the Spring MVC and Spring WebFlux applications running under version 9 or later of the Java Development Kit. By analogy with the well-known Log4Shell vulnerability, this one was dubbed “Spring4Shell”.

By the time researchers had reported it to VMware, a proof-of-concept exploit had already appeared on GitHub. It was quickly removed, but it is unlikely that cybercriminals would have failed to notice such a potentially dangerous vulnerability.

You can find more details, including appropriate mitigation steps, in our blog post.

Actively exploited vulnerability in Windows

Among the vulnerabilities fixed in May’s “Patch Tuesday” update was one that has been actively exploited in the wild. The Windows LSA (Local Security Authority) Spoofing Vulnerability (CVE-2022-26925) is not considered critical per se. However, when the vulnerability is used in a New Technology LAN Manager (NTLM) relay attack, the combined CVSSv3 score for the attack-chain is 9.8. The vulnerability, which allows an unauthenticated attacker to force domain controllers to authenticate with an attacker’s server using NTLM, was already being exploited in the wild as a zero-day, making it a priority to patch it.

Follina vulnerability in MSDT

At the end of May, researchers with the nao_sec team reported a new zero-day vulnerability in MSDT (the Microsoft Support Diagnostic Tool) that can be exploited using a malicious Microsoft Office document. The vulnerability, which has been designated as CVE-2022-30190 and has also been dubbed “Follina”, affects all operating systems in the Windows family, both for desktops and servers.

MSDT is used to collect diagnostic information and send it to Microsoft when something goes wrong with Windows. It can be called up from other applications via the special MSDT URL protocol; and an attacker can run arbitrary code with the privileges of the application that called up the MSD: in this case, the permissions of the user who opened the malicious document.

Kaspersky has observed attempts to exploit this vulnerability in the wild; and we would expect to see more in the future, including ransomware attacks and data breaches.

BlackCat: a new ransomware gang

It was only a matter of time before another ransomware group filled the gap left by REvil and BlackMatter shutting down operations. Last December, advertisements for the services of the ALPHV group, also known as BlackCat, appeared on hacker forums, claiming that the group had learned from the errors of their predecessors and created an improved version of the malware.

The BlackCat creators use the ransomware-as-a-service (RaaS) model. They provide other attackers with access to their infrastructure and malicious code in exchange for a cut of the ransom. BlackCat gang members are probably also responsible for negotiating with victims. This is one reason why BlackCat has gained momentum so quickly: all that a “franchisee” has to do is obtain access to the target network.

The group’s arsenal comprises several elements. One is the cryptor. This is written in the Rust language, allowing the attackers to create a cross-platform tool with versions of the malware that work both in Windows and Linux environments. Another is the Fendr utility (also known as ExMatter), used to exfiltrate data from the infected infrastructure. The use of this tool suggests that BlackCat may simply be a re-branding of the BlackMatter faction, since that was the only known gang to use the tool. Other tools include the PsExec tool, used for lateral movement on the victim’s network; Mimikatz, the well-known hacker software; and the Nirsoft software, used to extract network passwords.

Yanluowang ransomware: how to recover encrypted files

The name Yanluowang is a reference to the Chinese deity Yanluo Wang, one of the Ten Kings of Hell. This ransomware is relatively recent. We do not know much about the victims, although data from the Kaspersky Security Network indicates that threat actor has carried out attacks in the US, Brazil, Turkey and a few other countries.

The low number of infections is due to the targeted nature of the ransomware: the threat actor prepares and implements attacks on specific companies only.

Our experts have discovered a vulnerability that allows files to be recovered without the attackers’ key — although only under certain conditions — with the help of a known-plaintext attack. This method overcomes the encryption algorithm if two versions of the same text are available: one clean and one encrypted. If the victim has clean copies of some of the encrypted files, our upgraded Rannoh Decryptor can analyze these and recover the rest of the information.

There is one snag: Yanluowang corrupts files slightly differently depending on their size. It encrypts small (less than 3 GB) files completely, and large ones, partially. So, the decryption requires clean files of different sizes. For files smaller than 3 GB, it is enough to have the original and an encrypted version of the file that are 1024 bytes or more. To recover files larger than 3 GB, however, you need original files of the appropriate size. However, if you find a clean file larger than 3 GB, it will generally be possible to recover both large and small files.

Ransomware TTPs

In June, we carried out an in-depth analysis of the TTPs (tactics, techniques and procedures) (TTPs) of the eight most widespread ransomware families: Conti/Ryuk, Pysa, Clop, Hive, Lockbit2.0, RagnarLocker, BlackByte and BlackCat. Our aim was to help those tasked with defending corporate systems to understand how ransomware groups operate and how to protect against their attacks.

The report includes the following:

  • The TTPs of eight modern ransomware groups.
  • A description of how various groups share more than half of their components and TTPs, with the core attack stages executed identically across groups.
  • A cyber-kill chain diagram that combines the visible intersections and common elements of the selected ransomware groups and makes it possible to predict the threat actors’ next steps.
  • A detailed analysis of each technique with examples of how various groups use them, and a comprehensive list of mitigations.
  • SIGMA rules based on the described TTPs that can be applied to SIEM solutions.

Ahead of the Anti-Ransomware Day on May 12, we took the opportunity to outline the tendencies that have characterized ransomware in 2022. In our report, we highlight several trends that we have observed.

First, we are seeing more widespread development of cross-platform ransomware, as cybercriminals seek to penetrate complex environments running a variety of systems. By using cross-platform languages such as Rust and Golang, attackers are able to port their code, which allows them to encrypt data on more computers.

Second, ransomware gangs continue to industrialize and evolve into real businesses by adopting the techniques and processes used by legitimate software companies.

Third, the developers of ransomware are adopting a political stance, involving themselves in the conflict between Russia and Ukraine.

Finally, we offer best practices that organizations should adopt to help them defend against ransomware attacks:

  • Keep software updated on all your devices.
  • Focus your defense strategy on detecting lateral movements and data exfiltration.
  • Enable ransomware protection for all endpoints.
  • Install anti-APT and EDR solutions, enabling capabilities for advanced threat discovery and detection, investigation and timely remediation of incidents.
  • Provide your SOC team with access to the latest threat intelligence.

Emotet’s return

Emotet has been around for eight years. When it was first discovered in 2014, its main purpose was stealing banking credentials. Subsequently, the malware underwent numerous transformations to become one of the most powerful botnets ever. Emotet made headlines in January 2021, when its operations were disrupted through the joint efforts of law enforcement agencies in several countries. This kind of “takedowns” does not necessarily lead to the demise of a cybercriminal operation. It took the cybercriminals almost ten months to rebuild the infrastructure, but Emotet did return in November 2021. At that time, the Trickbot malware was used to deliver Emotet, but it is now spreading on its own through malicious spam campaigns.

Recent Emotet protocol analysis and C2 responses suggest that Emotet is now capable of downloading sixteen additional modules. We were able to retrieve ten of these, including two different copies of the spam module, used by Emotet for stealing credentials, passwords, accounts and emails, and to spread spam.

You can read our analysis of these modules, as well as statistics on recent Emotet attacks, here.

Emotet infects both corporate and private computers all around the world. Our telemetry indicates that in the first quarter of 2022, targeted: it mostly targeted users in Italy, Russia, Japan, Mexico, Brazil, Indonesia, India, Vietnam, China, Germany and Malaysia.

Moreover, we have seen a significant growth in the number of users attacked by Emotet.

Mobile subscription Trojans

Trojan subscribers are a well-established method of stealing money from people using Android devices. These Trojans masquerade as useful apps but, once installed, silently subscribe to paid services.

The developers of these Trojans make money through commissions: they get a cut of what the person “spends”. Funds are typically deducted from the cellphone account, although in some cases, these may be debited directly to a bank card. We looked at the most notable examples that we have seen in the last twelve months, belonging to the Jocker, MobOk, Vesub and GriftHorse families.

Normally, someone has to actively subscribe to a service; providers often ask subscribers to enter a one-time code sent via SMS, to counter automated subscription attempts. To sidestep this protection, malware can request permission to access text messages; where they do not obtain this, they can steal confirmation codes from pop-up notifications about incoming messages.

Some Trojans can both steal confirmation codes from texts or notifications, and work around CAPTCHA: another means of protection against automated subscriptions. To recognize the code in the picture, the Trojan sends it to a special CAPTCHA recognition service.

Some malware is distributed through dubious sources under the guise of apps that are banned from official stores, for example, masquerading as apps for downloading content from YouTube or other streaming services, or as an unofficial Android version of GTA5. In addition, they can appear in these same sources as free versions of popular, expensive apps, such as Minecraft.

Other mobile subscription Trojans are less sophisticated. When run for the first time, they ask the user to enter their phone number, seemingly for login purposes. The subscription is issued as soon as they enter their number and click the login button, and the amount is debited to their cellphone account.

Other Trojans employ subscriptions with recurring payments. While this requires consent, the person using the phone might not realize they are signing up for regular automatic payments. Moreover, the first payment is often insignificant, with later charges being noticeably higher.

You can read more about this type of mobile Trojan, along with tips on how to avoid falling victim to it, here.

The threat from stalkerware

Over the last four years, we have published annual reports on the stalkerware situation, in particular using data from the Kaspersky Security Network. This year, our report also included the results of a survey on digital abuse commissioned by Kaspersky and several public organizations.

Stalkerware provides the digital means for a person to secretly monitor someone else’s private life and is often used to facilitate psychological and physical violence against intimate partners. The software is commercially available and can access an array of personal data, including device location, browser history, text messages, social media chats, photos and more. It may be legal to market stalkerware, although its use to monitor someone without their consent is not. Developers of stalkerware benefit from a vague legal framework that still exists in many countries.

In 2021, our data indicated that around 33,000 people had been affected by stalkerware.

The numbers were lower than what we had seen for a few years prior to that. However, it is important to remember that the decrease of 2020 and 2021 occurred during successive COVID-19 lockdowns: that is, during conditions that meant abusers did not need digital tools to monitor and control their partners’ personal lives. It is also important to bear in mind that mobile apps represent only one method used by abusers to track someone — others include tracking devices such as AirTags, laptop applications, webcams, smart home systems and fitness trackers. KSN tracks only the use of mobile apps. Finally, KSN data is taken from mobile devices protected by Kaspersky products: many people do not protect their mobile devices.  The Coalition Against Stalkerware, which brings together members of the IT industry and non-profit companies, believes that the overall number of people affected by this threat might be thirty times higher — that is around a million people!

Stalkerware continues to affect people across the world: in 2021, we observed detections in 185 countries or territories.

Just as in 2020, Russia, Brazil, the US and India were the top four countries with the largest numbers of affected individuals. Interestingly, Mexico had fallen from fifth to ninth place. Algeria, Turkey and Egypt entered the top ten, replacing Italy, the UK and Saudi Arabia, which were no longer in the top ten.

We would recommend the following to reduce your risk of being targeted:

  • Use a unique, complex password on your phone and do not share it with anyone.
  • Try not to leave your phone unattended; and if you have to, lock it.
  • Download apps only from official stores.
  • Protect your mobile device with trustworthy security software and make sure it is able to detect stalkerware.

Remember also that if you discover stalkerware on your phone, dealing with the problem is not as simple as just removing the stalkerware app. This will alert the abuser to the fact that you have become aware of their activities and may precipitate physical abuse. Instead, seek help:  you can find a list or organizations that can provide help and support on the Coalition Against Stalkerware site.

Source :
https://securelist.com/it-threat-evolution-q2-2022/107099/

Threat landscape for industrial automation systems for H1 2022

H1 2022 in numbers

Geography

  • In H1 2022, malicious objects were blocked at least once on 31.8% of ICS computers globally.Percentage of ICS computers on which malicious objects were blocked
  • For the first time in five years of observations, the lowest percentage in the ‎first half of the year was observed in March.‎ During the period from January to March, the percentage of attacked ICS computers decreased by 1.7 p.p.Percentage of ICS computers on which malicious objects were blocked, January – June 2020, 2021, and 2022
  • Among regions, the highest percentage of ICS computers on which malicious objects were blocked was observed in Africa (41.5%). The lowest percentage (12.8%) was recorded in Northern Europe.Percentage of ICS computers on which malicious objects were blocked, in global regions
  • Among countries, the highest percentage of ICS computers on which malicious objects were blocked was recorded in Ethiopia (54.8%) and the lowest (6.8%) in Luxembourg.15 countries and territories with the highest percentage of ICS computers on which malicious objects were blocked, H1 202210 countries and territories with the lowest percentage of ICS computers on which malicious objects were blocked, H1 2022

Threat sources

  • The main sources of threats to computers in the operational technology infrastructure of organizations are internet (16.5%), removable media (3.5%), and email (7.0%).Percentage of ICS computers on which malicious objects from different sources were blocked

Regions

  • Among global regions, Africa ranked highest based on the percentage of ICS computers on which malware was blocked when removable media was connected.Regions ranked by percentage of ICS computers on which malware was blocked when removable media was connected, H1 2022
  • Southern Europe leads the ranking of regions by percentage of ICS computers on which malicious email attachments and phishing links were blocked.Regions ranked by percentage of ICS computers on which malicious email attachments and phishing links were blocked, H1 2022

Industry specifics

  • In the Building Automation industry, the percentage of ICS computers on which malicious email attachments and phishing links were blocked (14.4%) was twice the average value for the entire world (7%).Percentage of ICS computers on which malicious email attachments and phishing links were blocked, in selected industries
  • In the Oil and Gas industry, the percentage of ICS computers on which threats were blocked when removable media was connected (10.4%) was 3 times the average percentage for the entire world (3.5%).Percentage of ICS computers on which threats were blocked when removable media was connected
  • In the Oil and Gas industry, the percentage of ICS computers on which malware was blocked in network folders (1.2%) was twice the world average (0.6%).Percentage of ICS computers on which threats were blocked in network folders

Diversity of malware

  • Malware of different types from 7,219 families was blocked on ICS computers in H1 2022.Percentage of ICS computers on which the activity of malicious objects from different categories was prevented

Ransomware

  • In H1 2022, ransomware was blocked on 0.65% of ICS computers. This is the highest percentage for any six-month reporting period since 2020.Percentage of ICS computers on which ransomware was blocked
  • The highest percentage of ICS computers on which ransomware was blocked was recorded in February (0.27%) and the lowest in March (0.11%). The percentage observed in February was the highest in 2.5 years of observations.Percentage of ICS computers on which ransomware was blocked, January – June 2022
  • East Asia (0.95%) and the Middle East (0.89%) lead the ransomware-based ranking of regions. In the Middle East, the percentage of ICS computers on which ransomware was blocked per six-month reporting period has increased by a factor of 2.5 since 2020.Regions ranked by percentage of ICS computers on which ransomware was blocked, H1 2022
  • Building Automation leads the ranking of industries based on the percentage of ICS computers attacked by ransomware (1%).Percentage of ICS computers on which ransomware was blocked, in selected regions, H1 2022

Malicious documents

  • Malicious documents (MSOffice+PDF) were blocked on 5.5% of ICS computers. This is 2.2 times the percentage recorded in H2 2021. Threat actors distribute malicious documents via phishing emails and actively use such emails as the vector of initial computer infections.Percentage of ICS computers on which malicious documents (MSOffice+PDF) were blocked
  • In the Building Automation industry, the percentage of ICS computers on which malicious office documents were blocked (10.5%) is almost twice the global average.Percentage of ICS computers on which malicious office documents (MSOffice+PDF) were blocked, in selected industries

Spyware

  • Spyware was blocked on 6% of ICS computers. This percentage has been growing since 2020.Percentage of ICS computers on which spyware was blocked
  • Building Automation leads the ranking of industries based on the percentage of ICS computers on which spyware was blocked (12.9%).Percentage of ICS computers on which spyware was blocked, in selected industries

Malware for covert cryptocurrency mining

  • The percentage of ICS computers on which malicious cryptocurrency miners were blocked continued to rise gradually.Percentage of ICS computers on which malicious cryptocurrency miners were blocked
  • Building Automation also leads the ranking of selected industries by percentage of ICS computers on which malicious cryptocurrency miners were blocked.Percentage of ICS computers on which malicious cryptocurrency miners were blocked, in selected industries

The full text of the report has been published on the Kaspersky ICS CERT website.

Source :
https://securelist.com/threat-landscape-for-industrial-automation-systems-for-h1-2022/107373/

Akamai’s Insights on DNS in Q2 2022

by Or Katz and Jim Black
Data analysis by Gal Kochner and Moshe Cohen

Executive summary

  • Akamai researchers have analyzed malicious DNS traffic from millions of devices to determine how corporate and personal devices are interacting with malicious domains, including phishing attacks, malware, ransomware, and command and control (C2).
  • Akamai researchers saw that 12.3% of devices used by home and corporate users communicated at least once to domains associated with malware or ransomware.
  • 63% of those users’ devices communicated with malware or ransomware domains, 32% communicated with phishing domains, and 5% communicated with C2 domains.
  • Digging further into phishing attacks, researchers found that users of financial services and high tech are the most frequent targets of phishing campaigns, with 47% and 36% of the victims, respectively.
  • Consumer accounts are the most affected by phishing, with 80.7% of the attack campaigns.
  • Tracking 290 different phishing toolkits being reused in the wild, and counting the number of distinct days each kit was reused over Q2 2022, shows that 1.9% of the tracked kits were reactivated on at least 72 days. In addition, 49.6% of the kits were reused for at least five days, demonstrating how many users are being revictimized multiple times. This shows how realistic-looking and dangerous these kits can be, even to knowledgeable users. 
  • The most used phishing toolkit in Q2 2022 (Kr3pto, a phishing campaign that targeted banking customers in the United Kingdom, which evades multi-factor authentication [MFA]) was hosted on more than 500 distinct domains.

Introduction

“It’s always DNS.” Although that is a bit of a tongue-in-cheek phrase in our industry, DNS can give us a lot of information about the threat landscape that exists today. By analyzing information from Akamai’s massive infrastructure, we are able to gain some significant insights on how the internet behaves. In this blog, we will explore these insights into traffic patterns, and how they affect people on the other end of the internet connection. 

Akamai traffic insights

Attacks by category

Based on Akamai’s range of visibility across different industries and geographies, we can see that 12.3% of protected devices attempted to reach out to domains that were associated with malware at least once during Q2 2022. This indicates that these devices might have been compromised. On the phishing and C2 front, we can see that 6.2% of devices accessed phishing domains and 0.8% of the devices accessed C2-associated domains. Although these numbers may seem insignificant, the scale here is in the millions of devices. When this is considered, along with the knowledge that C2 is the most malignant of threats, these numbers are not only significant, they’re cardinal.

Comparing 2022 Q2 results with 2022 Q1 results (Figure 1), we can see a minor increase in all categories in Q2. We attribute those increases to seasonal changes that are not associated with a significant change in the threat landscape.

Fig. 1: Devices exposed to threats — Q1 vs. Q2 Fig. 1: Devices exposed to threats — Q1 vs. Q2

In Figure 2, we can see that of the 12.3% potentially compromised devices, 63% were exposed to threats associated with malware activity, 32% with phishing, and 5% with C2. Access to malware-associated domains does not guarantee that these devices were actually compromised, but provides a strong indication of increased potential risk if the threat wasn’t properly mitigated. However, access to C2-associated domains indicates that the device is most likely compromised and is communicating with the C2 server. This can often explain why the incidence of C2 is lower when compared with malware numbers.

Fig. 2: Potentially compromised devices by category Fig. 2: Potentially compromised devices by category

Phishing attack campaigns 

By looking into the brands that are being abused and mimicked by phishing scams in Q2 2022, categorized by brand industry and number of victims, we can see that high tech and financial brands led with 36% and 47%, respectively (Figure 3). These leading phishing industry categories are consistent with Q1 2022 results, in which high tech and financial brands were the leading categories, with 32% and 31%, respectively. 

Fig. 3: Phishing victims and phishing campaigns by abused brands Fig. 3: Phishing victims and phishing campaigns by abused brands

When taking a different view on the phishing landscape–targeted industries by counting the number of attack campaigns being launched over Q2 2022, we can see that high tech and financial brands are still leading, with 36% and 41%, respectively (Figure 3). The correlation between leading targeted brands when it comes to number of attacks and number of victims is evidence that threat actors’ efforts and resources are, unfortunately, effectively working to achieve their desired outcome.

Akamai’s research does not have any visibility into the distribution channels used to deliver the monitored phishing attacks that led to victims clicking on a malicious link and ending up on the phishing landing page. Yet the strong correlation between different brand segments by number of attack campaigns and the number of victims seems to indicate that the volume of attacks is effective and leads to a similar trend in the number of victims. The correlation might also indicate that the distribution channels used have minimal effect on attack outcome, and it is all about the volume of attacks that lead to the desired success rates.

Taking a closer look at phishing attacks by categorization of attack campaigns — consumers vs. business targeted accounts— we can see that consumer attacks are the most dominant, with 80.7% of the attack campaigns (Figure 4). This domination is driven by the massive demand for consumers’ compromised accounts in dark markets that are then used to launch fraud-related second-phase attacks. However, even with only 19.3% of the attack campaigns, attacks against business accounts should not be considered marginal, as these kinds of attacks are usually more targeted and have greater potential for significant damage. Attacks that target business accounts may lead to a company’s network being compromised with malware or ransomware, or to confidential information being leaked. An attack that begins with an employee clicking a link in a phishing email can end up with the business suffering significant financial and reputational damages.

Fig. 4: Phishing targeted accounts — consumers vs. business  Fig. 4: Phishing targeted accounts — consumers vs. business

Phishing toolkits 

Phishing attacks are an extremely common vector that have been used for many years. The potential impacts and risks involved are well-known to most internet users. However, phishing is still a highly relevant and dangerous attack vector that affects thousands of people and businesses daily. Research conducted by Akamai explains some of the reasons for this phenomenon, and focuses on the phishing toolkits and their role in making phishing attacks effective and relevant. 

Phishing toolkits enable rapid and easy creation of fake websites that mimic known brands. Phishing toolkits enable even non–technically gifted scammers to run phishing scams, and in many cases are being used to create distributed and large-scale attack campaigns. The low cost and availability of these toolkits explains the increasing numbers of phishing attacks that have been seen in the past few years. 

According to Akamai’s research that tracked 290 different phishing toolkits being used in the wild, 1.9% of the tracked kits were reused on at least 72 distinct days over Q2 2022 (Figure 5). Further, 49.6% of the kits were reused for at least five days, and when looking into all the tracked kits, we can see that all of them were reused no fewer than three distinct days over Q2 2022.

Fig. 5: Phishing toolkits by number of reused days Q2 2022 Fig. 5: Phishing toolkits by number of reused days Q2 2022

The numbers showing the heavy reuse phenomenon of the observed phishing kits shed some light on the phishing threat landscape and the scale involved, creating an overwhelming challenge to defenders. Behind the reuse of phishing kits are factories and economic forces that drive the phishing landscape. Those forces include developers who create phishing kits that mimic known brands, later to be sold or shared among threat actors to be reused over and over again with very minimal effort.

Further analysis on the most reused kits in Q2 2022, counting the number of different domains used to deliver each kit, shows that the Kr3pto toolkit was the one most frequently used and was associated with more than 500 domains (Figure 6). The tracked kits are labeled by the name of the brand being abused or by a generic name representing the kit developer signature or kit functionality.

In the case of Kr3pto, the actor behind the phishing kit is a developer who builds and sells unique kits that target financial institutions and other brands. In some cases, these kits target financial firms in the United Kingdom, and they bypass MFA. This evidence also shows that this phishing kit that was initially created more than three years ago is still highly active and effective and being used intensively in the wild.

Fig. 6: Top 10 reused phishing toolkits  Fig. 6: Top 10 reused phishing toolkits

The phishing economy is growing, kits are becoming easier to develop and deploy, and the web is full of abandoned, ready-to-be-abused websites and vulnerable servers and services. Criminals capitalize on these weaknesses to establish a foothold that enables them to victimize thousands of people and businesses daily.

The growing industrial nature of phishing kit development and sales (in which new kits are developed and released within hours) and the clear split between creators and users means this threat isn’t going anywhere anytime soon. The threat posed by phishing factories isn’t just focused on the victims who risk having valuable accounts compromised and their personal information sold to criminals — phishing is also a threat to brands and their stakeholders.

The life span of a typical phishing domain is measured in hours, not days. Yet new techniques and developments by the phishing kit creators are expanding these life spans little by little, and it’s enough to keep the victims coming and the phishing economy moving. 

Summary

This type of research is necessary in the fight to keep our customers safer online. We will continue to monitor these threats and report on them to keep the industry informed.

The best way to stay up to date on this and other research pieces from the Akamai team is to follow Akamai Security Research on Twitter.

Source :
https://www.akamai.com/blog/security-research/q2-dns-akamai-insights

How GRC protects the value of organizations — A simple guide to data quality and integrity

Contemporary organizations understand the importance of data and its impact on improving interactions with customers, offering quality products or services, and building loyalty.

Data is fundamental to business success. It allows companies to make the right decisions at the right time and deliver the high-quality, personalized products and services that customers expect.

There is a challenge, though.

Businesses are collecting more data than ever before, and new technologies have accelerated this process dramatically. As a result, organizations have significant volumes of data, making it hard to manage, protect, and get value from it.

Here is where Governance, Risk, and Compliance (GRC) comes in. GRC enables companies to define and implement the best practices, procedures, and governance to ensure the data is clean, safe, and reliable across the board.

More importantly, organizations can use GRC platforms like StandardFusion to create an organizational culture around security. The objective is to encourage everyone to understand how their actions affect the business’s success.

Now, the big question is:

Are organizations getting value from their data?

To answer that, first, it’s important to understand the following two concepts.

Data quality

Data quality represents how reliable the information serves an organization’s specific needs — mainly supporting decision-making.

Some of these needs might be:

  • Operations – Where and how can we be more efficient?
  • Resource distribution – Do we have any excess? Where? And why?
  • Planning – How likely is this scenario to occur? What can we do about it?
  • Management – What methods are working? What processes need improvement?

From a GRC standpoint, companies can achieve data quality by creating rules and policies so the entire organization can use that data in the same ways. These policies could, for example, define how to label, transfer, process, and maintain information.

Data Integrity

Data integrity focuses on the trustworthiness of the information in terms of its physical and logical validity. Some of the key characteristics to ensure the usability of data are:

  • Consistency
  • Accuracy
  • Validity
  • Truthfulness

GRC’s goal for data integrity is to keep the information reliable by eliminating unwanted changes between updates or modifications. It is all about the data’s accuracy, availability, and trust.

How GRC empowers organizations achieve high-quality data

Organizations that want to leverage their data to generate value must ensure the information they collect is helpful and truthful. The following are the key characteristics of high-quality data:

  • Completeness: The expected data to make decisions is present.
  • Uniqueness: There is no duplication of data.
  • Timeliness: The data is up-to-date and available to use when needed.
  • Validity: The information has the proper format and matches the requirements.
  • Accuracy: The data describes the object correctly in a real-world context.
  • Consistency: The data must be the same across multiple databases

A powerful way to make sure the company’s data maintains these six characteristics is by leveraging the power of GRC.

Why?

Because GRC empowers organizations to set standards, regulations, and security controls to avoid mistakes, standardize tasks and guide personnel when collecting and dealing with vital information.

GRC helps organizations answer the following questions:

  • How is the company ensuring that data is available for internal decision and for the clients?
  • Is everyone taking the proper steps to collect and process data?
  • Have redundancies been removed?
  • Is the organization prepared for unexpected events?
  • Does the organization have a backup system?
  • Are the key processes standardized?

Overall, GRC aims to build shared attitudes and actions towards security.

Why every organization needs high-quality data and how GRC helps

Unless the data companies collect is high-quality and trustworthy, there’s no value in it — it becomes a liability and a risk for the organization.

Modern companies recognize data as an essential asset that impacts their bottom line. Furthermore, they understand that poor data quality can damage credibility, reduce sales, and minimize growth.

In today’s world, organizations are aiming to be data-driven. However, becoming a data-driven organization is tough without a GRC program.

How so?

Governance, Risk, and Compliance enable organizations to protect and manage data quality by creating standardized, controlled, and repeatable processes. This is key because every piece of data an organization process has an associated risk.

By understanding these risks, companies can implement the necessary controls and policies for handling and extracting data correctly so that every department can access the same quality information.

Organizations without structured data can’t provide any value, and they face the following risks:

  • Missed opportunities: Many leads are lost because of incomplete or inaccurate data. Also, incorrect data means wrong insights, resulting in missing critical business opportunities.
  • Lost revenue: According to 2021 Gartner’s research, the average financial impact of poor data quality on organizations is $12.9 million annually.
  • Poor customer experience: When data quality is poor, organizations can’t identify customers’ pain points and preferences. As a result, the offer of products or services doesn’t match customers’ needs and expectations.
  • Lack of compliance: In some industries where regulations control relationships or customer transactions, maintaining good-quality data can be the difference between compliance and fines of millions of dollars. GRC is vital to keep compliance in the loop as new regulations evolve worldwide.
  • Increased expenses: A few years ago, IBM’s research showed that businesses lost 3.1 trillion dollars in the US alone. How? Spending time to find the correct data, fixing errors, and just hunting for information and confirmed sources.
  • Misanalysis: Around 84% of CEOs are concerned about the quality of data they are deciding on. Wrong data will lead to bad decisions and ultimately damage operations, finances, HR, and every area within the company.
  • Reputational damage: In today’s world, customers spend a lot of their time reading reviews before making a decision. For instance, if a company fails to satisfy its customers, everyone will know.
  • Reduced efficiency: Poor data quality forces employees to do manual data quality checks, losing time and money.

To sum up:

Having the right processes to manipulate data will prevent organizations from missing business opportunities, damaging their reputation, and doing unnecessary repetitive tasks.

How GRC supports data-driven business and what are the key benefits of clean data

Data-driven businesses embrace the use of data (and its analysis) to get insights that can improve the organization. The efficient management of big data through GRC tools helps identify new business opportunities, strengthen customer experiences, grow sales, improve operations, and more.

For example, GRC helps data-driven businesses by allowing them to create and manage the right policies to process and protect the company’s data.

More importantly, organizations can also control individual policies to ensure they have been distributed and acknowledged accordingly.

In terms of benefits, although clean data has numerous “easy-to-identify” benefits, many others are not easily identified. Trusting data not just improves efficiency and results; it also helps with fundamental, vital factors that affect business performance and success.

What are these factors?

Fundamental benefits:

  • Profits/Revenue
  • Internal communication
  • Employees confidence to share information
  • Company’s reputation
  • Trust

Operational benefits:

  • Efficiency
  • Business outcome
  • Privacy issues
  • Customer satisfaction
  • Better audience-targeting

How GRC protect the value of businesses and their data

In this contemporary world, companies should be measured not only via existing financial measurements but also by the amount of monetizable data they can capture, consume, store and use. More importantly, how the data helps the organization’s internal processes to be faster and more agile.

When people think of high-quality data and big data, they usually associate these two with big organizations, especially technology and social media platforms. However, big quality data gives organizations of any size plenty of benefits.

Data quality and integrity help organizations to:

  • Understand their clients
  • Enhance business operations
  • Understand industry best practices
  • Identify the best partnership options
  • Strengthen business culture
  • Deliver better results
  • Make more money

Using the right GRC platform helps companies create and control the policies and practices to ensure their data is valid, consistent, accurate, and complete — allowing them to get all these benefits.

The key to using GRC tools is that businesses can produce what customers expect on a greater scale and with higher precision and velocity.

Now, what does this have to do with value?

By protecting the value of data, organizations are protecting their overall worth. Indeed, GRC empowers companies to create a culture of value, giving everyone education and agency so they can make better decisions.

Also, GRC helps companies tell better security stories. These stories aim to build trust with customers and partners, enter new markets, and shorten sale cycles.

To summarize:

A better understanding of customers and processes — through data — will lead to better products and services, enhanced experiences, and long-lasting relationships with customers. All these represent growth and more revenue for companies.

What happens when a company’s data is not safe? Can it damage their value?

Trust is a vital component of any interaction (business or personal) and, as such, is mandatory for organizations to protect it — without trust, there is no business.

When data is not protected, the chances of breaches are higher, causing direct and indirect costs.

Direct costs are:

  • Fines
  • Lawsuits
  • Stolen information
  • Compensations
  • Potential business loss

Indirect costs are:

  • Reputation/Trust
  • PR activities
  • Lost revenue from downtime
  • New and better protection

Often, reputation damages can cause long-term harm to organizations, making it hard for them to acquire and maintain business. In fact, reputation loss is the company’s biggest worry, followed by financial costs, system damage, and downtime.

So, what does all this mean?

It’s not just about collecting data; it is also about how companies reduce risks and leverage and protect the data they have. GRC integrates data security, helping organizations be better prepared against unauthorized access, corruption, or theft.

Moreover, GRC tools can help elevate data security by controlling policies, regulations, and predictable issues within the organization.

The bottom line?

When companies can’t get or maintain customers because of a lack of trust, the organization’s value will be significantly lower — or even zero. Unfortunately, this is even more true for small and medium size companies.

How to use GRC to achieve and maintain high-quality data?

Many organizations have trouble managing their data, which, unfortunately, leads to poor decisions and a lack of trust from employees and customers.

Moreover, although companies know how costly wrong information is, many are not working on ensuring quality data through the right processes and controls. In fact, Harward Business Review said that 47% of newly created data records have at least one critical error.

Why is that?

Because there is a lack of focus on the right processes and systems that need to be in place to ensure quality data.

What do poor processes cause?

  • Human errors
  • Wrong data handling
  • Inaccurate formatting
  • Different sets of data for various departments
  • Unawareness of risks
  • Incorrect data input or extraction

Fortunately, GRC’s primary goal is to develop the right policies and procedures to ensure everyone in the organization appropriately manages the data.

GRC aims to create a data structure based on the proper governance that will dictate how people organize and handle the company’s information. As a result, GRC will empower companies to be able to extract value from their data.

That is not everything.

Governance, Risk, and Compliance allow organizations to understand the risks associated with data handling and guide managers to create and distribute the policies that will support any data-related activity.

The following are some of the ways GRC is used to achieve and maintain high-quality data:

  • Data governance: Data governance is more than setting rules and telling people what to do. Instead, it is a collection of processes, roles, policies, standards, and metrics that will lead to a cultural change to ensure effective management of information throughout the organization.
  • Education: Achieving good data quality is not easy. It requires a deep understanding of data quality principles, processes, and technologies. GRC facilitates the education process by allowing the organization to seamlessly implement, share, and communicate its policies and standards to every department.
  • Everyone is involved: Everyone must understand the organization’s goal for data quality and the different processes and approaches that will be implemented. GRC focuses on cultural change.
  • Be aware of threats: When managing data, each process has risks associated with it. The mission of GRC is for the organization to recognize and deal with potential threats effectively. When companies are aware of risks, they can implement the necessary controls and rules to protect the data.
  • One single source of truth: A single source of truth ensures everyone in the organization makes decisions based on the same consistent and accurate data. GRC can help by defining the governance over data usage and manipulation. Furthermore, GRC makes it easy to communicate policies, see who the policy creator is, and ensure employees are acting according to the standards.

Get a free consultation with StandardFusion to learn more about how GRC and data governance can boost your organization’s value.

Source :
https://thehackernews.com/2022/09/how-grc-protects-value-of-organizations.html

SaaS vs PaaS vs IaaS: What’s the Difference & How to Choose

Companies are increasingly using Cloud services to support their business processes. But which types of Cloud services are there, and what is the difference? Which kind of Cloud service is most suitable for you? Do you want to be unburdened or completely in control? Do you opt for maximum cost savings, or do you want the entire arsenal of possibilities and top performance? Can you still see the forest for the trees? In this article and in the next, I describe several different Cloud services, what the differences and features are and what exactly you need to pay attention to.

Let’s start with the definition of Cloud computing. This is the provision of services using the internet (Cloud). Think of storage, software, servers, databases etc. Depending on the type of service and the service that is offered (think of license management or data storage), you can divide these services into categories. Examples are IaaS (Infrastructure as a Service), PaaS (Platform as a Service), SaaS (Software as a Service), etc. These services are provided by a cloud provider. Whether this is Microsoft (Azure), Amazon (AWS), or another vendor (Google, Alibaba, Oracle, etc.), each vendor offers Cloud services that fall under one of the categories of Cloud services that we are about to discuss.

One feature of Cloud computing is that you pay according to the usage and the service you purchase. For example, for SaaS, you pay for the software’s license and support. This also means that if you buy a SaaS service (e.g., Office 365) and don’t use it, you will still be charged. At the same time, if you purchase storage with IaaS, for example, you only pay for the amount of storage you use, possibly supplemented with additional services such as backup, etc.

Sometimes Cloud services complement each other; think, for example, of DaaS (Database as a Service), where a database is offered via the Cloud. Often you need an application server and other infrastructure to read data from this database. These usually run in a Landing Zone, purchased from an IaaS service. But some services can also be standalone, for example, SaaS (Office 365).

Each Cloud service has specific characteristics. Sometimes it requires little or no (technical) knowledge, but it can also be challenging to manage and use the services according to best practices. This often depends on the degree to which you want to see yourself in control. If you want an application from the Cloud where you are completely relieved of all worries, this requires little technical knowledge from the user or the administrator. But if you want maximum control, then IaaS gives you an enormous range of possibilities. In this article, you can read what you need to consider.

It is advisable to think beforehand about what your requirements and wishes are precisely and whether this fits in with the service you want to purchase. If you wish to use an application in the Cloud but use many custom settings, this is often not possible. If you don’t want to be responsible for updating and backing up an application and use little or no customization, a SaaS can be very interesting. Also, look at how a service fits into your business process. Does it offer possibilities for automation, reporting, or disaster recovery? Are there possibilities to temporarily allocate extra resources in case of peak demand (horizontal or vertical scaling up), and what guarantees does the supplier offer with this service? Think of RPO / RTO and accessibility of the service desk in case of a calamity.

Let’s get started quickly!

IaaS (Infrastructure as a Service)

One of the best-known Cloud services is undoubtedly IaaS. For many companies, this is often their first introduction to a Cloud service. You rent the infrastructure from a cloud provider. For example, the network infrastructure, virtual servers (including operations system), and storage. A feature of IaaS is that you have complete control – Both on the management side and how you can deploy resources (requests). This can be done in various automated ways (Powershell, IaC, DevOps pipelines, etc.) and via the classic management interface that all providers offer. Things that are often not possible with a PaaS service are possible with an IaaS service. You have complete control. In principle, you can set up a complete server environment (all services are available for this), but you do have the benefits of the Cloud, such as scalability and pay per use or per resource.

IaaS therefore, most resembles an on-premise implementation. You often see this used in combination with the use of virtual servers. Critical here is a good investigation into the possible limitations, for example, I/O, so that the performance can be different in practice than in a traditional local environment. You are responsible for arranging security and backup. The advantage is that you have an influence on the choice of technology used. You can customize the setup according to your needs and wishes. You can standardize the configuration to your organization. Deployment can be complex, and you are forced to make your own choices, so some expertise is needed.

PaaS (Platform as a Service)

PaaS stands for Platform as a service and goes further than IaaS. You get a platform where you can do the configuration yourself. When you use a PaaS service, the vendor takes care of the sub-layer (IaaS) and the operating system and middleware. So you sacrifice something in terms of control and capabilities. PaaS services are ideal for developers, web and application builders. After all, you can quickly make an environment available. Using it means you no longer have to worry about the infrastructure, operating system, and middleware. This is taken care of by the supplier based on best practices. This also offers security advantages, as you do not have to think about patching and upgrading these things that are now done by the vendor.

Another advantage is that you can entirely focus on what you want to do and not on managing the environment. You can also easily purchase additional services and quickly scale them up or down. When you are finished, you can remove and stop the resources, so you have no more costs.

However, do take into account the use of existing software. Not all existing software is suitable to function in a PaaS environment; for example, in a PaaS environment, you do not have full access (after all, the vendor is responsible). Also, not all CPU power and memory are allocated to the Cloud application. This is because it is often hosted on a shared platform, so other applications (and databases) may use the same resources. As for the database, you have the same advantages and disadvantages as with DBaaS.

SaaS (Software as a Service)

This is probably a service you’ve been using for a while. In short, you take applications through the Cloud on a subscription basis. The provider is responsible for managing the infrastructure, patches, and updates. A SaaS solution is ready for use immediately, and you directly benefit from the added value, such as fast scaling up and down and paying per use. Examples are Office365, Sharepoint online, SalesForce, Exact Online, Dropbox, etc.

Unlike IaaS and PaaS, where there is still a lot of freedom, and you have to set everything up yourself, with SaaS however, it is immediately clear what you are buying and what you will get. With this service, you are relieved of most of your worries. The vendor is responsible for all updates, patches, development, and more. You cannot make any updates or changes to the software with this service.

Many companies use one or more SaaS services often even within companies, there is a distinction. For example, each department within a company has its specific applications and associated SaaS services. With this service, you only pay for what you need, including the licenses. These licenses can easily be scaled up or down.

It is interesting for many companies to work with SAAS solutions. It is particularly interesting for start-ups, small companies and freelancers because you only purchase what you use, you don’t have unnecessarily high start-up costs, and you don’t have to worry about the maintenance of the software.

But SAAS can also be a perfect solution for larger companies. For example, if you hire extra staff for specific periods, you can quickly get these people working with the software they need. You buy several additional licenses, and you can stop this when the temporary staff leaves.

How can Vembu help you?

BDRSuite, is a comprehensive Backup & DR solution designed to protect your business-critical data across Virtual (VMware, Hyper-V), Physical Servers (Windows, Linux), SaaS (Microsoft 365, Google Workspace), AWS EC2 Instances, Endpoints (Windows, Mac) and Applications & Databases (MS Active Directory, MS Exchange, MS Outlook, SharePoint, MS SQL, MySQL).

To protect your workloads running on SaaS (Microsoft 365Google Workspace), try out a full-featured 30-days Free Trial of the latest version of BDRSuite.

Source :
https://www.vembu.com/blog/saas-vs-paas-vs-iaas-whats-the-difference-how-to-choose/

KB5004442—Manage changes for Windows DCOM Server Security Feature Bypass (CVE-2021-26414)

Summary

The Distributed Component Object Model (DCOM) Remote Protocol is a protocol for exposing application objects using remote procedure calls (RPCs). DCOM is used for communication between the software components of networked devices.  

Hardening changes in DCOM were required for CVE-2021-26414. Therefore, we recommended that you verify if client or server applications in your environment that use DCOM or RPC work as expected with the hardening changes enabled.

To address the vulnerability described in CVE-2021-26414, you must install updates released September 14, 2021 or later and enable the registry key described below in your environment. We recommended that you complete testing in your environment and enable these hardening changes as soon as possible. If you find issues during testing, you must contact the vendor for the affected client or server software for an update or workaround before early 2022.

Note We recommend that you update your devices to the latest security update available to take advantage of the advanced protections from the latest security threats.

Timeline

Update releaseBehavior change
June 8, 2021Hardening changes disabled by default but with the ability to enable them using a registry key.
June 14, 2022Hardening changes enabled by default but with the ability to disable them using a registry key.
March 14, 2023Hardening changes enabled by default with no ability to disable them. By this point, you must resolve any compatibility issues with the hardening changes and applications in your environment.

Registry setting to enable or disable the hardening changes

During the timeline phases in which you can enable or disable the hardening changes for CVE-2021-26414, you can use the following registry key:

  • Path : HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Ole\AppCompat
  • Value Name: “RequireIntegrityActivationAuthenticationLevel”
  • Type: dword
  • Value Data: default = 0x00000000 means disabled. 0x00000001 means enabled. If this value is not defined, it will default to enabled.

Note You must enter Value Data in hexadecimal format. 

Important You must restart your device after setting this registry key for it to take effect.

Note Enabling the registry key above will make DCOM servers enforce an Authentication-Level of RPC_C_AUTHN_LEVEL_PKT_INTEGRITY or higher for activation.

Note This registry value does not exist by default; you must create it. Windows will read it if it exists and will not overwrite it.

New DCOM error events

To help you identify the applications that might have compatibility issues after we enable DCOM security hardening changes, we added new DCOM error events in the System log; see the tables below. The system will log these events if it detects that a DCOM client application is trying to activate a DCOM server using an authentication level that is less than RPC_C_AUTHN_LEVEL_PKT_INTEGRITY. You can trace to the client device from the server-side event log and use client-side event logs to find the application.

Server events

Event IDMessage
10036“The server-side authentication level policy does not allow the user %1\%2 SID (%3) from address %4 to activate DCOM server. Please raise the activation authentication level at least to RPC_C_AUTHN_LEVEL_PKT_INTEGRITY in client application.”(%1 – domain, %2 – user name, %3 – User SID, %4 – Client IP Address)

Client events

Event IDMessage
10037“Application %1 with PID %2 is requesting to activate CLSID %3 on computer %4 with explicitly set authentication level at %5. The lowest activation authentication level required by DCOM is 5(RPC_C_AUTHN_LEVEL_PKT_INTEGRITY). To raise the activation authentication level, please contact the application vendor.”
10038“Application %1 with PID %2 is requesting to activate CLSID %3 on computer %4 with default activation authentication level at %5. The lowest activation authentication level required by DCOM is 5(RPC_C_AUTHN_LEVEL_PKT_INTEGRITY). To raise the activation authentication level, please contact the application vendor.”(%1 – Application Path, %2 – Application PID, %3 – CLSID of the COM class the application is requesting to activate, %4 – Computer Name, %5 – Value of Authentication Level)

Availability

These error events are only available for a subset of Windows versions; see the table below.

Windows versionAvailable on or after these dates
Windows Server 2022September 27, 2021KB5005619
Windows 10, version 2004, Windows 10, version 20H2, Windows 10, version 21H1September 1, 2021KB5005101
Windows 10, version 1909August 26, 2021KB5005103
Windows Server 2019, Windows 10, version  1809August 26, 2021KB5005102
Windows Server 2016, Windows 10, version 1607September 14, 2021KB5005573
Windows Server 2012 R2 and Windows 8.1October 12, 2021KB5006714

Source :
https://support.microsoft.com/en-us/topic/kb5004442-manage-changes-for-windows-dcom-server-security-feature-bypass-cve-2021-26414-f1400b52-c141-43d2-941e-37ed901c769c

How to Protect VMware ESXi Hosts from Ransomware Attacks

Exactly how vulnerable is VMware infrastructure to Ransomware?

Historically and like most malware, ransomware has been targeting Windows operating systems primarily. However, cases of Linux and MacOS being infected are being seen as well. Attackers are being more proficient and keep evolving in their attacks by targeting critical infrastructure components leading to ransomware attacks on VMware ESXi. In this article, you’ll learn how Ransomware targets VMware infrastructure and what you can do to protect yourself.

What is Ransomware?

Ransomware are malicious programs that work by taking the user’s data hostage in exchange for a hefty ransom.

There are essentially 2 types of Ransomware (arguably 3):

  • Crypto Ransomware: Encrypts files so that the user cannot access them. This is the one we are dealing with in this blog.
  • Locker Ransomware: Lock the user out of his computer by encrypting system files.
  • Scareware: Arguably a third type of ransomware that is actually a fake as it only locks the screen by displaying the ransom page. Scanning the system with an Antivirus LiveCD will get rid of it quite easily.

A user computer on the corporate network is usually infected through infected USB drives or social engineering techniques such as phishing emails and shady websites. Another occurrence includes attacking a remote access server publicly exposed through brute-force attacks.

The malware then uses a public key to encrypt the victim’s data, which can span to mapped network drives as well. After which the victim is asked to make a payment to the attacker using bitcoin or some other cryptocurrency in exchange for the private key to unlock the data, hence the term Ransomware. If the victim doesn’t pay in time, the data will be lost forever.

As you can imagine, authorities advise against paying the ransom as there is no guaranty the bad actor will deliver on his end of the deal so you may end up paying the big bucks and not recover your data at all.

Can Ransomware affect VMware?

While infecting a Windows computer may yield a reward if the attacker gets lucky, chances are the OS will simply be reinstalled, no ransom is paid and the company will start tightening security measures. Game over for the bad guys.

Rather than burning bridges by locking a user’s workstation, they now try to make a lateral move from the infected workstation and target critical infrastructure components such as VMware ESXi. That way they hit a whole group of servers at once.

VMware ESXi ransomware impact all the VMs running on the hypervisor

VMware ESXi ransomware impact all the VMs running on the hypervisor”

From the standpoint of an attacker, infesting a vSphere host, or any hypervisor for that matter, is an “N birds, 1 stone” type of gig. Instead of impacting one workstation or one server, all the virtual machines running on the host become unavailable. Such an attack will wreak havoc in any enterprise environment!

How does a Ransomware Attack Work?

In the case of targeted attacks, the bad actor works to gain remote access to a box in the local network (LAN), usually a user computer, and then make a lateral move to access the management subnet and hit critical infrastructure components such as VMware ESXi.

There are several ways a ransomware attack on VMware ESXi can happen but reports have described the following process.

The ransomware attack on VMware ESXi described in this blog is broken down into 5 stages

The ransomware attack on VMware ESXi described in this blog is broken down into 5 stages”

Stage 1: Access local network

Gaining access to the LAN usually goes either of 2 ways:

  • A malware is downloaded in a phishing email or from a website. It can also come from an infected USB stick.
  • The attacker performs a Brute force attack against a remote access server exposed to the internet. This seems more unusual as it involves more resources and knowledge of the target. Brute force attacks are also often caught by DDoS protection mechanisms.
Ransomware spread through malicious email attachments, websites, USB sticks

Ransomware spread through malicious email attachments, websites, USB sticks”

Stage 2: Escalate privileges

Once the attacker has remote access to a machine on the local network, be it a workstation or a remote desktop server, he will try to escalate privileges to open doors for himself.

Several reports mentioned attackers leveraging CVE-2020-1472 which is a vulnerability in how the Netlogon secure channel connections are done. The attacker would use the Netlogon Remote Protocol (MS-NRPC) to connect to a domain controller and gain domain administrator access.

Stage 3: Access management network

Once the bad actors have domain administrator privileges, they can already deal a large amount of damage to the company. In the case of a ransomware attack on VMware ESXi, they will use it to gain access to machines on the management network, in which the vCenter servers and vSphere ESXi servers live.

Note that they might even skip this step if the company made the mistake to give user workstations access to the management network.

Stage 4: VMware ESXi vulnerabilities

When the attackers are in the management network, you can only hope that all the components in your infrastructure have the latest security patches installed and strong password policies. At this point, they are the last line of defense, unless a zero-day vulnerability is being leveraged in which case there isn’t much you can do about it.

Several remote code execution vulnerabilities have been exploited over the last year or so against VMware ESXi servers and vCenter servers.

The two critical vulnerabilities that give attackers access to vSphere hosts relate to the Service Location Protocol (SLP) used by vSphere to discover devices on the same network. By sending malicious SLP commands, the attacker can execute remote code on the host.

  • CVE-2019-5544: Heap overwrite issue in the OpenSLP protocol in VMware ESXi.
  • CVE-2020-3992: Use-after-free issue in the OpenSLP protocol in VMware ESXi.
  • CVE-2021-21985: Although no attack mentions it, we can assume the vCenter Plug-in vulnerability discovered in early 2021 can be a vector of attack as well. Accessing vSphere hosts is fairly easy once the vCenter is compromised.

They can then enable SSH to obtain interactive access and sometimes even change the root password or SSH keys of the hosts.

Note that the attacker may not even need to go through all that trouble if he manages to somehow recover valid vCenter of vSphere credentials. For instance, if they are stored in the web browser or retrieved from the memory of the infected workstation.

Stage 5: Encrypt datastore and request ransom

Now that the attacker has access to the VMware ESXi server, he will go through the following steps to lock your environment for good.

  • Uninstall Fault Domain Manager or fdm (HA agent) used to reboot VMs in case of failure.
  • Shut down all the virtual machines.
  • Encrypt all virtual machine files using an ELF executable, derived from an encrypting script that targets Linux machines. This file is usually named svc-new and stored in /tmp.
  • Write a ransom file to the datastore for the administrator to find.

Note that there are variations of the ransomware attack on VMware ESXi, which themselves are ever-evolving. Meaning the steps described above represent one way things can happen but your mileage may very well vary.

How to protect yourself from ransomware attacks on VMware ESXi

If you look online for testimonies, you will find that the breach never comes from a hooded IT mastermind in an ill-lit room that goes through your firewalls by frantically typing on his keyboard like in the movies.

The reality is nowhere near as exciting. 9 times out of 10, it will be an infected attachment in a phishing email or a file downloaded on a shady website. This is most often the doing of a distracted user that didn’t check the link and executed the payload without thinking twice.

Ensure at least the following general guidelines are being enforced in your environment to establish a first solid line of defense:

VMware environment-related recommendations

  • If you need to open internet access on your vCenter, enforce strong edge firewall rules and proxy access to specific domains. Do not expose vCenter on the internet!!! (Yes, it’s been done).
  • Avoid installing third party vCenter plugins.
  • Enable Secure Boot and vSphere Trust Authority on vSphere hosts.
  • Set VMware ESXi shell and SSH to manual start and stop.
  • Don’t use the same password on all the hosts and out-of-band cards.

Some recommend not to add Active Directory as an Identity Source in vCenter Server. While this certainly removes a vector of attack, configuring Multi-Factor Authentication also mitigates this risk.

Industry standards

  • Educate your users and administrators through educational campaigns.
  • Ensure the latest security patches are installed as soon as possible on all infrastructure components as well as backups servers, workstations…
  • Segregate the management subnets from other subnets.
  • Connect to the management network through a jump server. It is critical that the jump server must:
    • Be secured and up to date
    • Accessible only through Multifactor authentication (MFA)
    • Must only allow a specific IP range.
  • Restrict network access to critical resources only to trained administrators.
  • Active Directory:
    • Ensure AD is secured and users/admins are educated on phishing attacks.
    • Apply least privilege policy.
    • Use dedicated and named accounts.
    • Enforce strong password policies.
    • Segregate Admin and Domain admin accounts on AD.
    • Log out users on inactivity on Remote Desktop Servers.
  • Don’t save your infrastructure password in the browser.
  • Use Multi-Factor Authentication (MFA) where possible, at least on admin accounts.
  • Forward infrastructure logs to a Syslog server for trail auditing.
  • Ensure all the workstations and servers have a solid antivirus with regularly updated definitions.

Where do backups fit in all this?

While there are decryption tools out there, they will not always work. In fact, they almost never will.

Restoring from backup is essentially the only way known to date that you can use to recover from a ransomware attack on VMware ESXi. You can use Altaro VM Backup to ensure your environment is protected.

Because attackers know this well, they will try to take down the backup infrastructure and erase all the files so your only option left is to pay the ransom. Which, as mentioned previously, is no guaranty that you get your files back.

Because of it, it is paramount to ensure your backup infrastructure is protected and secure by following best practices:

  • Avoid Active Directory Domain integration or use multi-factor authentication (MFA).
  • Do not use the same credentials for access to the VMware and Backup infrastructures.
  • Test your backups regularly.
  • Keep the backup infrastructure on a dedicated network. Also called Network Air-Gap.
  • Sufficient backup retention to avoid backing up infected data.
  • Maintain offsite read-only backups (air gap).

You can also check our dedicated blog for more best practice recommendations: Ransomware: Best Practices for Protecting Backups.

NIST controls for data integrity (National Institute of Standards and Technology)

VMware documents solutions for combatting ransomware by incorporating the National Institute of Standards and Technology (NIST) controls specific to data integrity. You can find VMware’s recommendations and implementation of the NIST in this dedicated document:

National Institute of Standards and Technology logo

National Institute of Standards and Technology logo”

The NIST framework is broken down into 5 functions:

In the VMware document linked above, you will find Detect, Protect and Respond recommendations that apply to various environments such as private cloud, hybrid cloud or end-user endpoints.

So How Worried Should I be?

Ransomware have always been one of the scary malware as they can deal a great amount of damage to a company, up to the point of causing some of them to go into bankruptcy. However, let us not get overwhelmed by these thoughts as you are not powerless against them. It is always best to act than to react.

In fact, there is no reason for your organization to get hit by a ransomware as long as you follow all the security best practices and you don’t cut corners. It might be tempting at some point to add an ALLOW ALL/ALL firewall rule to test something, give a user or service account full admin rights, patch a server into an extra VLAN or whatever action you know for a fact would increase your security officer’s blood pressure. In such a case, even if there is a 99.9% chance things are fine, think of the consequences it could have on the company as a whole should you hit that 0.1% lurking in the back.

If you are reading this and you have any doubts regarding the security of your infrastructure, run a full audit of what is currently in place and draw a plan to bring it into compliance with the current industry best practices as soon as possible. In any case, patch your systems as soon as possible, especially if you are behind!

Source :
https://www.altaro.com/vmware/esxi-hosts-ransomware-attacks/

Password Security and the Internet of Things (IoT)

The Internet of Things (IoT) is here, and we’re using it for everything from getting instant answers to random trivia questions to screening visitors at the door. According to Gartner, we were expected to use more than 25 billion internet-connected devices by the end of 2021. But as our digital lives have become more convenient, we might not yet have considered the risks involved with using IoT devices.

How can you keep yourself secure in today’s IoT world, where hackers aim to outsmart your smart home? First we’ll look at how hackers infiltrate the IoT, and then we’ll look at what you can do right now to make sure the IoT is working for you – not against you.

How hackers are infiltrating the Internet of Things

While we’ve become comfortable asking voice assistants to give us the weather forecast while we prep our dinners, hackers have been figuring out how to commandeer our IoT devices for cyber attacks. Here are just a few examples of how cyber criminals are already infiltrating the IoT.

Gaining access to and control of your camera

Have you ever seen someone with a sticker covering the camera on their laptop or smartphone? There’s a reason for that. Hackers have been known to gain access to these cameras and spy on people. This has become an even more serious problem in recent years, as people have been relying on videoconferencing to safely connect with friends and family, participate in virtual learning, and attend telehealth appointments during the pandemic. Cameras now often come with an indicator light that lets you know whether they’re being used. It’s a helpful protective measure, but not a failsafe one.

Using voice assistants to obtain sensitive information

According to Statista, 132 million Americans used a digital voice assistant once a month in 2021. Like any IoT gadget, however, they can be vulnerable to attack. According to Ars Technica, academic researchers have discovered that the Amazon Echo can be forced to take commands from itself, which opens the door to major mischief in a smart home. Once an attacker has compromised an Echo, they can use it to unlock doors, make phone calls and unauthorized purchases, and control any smart home appliances that the Echo manages.

Many bad actors prefer the quiet approach, however, slipping in undetected and stealing information. They can piggyback on a voice assistant’s privileged access to a victim’s online accounts or other IoT gadgets and make off with any sensitive information they desire. With the victim being none the wiser, the attackers can use that information to commit identity fraud or stage even more ambitious cyber crimes.

Hacking your network and launching a ransomware attack

Any device that is connected to the internet, whether it’s a smart security system or even a smart fridge, can be used in a cyber attack. Bad actors know that most people aren’t keeping their IoT gadgets’ software up to date in the same way they do their computers and smartphones, so they take advantage of that false sense of security. Once cyber criminals have gained access to an IoT device, they can go after other devices on the same network. (This is because most home networks are designed to trust devices that are already connected to them.) When these malicious actors are ready, they can launch a ransomware attack that brings your entire digital life to a halt – unless you agree to fork over a hefty sum in bitcoin, that is.

Using bots to launch a DDOS attack

Although most people never notice it, hackers can and do infect IoT devices with malware en masse, gaining control over them in the process. Having turned these zombie IoT devices into bots, the hackers then collectively use them to stage what’s called a botnet attack on their target of choice. This form of assault is especially popular for launching distributed denial of service (DDOS) attacks, in which all the bots in a botnet collectively flood a target with network requests until it buckles and goes offline.

How you can keep your Internet of Things gadgets safe from hackers

So how can you protect your IoT devices from these determined hackers? Fortunately, you can take back control by becoming just a little more cyber smart. Here are a few ways to keep your IoT gadgets safe from hackers:

  • Never use the default settings on your IoT devices. Although IoT devices are designed to be plug-and-play so you can start enjoying them right away, their default settings are often not nearly as secure as they should be. With that in mind, set up a unique username and strong password combination before you start using any new IoT technology. While you’re at it, see if there’s an option to encrypt the traffic to and from your IoT device. If there is, turn it on.
  • Keep your IoT software up to date. Chances are, you regularly install the latest software updates on your computer and phone. Hackers are counting on you to leave your IoT gadgets unpatched, running outdated software with vulnerabilities they can exploit, so be sure to keep the software on your IoT devices up to date as well.
  • Practice good password hygiene. We all slip into bad password habits from time to time – it’s only human – but they put our IoT security at risk. With this in mind, avoid re-using passwords and be sure to set unique, strong passwords on each of your IoT devices. Update those passwords from time to time, too. Don’t store your passwords in a browser, and don’t share them via email. A password manager can help you securely store and share your passwords, so hackers never have a chance to snatch them.
  • Use secure, password-protected WiFi. Cyber criminals are notorious for sneaking onto open, insecure WiFi networks. Once they’re connected, they can spy on any internet activity that happens over those networks, steal login credentials, and launch cyber attacks if they feel like it. For this reason, make sure that you and your IoT devices only use secure, password-protected WiFi.
  • Use multi-factor authentication as an extra layer of protection. Multi-factor authentication (MFA), gives you extra security on top of all the other measures we mentioned above. It asks you to provide one more credential, or factor, in addition to a password to confirm you are who you say you are. If you have MFA enabled and a hacker tries to log in as you, you’ll get a notification that a login attempt is in progress. Whenever you have the option to enable MFA on any account or technology, take advantage of it.

Protect your Internet of Things devices with smart password security

The IoT is making our lives incredibly convenient, but that convenience can be a little too seductive at times. It’s easy to forget that smart home devices, harmless-looking and helpful as they are, can be targeted in cyber attacks just like our computers and phones. Hackers are counting on you to leave your IoT gadgets unprotected so they can use them to launch damaging attacks. By following these smart IoT security tips, you can have the best of both worlds, enjoying your smart life and better peace of mind at the same time.

Learn how LastPass Premium helps you strengthen your password security.

Source :
https://blog.lastpass.com/2022/08/password-security-and-the-iot/

Staying Safe With QR Codes

QR codes link the offline to the online. What started as a way to streamline manufacturing in the automotive industry is now a widespread technology helping connect the physical world to digital content. And as the world embraced remote, no-touch solutions during the Covid pandemic, QR codes became especially popular. QR codes offer convenience and immediacy for businesses and consumers, but cybercriminals also take advantage of them. Here’s what you need to know about QR codes and how to stay safe when using them. 

Why QR codes? 

Due to their size and structure, the two-dimensional black and white barcodes we call QR codes are very versatile. And since most people carry a smartphone everywhere, they can quickly scan QR codes with their phone’s camera. Moreover, since QR codes are relatively easy to program and accessible for most smartphone users, they can be an effective communication tool. 

They also have many uses. For example, QR codes may link to a webpage, start an app or file download, share contact information, initiate a payment, and more. Covid forced businesses to be creative with touchless experiences, and QR codes provide a convenient way to transform a physical touchpoint into a digital interaction. During Covid, QR codes became a popular way to look at restaurant menus, communicate Covid policies, check in for an appointment, and view marketing promotions, among other scenarios.  

As a communication tool, QR codes can transmit a lot of information from one person to another, making it easy for someone to take action online and interact further with digital content.  

What hackers do with QR codes 

QR codes are inherently secure, and no personally identifiable information (PII) is transmitted while you’re scanning them. However, the tricky part about QR codes is that you don’t know what information they contain until you scan them. So just looking at the QR code won’t tell you if it’s entirely trustworthy or not. 

For example, cybercriminals may try to replace or sticker over a QR code in a high-traffic, public place. Doing so can trick people into scanning a malicious QR code. Or, hackers might send malicious QR codes digitally by email, text, or social media. The QR code scam might target a specific individual, or cybercriminals may design it to attract as many scans as possible from a large number of people. 

Once scanned, a malicious QR code may take you to a phishing website, lead you to install malware on your device, redirect a payment to the wrong account, or otherwise compromise the security of your private information.  

In the same way that cybercriminals try to get victims to click phishing links in email or social media, they lure people into scanning a QR code. These bad actors may be after account credentials, financial information, PII, or even company information. With that information, they can steal your identity or money or even break into your employer’s network for more valuable information (in other words, causing a data breach). 

QR code best practices for better security 

For the most part, QR code best practices mirror the typical security precautions you should take on social media and elsewhere in your digital life. However, there are also a few special precautions to keep in mind regarding QR codes. 

Pay attention to context. Where is the code available? What does the code claim to do (e.g., will it send you to a landing page)? Is there someone you can ask to confirm the purpose of the QR code? Did someone send it unprompted? Is it from a business or individual you’ve never heard of? Just like with phishing links, throw it out when in doubt. 

Look closely at the code. Some codes may have specific colors or branding to indicate the code’s purpose and destination. Many codes are generic black and white designs, but sometimes there are clues about who made the code. 

Check the link before you click. If you scan the QR code and a link appears, double-check it before clicking. Is it a website URL you were expecting? Is it a shortened link that masks the full URL? Is the webpage secure (HTTPS)? Do you see signs of a phishing attack (branding is slightly off, strange URL, misspelled words, etc.)? If it autogenerates an email or text message, who is the recipient and what information is it sending them? If it’s a payment form, who is receiving the payment? Read carefully before taking action. 

Practice password security. Passwords and account logins remain one of the top targets of cyber attacks. Stolen credentials give cybercriminals access to valuable personal and financial information. Generate every password for every account with a random password generator, ideally built into a password manager for secure storage and autofill. Following password best practices ensures one stolen password results in minimal damage. 

Layer with MFA. Adding multi-factor authentication to logins further protects against phishing attacks that steal passwords. With MFA in place, a hacker still can’t access an account after using a stolen password. By requiring additional login data, MFA can prevent cybercriminals from gaining access to personal or business accounts. 

QR codes remain a popular marketing and communication tool. They’re convenient and accessible, so you can expect to encounter them occasionally. Though cyber attacks via QR codes are less common, you should still stay vigilant for signs of phishing and social engineering via QR codes. To prevent and mitigate attacks via QR codes, start by building a solid foundation of digital security with a trusted password manager

Source :
https://blog.lastpass.com/2022/08/staying-safe-with-qr-codes/

Manage resources across sites with the VMware Content Library

A VMware vSphere environment includes many components to deliver business-critical workloads and services. However, there is a feature of today’s modern VMware vSphere infrastructure that is arguably underutilized – the VMware Content Library. Nevertheless, it can be a powerful tool that helps businesses standardize the workflow using files, templates, ISO images, vApps, scripts, and other resources to deploy and manage virtual machines. So how can organizations manage resources across sites with the VMware Content Library?

What is the VMware Content Library?

Most VI admins will agree with multiple vCenter Servers in the mix, managing files, ISOs, templates, vApps, and other resources can be challenging. For example, have you ever been working on one cluster and realized you didn’t have the ISO image copied to a local datastore that is accessible, and you had to “sneakernet” the ISO where you could mount and install it? What about virtual machine templates? What if you want to have the virtual machine templates in one vCenter Server environment available to another vCenter Server environment?

The VMware Content Library is a solution introduced in vSphere 6.0 that allows customers to keep their virtual machine resources synchronized in one place and prevent the need for manual updates to multiple templates and copying these across between vCenter Servers. Instead, administrators can create a centralized repository using the VMware Content Library from which resources can be updated, shared, and synchronized between environments.

Using the VMware Content Library, you essentially create a container that can house all of the important resources used in your environment, including VM-specific objects like templates and other files like ISO image files, text files, and other file types.

The VMware Content Library stores the content as a “library item.” Each VMware Content Library can contain many different file types and multiple files. VMware gives the example of the OVF file that you can upload to your VMware Content Library. As you know, the OVF file is a bundle of multiple files. However, when you upload the OVF template, you will see a single library entry.

VMware has added some excellent new features to the VMware Content Library features in the past few releases. These include the ability to add OVF security policies to a content library. The new OVF security policy was added in vSphere 7.0 Update 3. It allows implementing strict validation for deploying and updating content library items and synchronizing templates. One thing you can do is make sure a trusted certificate signs the templates. To do this, you can deploy a signing certificate for your OVFs from a trusted CA to your content library.

Another recent addition to the VMware Content Library functionality introduced in vSphere 6.7 Update 1 is uploading a VM template type directly to the VMware Content Library. Previously, VM templates were converted to an OVF template type. Now, you can work directly with virtual machine templates in the VMware Content Library.

VMware Content Library types

VMware Content Library enables managing resources across sites using two different types of content libraries. These include the following:

  • Local Content Library – A local content library is a VMware Content Library used to store and manage content residing in a single vCenter Server environment. Suppose you work in a single vCenter Server environment and want to have various resources available across all your ESXi hosts to deploy VMs, vAPPs, install from ISO files, etc. In that case, the local content library allows doing that. With the local content library, you can choose to Publish the local content library. When you publish the Content Library, you are making it available to be subscribed to or synchronized.
  • Subscribed Content Library – The other type of Content Library is the subscribed content library. When you add a subscribed VMware Content Library type, you are essentially downloading published items from a VMware Content Library type that has published items as mentioned in the Local Content Library section. In this configuration, you are only a consumer of the VMware Content Library that someone else has published. It means when creating the Content Library, the publish option was configured. You can’t add templates and other items to the subscribed VMware Content Library type as you can only synchronize the content of the subscribed Content Library with the content of the published Content Library.
    • With a subscribed library, you can choose to download all the contents of the published Content Library immediately once the subscribed Content Library is created. You can also choose to download only the metadata for items in the published Content Library and download the entire contents of the items you need. You can think of this as a “files on-demand” type feature that only downloads the resources when these are required.

Below is an example of the screen when configuring a content library that allows creating either a Local Content Library or the Subscribed Content Library:

Choosing the content library type


Choosing the content library type

Create a local or subscription Content Library in vSphere 7

Creating a new VMware Content Library is a relatively straightforward and intuitive process you can accomplish in the vSphere Client. Let’s step through the process to create a new VMware Content Library. We will use the vSphere Web Client to manage and configure the Content Library Settings.

Using the vSphere Web Client to manage the Content Library

First, click the upper left-hand “hamburger” menu in the vSphere Client. You will see the option Content Libraries directly underneath the Inventory menu when you click the menu.

Choosing the Content Libraries option to create a manage Content Libraries


Choosing the Content Libraries option to create a manage Content Libraries

Under the Content Libraries screen, you can Create new Content Libraries.

Creating a new Content Library in the vSphere Client


Creating a new Content Library in the vSphere Client

It will launch the New Content Library wizard. In the Name and Location screen, name the new VMware Content Library.

New Content Library name and location


New Content Library name and location

On the Configure content library step, you configure the content library type, including configuring a local content library or a subscribed content library. Under the configuration for Local content library, you can Enable publishing. If publishing is enabled, you can also enable authentication.

Configuring the Content Library type


Configuring the Content Library type

When you configure publishing and authentication, you can configure a password on the content library.

Apply security policy step

Step 3 is the Apply security policy step. It allows applying the OVF default policy to protect and enforce strict validation while importing and synchronizing OVF library items.

Choosing to apply the OVF default policy


Choosing to apply the OVF default policy

The VMware Content Library needs to have a storage location that will provide the storage for the content library itself. First, select the datastore you want to use for storing your content library. The beauty of the content library is that it essentially publishes and shares the items in the content library itself, even though they may be housed on a particular datastore.

Select the storage to use for storing items in the VMware Content Library


Select the storage to use for storing items in the VMware Content Library

Finally, we are ready to complete the creation of the Content Library. Click Finish.

Finishing the creation of the VMware Content Library


Finishing the creation of the VMware Content Library

Once the VMware Content Library is created, you can see the details of the library, including the Publication section showing the Subscription URL.

Viewing the settings of a newly created VMware Content Library


Viewing the settings of a newly created VMware Content Library

As a note. If you click the Edit Settings hyperlink under the Publication settings pane, you can go in and edit the settings of the Content Library, including the publishing options, authentication, changing the authentication password, and applying a security policy.

Editing the settings of a VMware Content Library


Editing the settings of a VMware Content Library

Creating a subscribed VMware Content Library

As we mentioned earlier, configuring a subscribed content library means synchronizing items from a published content library. In the New Content Library configuration wizard, you choose the Subscribed content library option to synchronize with a published content library. Then, enter the subscription URL for the published content library when selected. As shown above, this URL is found in the settings of the published content library.

You will need to also place a check in the Enable authentication setting if the published content library was set up with authentication. Then, enter the password configured for the published content library. Also, note the configuration for downloading content. As detailed earlier, you can choose to synchronize items immediately, meaning the entire content library will be fully downloaded. Or, you can select when needed, which acts as a “files on demand” configuration that only downloads the resources when needed.

Configuring the subscribed content library


Configuring the subscribed content library

Choose the storage for the subscribed Content Library.

Add storage for the subscribed VMware Content Library

Add storage for the subscribed VMware Content Library

Ready to complete adding a new subscribed VMware Content Library. Click Finish.

Ready to complete adding a subscribed VMware Content Library


Ready to complete adding a subscribed VMware Content Library

Interestingly, you can add a subscribed VMware Content Library that is subscribed to the same published VMware Content Library on the same vCenter Server.

Published and subscribed content library on the same vCenter Server


Published and subscribed content library on the same vCenter Server

What is Check-In/Check-Out?

A new feature included with VMware vSphere 7 is versioning with the VMware Content Library. So often, with virtual machine templates, these are frequently changed, updated, and configured. As a result, it can be easy to lose track of the changes made, the user making the modifications, and track the changes efficiently.

Now, VMware vSphere 7 provides visibility into the changes made to virtual machine templates with a new check-in/check-out process. This change embraces DevOps workflows with a way for IT admins to check in and check out virtual machine templates in and out of the Content Library.

Before the new check-in/check-out feature, VI admins might use a process similar to the following to change a virtual machine template:

  1. Convert a virtual machine template to a virtual machine
  2. Place a snapshot on the converted template to machine VM
  3. Make whatever changes are needed to the VM
  4. Power the VM off and convert it back to a template
  5. Re-upload the VM template back to the Content Library
  6. Delete the old template
  7. Internally notify other VI admins of the changes

Now, VI admins can use a new capability in vSphere 7.0 and higher to make changes to virtual machine templates more seamlessly and track those changes effectively.

Clone as template to Library

The first step is to house the virtual machine template in the Content Library. Right-click an existing virtual machine to use the new functionality and select Clone as Template to Library.

Clone as Template to Library functionality to use the check-in and check-out feature


Clone as Template to Library functionality to use the check-in and check-out feature

As a note, if you see the Clone to Library functionality instead of Clone as Template to Library, it means you have not converted the VM template to a virtual machine. If you right-click a VM template, you only get the Clone to Library option. If you select Clone to Template, it only allows cloning the template in a traditional way to another template on a datastore.

Right-clicking and cloning a VM template only gives the option to Clone to Library


Right-clicking and cloning a VM template only gives the option to Clone to Library

Continuing with the Clone to Library process, you will see the Clone to Template in Library dialog box open. Select either New template or Update the existing template.

Clone to Template in Library


Clone to Template in Library

In the vCenter Server tasks, you will see the process begin to Upload files to a Library and Transfer files.

Uploading a virtual machine template to the Content Library


Uploading a virtual machine template to the Content Library

When you right-click a virtual machine and not a virtual machine template, you will see the additional option of Clone as Template to Library.

Clone as Template to Library


Clone as Template to Library

It then brings up a more verbose wizard for the Clone Virtual Machine To Template process. The first screen is the Basic information where you define the Template type (can be OVF or VM Template), the name of the template, notes, and select a folder for the template.

Configuring basic information for the clone virtual machine to template process


Configuring basic information for the clone virtual machine to template process

On the Location page, you select the VMware Content Library you want to use to house the virtual machine template.

Select the VMware Content Library to house the virtual machine template


Select the VMware Content Library to house the virtual machine template

Select a compute resource to house your cloned VM template.

Select the compute resource for the virtual machine template


Select the compute resource for the virtual machine template

Select the storage for the virtual machine template.

Select storage to house the VM template


Select storage to house the VM template

Finish the Clone Virtual Machine to Template process.

Finish the clone of the virtual machine to template in the VMware Content Library


Finish the clone of the virtual machine to template in the VMware Content Library

If you navigate to the Content Library, you will see the template listed under the VM Templates in the Content Library.

Viewing the VM template in the Content Library


Viewing the VM template in the Content Library

Checking templates in and out

If you select the radio button next to the VM template, the Check Out VM From This Template button will appear to the right.

Launching the Check out VM from this template


Launching the Check out VM from this template

When you click the button, it will launch the Check out VM from VM Template wizard. First, name the new virtual machine that will be created in the check-out process.

Starting the Check out VM from VM template


Starting the Check out VM from VM template

Select the compute resource to house the checked-out virtual machine.

Selecting a compute resource


Selecting a compute resource

Review and finish the Check out VM from VM template process. You can select to power on VM after check out.

Review and Finish the Check out VM from VM Template


Review and Finish the Check out VM from VM Template

The checked-out virtual machine will clone from the existing template in the Content Library. Also, you will see an audit trail of the check-outs from the Content Library. You are directed to Navigate to the checked-out VM to make updates. Note you then have the button available to Check In VM to Template.

Virtual machine template is checked out and deployed as a virtual machine in inventory


Virtual machine template is checked out and deployed as a virtual machine in inventory

If you navigate to the Inventory view in the vSphere Client, you will see the machine has a tiny blue dot in the lower left-hand corner of the virtual machine icon.

Viewing the checked-out VM template as a virtual machine in vSphere inventory


Viewing the checked-out VM template as a virtual machine in vSphere inventory

After making one small change, such as changing the virtual network the virtual machine is connected to, we see the option appear to Check In VM to Template.

Check In VM to Template


Check In VM to Template

It will bring up the Check In VM dialog box, allowing you to enter notes and then click the Check In button.

Check In the VM


Check In the VM

We see the audit trail of changes reflected in the Content Library with the notes we entered in the Check in notes.

Virtual machine template checked back in with the notes entered in the check-in process


Virtual machine template checked back in with the notes entered in the check-in process

You will also see a new Versioning tab displayed when you view the virtual machine template in the inventory view.

Viewing the versioning of a virtual machine template in the inventory view


Viewing the versioning of a virtual machine template in the inventory view

VMware Content Library Roles

There are various privileges related to Content Library privileges. VMware documents the following privileges that can be assigned to a custom VMware Content Library Role.

Privilege NameDescriptionRequired On
Content library.Add library itemAllows addition of items in a library.Library
Content library.Add root certificate to trust storeAllows addition of root certificates to the Trusted Root Certificates Store.vCenter Server
Content library.Check in a templateAllows checking in of templates.Library
Content library.Check out a templateAllows checking out of templates.Library
Content library.Create a subscription for a published libraryAllows creation of a library subscription.Library
Content library.Create local libraryAllows creation of local libraries on the specified vCenter Server system.vCenter Server
Content library.Create or delete a Harbor registryAllows creation or deletion of the VMware Tanzu Harbor Registry service.vCenter Server for creation. Registry for deletion.
Content library.Create subscribed libraryAllows creation of subscribed libraries.vCenter Server
Content library.Create, delete or purge a Harbor registry projectAllows creation, deletion, or purging of VMware Tanzu Harbor Registry projects.Registry
Content library.Delete library itemAllows deletion of library items.Library. Set this permission to propagate to all library items.
Content library.Delete local libraryAllows deletion of a local library.Library
Content library.Delete root certificate from trust storeAllows deletion of root certificates from the Trusted Root Certificates Store.vCenter Server
Content library.Delete subscribed libraryAllows deletion of a subscribed library.Library
Content library.Delete subscription of a published libraryAllows deletion of a subscription to a library.Library
Content library.Download filesAllows download of files from the content library.Library
Content library.Evict library itemAllows eviction of items. The content of a subscribed library can be cached or not cached. If the content is cached, you can release a library item by evicting it if you have this privilege.Library. Set this permission to propagate to all library items.
Content library.Evict subscribed libraryAllows eviction of a subscribed library. The content of a subscribed library can be cached or not cached. If the content is cached, you can release a library by evicting it if you have this privilege.Library
Content library.Import StorageAllows a user to import a library item if the source file URL starts with ds:// or file://. This privilege is disabled for content library administrator by default. Because an import from a storage URL implies import of content, enable this privilege only if necessary and if no security concern exists for the user who performs the import.Library
Content library.Manage Harbor registry resources on specified compute resourceAllows management of VMware Tanzu Harbor Registry resources.Compute cluster
Content library.Probe subscription informationThis privilege allows solution users and APIs to probe a remote library’s subscription info including URL, SSL certificate, and password. The resulting structure describes whether the subscription configuration is successful or whether there are problems such as SSL errors.Library
Content library.Publish a library item to its subscribersAllows publication of library items to subscribers.Library. Set this permission to propagate to all library items.
Content library.Publish a library to its subscribersAllows publication of libraries to subscribers.Library
Content library.Read storageAllows reading of content library storage.Library
Content library.Sync library itemAllows synchronization of library items.Library. Set this permission to propagate to all library items.
Content library.Sync subscribed libraryAllows synchronization of subscribed libraries.Library
Content library.Type introspectionAllows a solution user or API to introspect the type support plug-ins for the content library service.Library
Content library.Update configuration settingsAllows you to update the configuration settings.Library
No vSphere Client user interface elements are associated with this privilege.
Content library.Update filesAllows you to upload content into the content library. Also allows you to remove files from a library item.Library
Content library.Update libraryAllows updates to the content library.Library
Content library.Update library itemAllows updates to library items.Library. Set this permission to propagate to all library items.
Content library.Update local libraryAllows updates of local libraries.Library
Content library.Update subscribed libraryAllows you to update the properties of a subscribed library.Library
Content library.Update subscription of a published libraryAllows updates of subscription parameters. Users can update parameters such as the subscribed library’s vCenter Server instance specification and placement of its virtual machine template items.Library
Content library.View configuration settingsAllows you to view the configuration settings.Library
No vSphere Client user interface elements are associated with this privilege.

Advanced Content Library settings

Several advanced configuration settings are configurable with the VMware Content Library. You can get to these by navigating to Content Libraries > Advanced.

Content Library advanced settings


Content Library advanced settings

These include the following settings as detailed by VMware:

Configuration ParameterDescription
Library Auto Sync EnabledThis setting enables automatic synchronization of subscribed content libraries.
Library Auto Sync Refresh Interval (minutes)The Interval between two consequent automatic synchronizations of the subscribed content library. This interval is measured in minutes.
Library Auto Sync Setting Refresh Interval (seconds)This is the Interval after which the refresh interval for the automatic synchronization settings of the subscribed library will be updated if it has been changed. It is measured in seconds. A change in the refresh interval requires a restart of vCenter Server.
Library Auto Sync Start HourThis setting refers to the time of day when the automatic synchronization of a subscribed content library begins
Library Auto Sync Stop HourThis setting refers to the time of day when the automatic synchronization of a subscribed content library stops. Automatic synchronization stops until the start hour.
Library Maximum Concurrent Sync ItemsThe maximum number of items concurrently synchronizing for each subscribed library.
Max concurrent NFC transfers per ESX hostThe maximum concurrent NFC transfers per ESXi host limit
Maximum Bandwidth ConsumptionThe bandwidth usage threshold. It is measured in Mbps across all transfers where 0 means unlimited bandwidth.
Maximum Number of Concurrent Priority TransfersThe Concurrent transfer limit for priority files. Tranfers are queued if the bandwidth limit is exceeded. This threadpool is used only to transfer priority objects. For example, if you change the concurrent transfer limit for priority files, such as OVF, you must restart vCenter Server.
Maximum Number of Concurrent TransfersConcurrent transfer limit. When exceeded, the transfers are queued. If you change the concurrent transfer limit, it requires a restart of vCenter Server.

To properly protect your VMware environment, use Altaro VM Backup to securely backup and replicate your virtual machines. We work hard perpetually to give our customers confidence in their VMware backup strategy.

To keep up to date with the latest VMware best practices, become a member of the VMware DOJO now (it’s free).

Wrapping up

The VMware Content Library provides a centralized repository that allows keeping required file resources, virtual machine templates, ISO images vApps, and other files synchronized and available across the vSphere datacenter. In vSphere 7, the Content Library allows organizations to have a better way to keep up with and track changes to virtual machine templates. Using the new check-in/check-out process, VI admins can track changes made with each check-out and ensure these are documented and synchronized back to the Content Library.

It effectively provides a solution to remove the need to copy files between ESXi hosts or vSphere clusters and have what you need to install guest operating systems or deploy virtual machine templates. In addition, the subscribed Content Library allows synchronizing vCenter Server content libraries so that many other vCenter Servers can take advantage of the files already organized in the published Content Library.

The VMware Content Library is one of the more underutilized tools in the VI admin’s toolbelt that can bring about advantages in workflow, efficiency, and time spent finding and organizing files for deploying VMs and OS’es. In addition, the recent feature additions and improvements, such as check-ins/check-outs, have provided a more DevOps approach to tracking and working with deployment resources.

Source :
https://www.altaro.com/vmware/vmware-content-library/