Cloud VPN vs. Traditional VPN: Which One’s Best for Your Business?

16.08.2023

Are you struggling to decide between a cloud VPN vs. traditional VPN for your business? 

You’re not alone. Many companies grapple with this decision, still determining which option best meets their needs.

The pain of making the wrong choice is real. Opt for a solution that doesn’t align with your business needs, and you could face slow connection speeds, increased security risks, or even inflated costs. Worse, you might be locked into a solution that doesn’t scale with your business, leading to even more headaches.

The world of VPNs can be complex and confusing, with each type boasting its features, benefits, and drawbacks. It’s easy to feel overwhelmed, unsure of which path to take.

In this article, we’ll demystify the differences between cloud VPN vs. traditional VPN, providing you with the information you need to make an informed decision. We’ll explore how each type works, its advantages, and its key differences. 

What is a Cloud VPN? 

Cloud VPN is a service that provides secure and private internet access to users. Cloud VPNs are hosted in the cloud, meaning they can be accessed from anywhere worldwide, making them an ideal choice for businesses with a remote workforce or multiple office locations.

Cloud VPNs are more scalable, flexible, and efficient than their traditional counterparts. They can quickly adapt to the needs of businesses, whether it’s accommodating growth, supporting mobile devices, or providing global accessibility. 

This adaptability makes Cloud VPNs popular for companies looking to secure their data without sacrificing convenience or performance.

How Do Cloud VPNs Work?

Cloud VPNs create a secure pathway, an encrypted tunnel, between the user’s device and the internet. This tunnel acts as a safe conduit for data to travel, ensuring that all information passing through it’s protected from external threats such as hackers or malware.

When users connect to a Cloud VPN, their device communicates with the VPN server in the cloud. The server then encrypts the user’s data before it’s sent over the internet. This encryption makes the data unreadable to anyone who might intercept it, ensuring its security.

A Cloud VPN also masks the user’s IP address, replacing it with the IP address of the VPN server. This provides an additional layer of privacy, preventing third parties from tracking the user’s online activities or determining their physical location.

Types of Cloud VPNs

Businesses come in all shapes and sizes, and so do their networking needs. That’s why Cloud VPNs are versatile, offering different types to suit various requirements. Here are the two main types of Cloud VPNs:

Remote Access VPNs 

Designed for the modern workforce, these VPNs allow individual users to securely access a private network from anywhere. Ideal for remote workers or teams spread across multiple locations, they ensure secure access to company resources.

Site-to-Site Connection VPNs

Site-to-site connection VPNs connect entire networks, providing a secure bridge for data to travel between different office locations or between a business and its partners or clients. Ideal for companies with multiple office locations.

The Main Benefits of Cloud VPNs 

Cloud VPNs offer several advantages over traditional VPNs. These include:

Direct Cloud Access

Cloud VPNs provide direct access to cloud services, reducing latency and improving performance.

Global Accessibility

They are hosted in the cloud and can be accessed from anywhere worldwide.

Flexibility 

They can be easily scaled up or down based on the needs of the business.

Scalability 

They can support many users without the need for significant hardware investment.

Mobile Support

They are designed to work well with mobile devices, supporting the modern mobile workforce.

Cost Efficiency 

They eliminate the need for expensive hardware and maintenance costs associated with traditional VPNs.

What is a Traditional VPN (remote VPN)?

A traditional VPN, also known as a remote VPN, is a technology that creates a secure connection over a less secure network between the user’s computer and a private network. 

Remote workers widely use this technology to access company resources they wouldn’t otherwise be able to reach. It’s also used by individuals who want to ensure their online activity is private and secure.

How Do Remote VPNs Work?

A cloud VPN vs. traditional VPN comparison reveals how remote VPNs function. These systems create a secure tunnel between the user’s device and the VPN server. The data traveling through this tunnel is encrypted, offering a safe method for transmitting information between the remote user and the company network.

The VPN server, acting as a go-between, conceals your IP address and gives the impression that your traffic originates from its IP address. This covers your online activities from your ISP and creates the illusion that you’re located where the VPN server is. This can be particularly useful for accessing content that is region-restricted.

In a hosted VPN service, the server is maintained by a third-party provider, reducing the burden on your IT resources.

Advantages of Traditional VPNs

Traditional VPNs offer several benefits, including:

  • Security: Traditional VPNs use advanced encryption protocols to secure your data, protecting your information from hackers and other cyber threats.
  • Privacy: By masking your IP address, a VPN ensures that your online activities remain private.
  • Remote access: VPNs allow remote workers to securely access their company’s network from anywhere in the world.
  • Bypassing geo-restrictions: VPNs can make it appear as though you’re browsing from a different location, allowing you to access content that may be region-locked.
  • Cost-effective: Many VPN services are available at a relatively low cost, and the security benefits they provide can save businesses money in the long run by preventing data breaches.

Cloud VPN vs. Traditional VPN: the Main Differences

Regarding cloud VPN vs. traditional VPN, it’s essential to understand that both have strengths and weaknesses. However, the transition from traditional VPN to cloud VPN has really underscored how good the cloud is at addressing the limitations of traditional VPN technologies.

Cloud VPNs eliminate network choke points by allowing users to connect directly to the required network, whether cloud-based or on-premises. This direct connection reduces bandwidth consumption and latency, enhancing user experience. 

Also, cloud VPNs centralize remote access security, simplifying setting up and maintaining security policies across all cloud platforms.

Unlike traditional VPNs, which have hard limits on bandwidth and user numbers, cloud VPNs can scale to meet changing business requirements. Still, as we delve deeper into the differences, you’ll see that the choice between cloud and traditional VPNs depends on your business’s needs.

Features 

Cloud VPNs are known for their scalability, cost-efficiency, and enhanced security features. They’re implemented as cloud-based services, making them more flexible and globally accessible. On the other hand, traditional VPNs are network appliances that provide secure, remote access to company networks but may lack the flexibility and scalability of their cloud counterparts.

Performance

Performance is a key differentiator. Cloud VPNs, running in data centers, offer high-speed connections not limited by network speed, unlike hardware VPNs. They also eliminate backhaul, allowing users to connect directly to cloud-based networks, improving network performance and reducing latency.

Support

In terms of support, Cloud VPNs have an edge. They can quickly adopt new security features and vulnerability patches, making them more secure than on-premise VPNs. Traditional VPNs, however, may require more time and resources to implement such updates.

Pricing 

Pricing is a significant factor in cloud VPN vs. traditional VPN. Cloud VPNs are generally more affordable, with usage-based VPN-as-a-Service (VPNaaS) fees being more cost-effective than the expenses associated with deploying, maintaining, and upgrading VPN hardware.

So, Which Should You Choose: A Cloud Vpn or a Traditional Vpn?

Choosing between a cloud VPN vs. a traditional VPN for your business largely depends on your specific needs and circumstances. However, it’s crucial to consider the evolution of technology and the increasing demand for robust, flexible, and secure networking solutions.

Cloud VPNs offer a more flexible and scalable solution than traditional VPNs. On the other hand, traditional VPNs have been a staple in the security landscape for decades.

However, as businesses adapt to an increasingly digital landscape, the demand for secure, remote access to resources is rising. This has led to the emergence of alternatives to both cloud VPN and traditional VPN. 

Two such alternatives are:

  • Zero Trust Network Access (ZTNA)This modern approach to network access enhances security by verifying every connection attempt and limiting access privileges to only what users need to perform their tasks. This reduces the risk of data breaches and ensures a secure network environment.
  • Software-Defined Perimeter (SDP): Offering a flexible, scalable, and secure solution, the SDP model creates a dynamic, individualized perimeter for each user. This adaptability ensures robust security without compromising user experience, making it an attractive business option.

We offer a comprehensive solution that implements the Zero Trust model, providing businesses with a secure, flexible, and scalable alternative to both Cloud VPN and Traditional VPN. This solution combines the strengths of both ZTNA and SDP, ensuring that your business is equipped with the most robust and adaptable network security measures available today.

Ready to secure your business’s digital infrastructure and enhance your network’s performance? Want to benefit from a solution that aligns with your specific needs? Book a demo today!

Source :
https://www.perimeter81.com/blog/network/cloud-vpn-vs-traditional-vpn

New SEC Cybersecurity Rules: What You Need to Know

By: Greg Young – Trendmicro
August 03, 2023
Read time: 4 min (1014 words)

The US Securities and Exchange Commission (SEC) recently adopted rules regarding mandatory cybersecurity disclosure. Explore what this announcement means for you and your organization.

On July 26, 2023, the US Securities and Exchange Commission (SEC) adopted rules regarding mandatory cybersecurity disclosure. What does this mean for you and your organization? As I understand them, here are the major takeaways that cybersecurity and business leaders need to know:

Who does this apply to?

The rules announced apply only to registrants of the SEC i.e., companies filing documents with the US SEC. Not surprisingly, this isn’t limited to attacks on assets located within the US, so incidents concerning SEC registrant companies’ assets in other countries are in scope. This scope also, not surprisingly, does not include the government, companies not subject to SEC reporting (i.e., privately held companies), and other organizations.

Breach notification for these others will be the subject of separate compliance regimes, which will hopefully, at some point in time, be harmonized and/or unified to some degree with the SEC reporting.

Advice for security leaders: be aware that these new rules could require “double reporting,” such as for publicly traded critical infrastructure companies. Having multiple compliance regimes, however, is not new for cybersecurity.

What are the general disclosure requirements?

Some pundits have said “four days after an incident” but that’s not quite correct. The SEC says that “material breaches” must be reported “four business days after a registrant determines that a cybersecurity incident is material.”

We’ve hit the first squishy bit: materiality. Directing companies to disclose material events shouldn’t be necessary before there’s a mixed record of companies making materiality for public company operation. But what kind of cybersecurity incident would be likely to be important to a reasonable investor?

We’ve seen giant breaches that paradoxically did not move stock prices, and minor breaches that did the opposite. I’m clearly on the side of compliance and disclosure, but I recognize it is a gray area. Recently we saw some companies that had the MOVEit vulnerability exploited but had no data loss. Should they report? But in some cases, their response to the vulnerability was in the millions: how about then? I expect and hope there will be further guidance.

Advice for security leaders: monitor the breach investigation and monitor the analysis of materiality. Security leaders won’t often make that call but should give guidance and continuous updates to the CxO who are responsible.

The second squishy bit is that the requirement is the reporting should be made four days after determining the incident is material. So not four days after the incident, but after the materiality determination. I understand why it was structured this way, as a small indicator of compromise must be followed up before understanding the scope and nature of a breach, including whether a breach has occurred at all. But this does give a window to some of the foot-dragging for disclosure we’ve unfortunately seen, including product companies with vulnerabilities.

Advice for security leaders: make management aware of the four-day reporting requirement and monitor the clock once the material line is crossed or identified.

Are there extensions?

There are, but not because you need more time. Instead “The disclosure may be delayed if the United States Attorney General determines that immediate disclosure would pose a substantial risk to national security or public safety and notifies the Commission of such determination in writing.” Note that it specifically states that the Attorney General (AG) makes that determination, and the AG communicates this to the SEC. There could be some delegation of this authority within the Department of Justice in the future, but today it is the AG.

How does it compare to other countries and compliance regimes?

Breach and incident reporting and disclosure is not new, and the concept of reporting material events is already commonplace around the world. GDPR breach reporting is 72 hours, HHS HIPAA requires notice not later than 60 days and 90 days to individuals affected, and the UK Financial Conduct Authority (FCA) has breach reporting requirements. Canada has draft legislation in Bill C-26 that looks at mandatory reporting through the lens of critical industries, which includes verticals such as banking and telecoms but not public companies. Many of the world’s financial oversight bodies do not require breach notification for public companies in the exchanges they are responsible for.

Advice to security leaders: consider the new SEC rules as clarification and amplification of existing reporting requirements for material events rather than a new regime or something that is harsher or different to other geographies.

Is breach reporting the only new rule?

No, I’ve only focused on incident reporting in this post. There’s a few more. The two most noteworthy ones are:

  • Regulation S-K Item 106, requiring registrants to “describe their processes, if any, for assessing, identifying, and managing material risks from cybersecurity threats, as well as the material effects or reasonably likely material effects of risks from cybersecurity threats and previous cybersecurity incidents.”
  • Also specified is that annual 10-Ks “describe the board of directors’ oversight of risks from cybersecurity threats and management’s role and expertise in assessing and managing material risks from cybersecurity threats.”

Bottom line

SEC mandatory reporting for material cybersecurity events was already a requirement under the general reporting requirements, however the timelines and nature of the reporting are getting real and have a ticking four-day timer on them.

Stepping back from the rules, the importance of visibility and continuous monitoring are the real takeaways. Time to detection can’t be at the speed of your least experienced analyst. Platform means unified visibility rather than a wall of consoles. Finding and stopping breaches means internal visibility must include a rich array of telemetry, and that it be continuously monitored.

Many SEC registrants have operations outside the US, and that means visibility needs to include threat intelligence that is localized to other geographies. These new SEC rules show more than ever that that cyber risk is business risk.

To learn more about cyber risk management, check out the following resources:

Source :
https://www.trendmicro.com/en_us/research/23/h/sec-cybersecurity-rules-2023.html

The five-day job: A BlackByte ransomware intrusion case study

July 6, 2023

As ransomware attacks continue to grow in number and sophistication, threat actors can quickly impact business operations if organizations are not well prepared. In a recent investigation by Microsoft Incident Response (previously known as Microsoft Detection and Response Team – DART) of an intrusion, we found that the threat actor progressed through the full attack chain, from initial access to impact, in less than five days, causing significant business disruption for the victim organization.

Our investigation found that within those five days, the threat actor employed a range of tools and techniques, culminating in the deployment of BlackByte 2.0 ransomware, to achieve their objectives. These techniques included:

  • Exploitation of unpatched internet-exposed Microsoft Exchange Servers
  • Web shell deployment facilitating remote access
  • Use of living-off-the-land tools for persistence and reconnaissance
  • Deployment of Cobalt Strike beacons for command and control (C2)
  • Process hollowing and the use of vulnerable drivers for defense evasion
  • Deployment of custom-developed backdoors to facilitate persistence
  • Deployment of a custom-developed data collection and exfiltration tool
BlackByte 2.0 ransomware attack chain by order of stages: initial access and privilege escalation, persistence and command and control, reconnaissance, credential access, lateral movement, data staging and exfiltration, and impact.
Figure 1. BlackByte 2.0 ransomware attack chain

In this blog, we share details of our investigation into the end-to-end attack chain, exposing security weaknesses that the threat actor exploited to advance their attack. As we learned from Microsoft’s tracking of ransomware attacks and the cybercriminal economy that enables them, disrupting common attack patterns could stop many of the attacker activities that precede ransomware deployment. This case highlights that common security hygiene practices go a long way in preventing, identifying, and responding to malicious activity as early as possible to mitigate the impact of ransomware attacks. We encourage organizations to follow the outlined mitigation steps, including ensuring that internet-facing assets are up to date and configured securely. We also share indicators of compromise, detection details, and hunting guidance to help organizations identify and respond to these attacks in their environments.  

Forensic analysis

Initial access and privilege escalation

To obtain initial access into the victim’s environment, the threat actor was observed exploiting the ProxyShell vulnerabilities CVE-2021-34473, CVE-2021-34523, and CVE-2021-31207 on unpatched Microsoft Exchange Servers. The exploitation of these vulnerabilities allowed the threat actor to:

  • Attain system-level privileges on the compromised Exchange host
  • Enumerate LegacyDN of users by sending Autodiscover requests, including SIDs of users
  • Construct a valid authentication token and use it against the Exchange PowerShell backend
  • Impersonate domain admin users and create a web shell by using the New-MailboxExportRequest cmdlet
  • Create web shells to obtain remote control on affected servers

The threat actor was observed operating from the following IP to exploit ProxyShell and access the web shell:

  • 185.225.73[.]244

Persistence

Backdoor

After gaining access to a device, the threat actor created the following registry run keys to run a payload each time a user signs in:

Registry keyValue nameValue data
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run  MsEdgeMsErundll32 C:\Users\user\Downloads\api-msvc.dll,Default  
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run  MsEdgeMsErundll32 C:\temp\api-msvc.dll,Default  
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run  MsEdgeMsErundll32 C:\systemtest\api-system.png,Default

The file api-msvc.dll (SHA-256: 4a066569113a569a6feb8f44257ac8764ee8f2011765009fdfd82fe3f4b92d3e) was determined to be a backdoor capable of collecting system information, such as the installed antivirus products, device name, and IP address. This information is then sent via HTTP POST request to the following C2 channel:

  • hxxps://myvisit[.]alteksecurity[.]org/t

The organization was not using Microsoft Defender Antivirus, which detects this malware as Trojan:Win32/Kovter!MSR, as the primary antivirus solution, and the backdoor was allowed to run.

An additional file, api-system.png, was identified to have similarities to api-msvc.dll. This file behaved like a DLL, had the same default export function, and also leveraged run keys for persistence.

Cobalt Strike Beacon

The threat actor leveraged Cobalt Strike to achieve persistence. The file sys.exe (SHA-256: 5f37b85687780c089607670040dbb3da2749b91b8adc0aa411fd6280b5fa7103), detected by Microsoft Defender Antivirus as Trojan:Win64/CobaltStrike!MSR, was determined to be a Cobalt Strike Beacon and was downloaded directly from the file sharing service temp[.]sh:

  • hxxps://temp[.]sh/szAyn/sys.exe

This beacon was configured to communicate with the following C2 channel:

  • 109.206.243[.]59:443

AnyDesk

Threat actors leverage legitimate remote access tools during intrusions to blend into a victim network. In this case, the threat actor utilized the remote administration tool AnyDesk, to maintain persistence and move laterally within the network. AnyDesk was installed as a service and was run from the following paths:

  • C:\systemtest\anydesk\AnyDesk.exe
  • C:\Program Files (x86)\AnyDesk\AnyDesk.exe
  • C:\Scripts\AnyDesk.exe

Successful connections were observed in the AnyDesk log file ad_svc.trace involving anonymizer service IP addresses linked to TOR and MULLVAD VPN, a common technique that threat actors employ to obscure their source IP ranges.

Reconnaissance

We found the presence and execution of the network discovery tool NetScan being used by the threat actor to perform network enumeration using the following file names:

  • netscan.exe (SHA-256:1b9badb1c646a19cdf101ac4f6fdd23bc61eaab8c9f925eb41848cea9fd0738e)
  • netapp.exe (SHA-256:1b9badb1c646a19cdf101ac4f6fdd23bc61eaab8c9f925eb41848cea9fd0738e)

Additionally, execution of AdFind (SHA-256: f157090fd3ccd4220298c06ce8734361b724d80459592b10ac632acc624f455e), an Active Directory reconnaissance tool, was observed in the environment.

Credential access

Evidence of likely usage of the credential theft tool Mimikatzwas also uncovered through the presence of a related log file mimikatz.log. Microsoft IR assesses that Mimikatz was likely used to attain credentials for privileged accounts.

Lateral movement

Using compromised domain admin credentials, the threat actor used Remote Desktop Protocol (RDP) and PowerShell remoting to obtain access to other servers in the environment, including domain controllers.

Data staging and exfiltration

In one server where Microsoft Defender Antivirus was installed, a suspicious file named explorer.exe was identified, detected as Trojan:Win64/WinGoObfusc.LK!MT, and quarantined. However, because tamper protection wasn’t enabled on this server, the threat actor was able to disable the Microsoft Defender Antivirus service, enabling the threat actor to run the file using the following command:

explorer.exe P@$$w0rd

After reverse engineering explorer.exe, we determined it to be ExByte, a GoLang-based tool developed and commonly used in BlackByte ransomware attacks for collection and exfiltration of files from victim networks. This tool is capable of enumerating files of interest across the network and, upon execution, creates a log file containing a list of files and associated metadata. Multiple log files were uncovered during the investigation in the path:

  • C:\Exchange\MSExchLog.log

Analysis of the binary revealed a list of file extensions that are targeted for enumeration.

Figure-2.-Binary-analysis-showing-file-extensions-enumerated-by-explorer.exe_
Figure 2. Binary analysis showing file extensions enumerated by explorer.exe

Forensic analysis identified a file named data.txt that was created and later deleted after ExByte execution. This file contained obfuscated credentials that ExByte leveraged to authenticate to the popular file sharing platform Mega NZ using the platform’s API at:

  • hxxps://g.api.mega.co[.]nz
Figure 3. Binary analysis showing explorer.exe functionality for connecting to file sharing service MEGA NZ

We also determined that this version of Exbyte was crafted specifically for the victim, as it contained a hardcoded device name belonging to the victim and an internal IP address.

ExByte execution flow

Upon execution, ExByte decodes several strings and checks if the process is running with privileged access by reading \\.\PHYSICALDRIVE0:

  • If this check fails, ShellExecuteW is invoked with the IpOperation parameter RunAs, which runs explorer.exe with elevated privileges.

After this access check, explorer.exe attempts to read the data.txt file in the current location:

  • If the text file doesn’t exist, it invokes a command for self-deletion and exits from memory:
C:\Windows\system32\cmd.exe /c ping 1.1.1.1 -n 10 > nul & Del <PATH>\explorer.exe /F /Q
  • If data.txt exists, explorer.exe reads the file, passes the buffer to Base64 decode function, and then decrypts the data using the key provided in the command line. The decrypted data is then parsed as JSON below and fed for login function:
{    “a”:”us0”,    “user”:”<CONTENT FROM data.txt>”}

Finally, it forms a URL for sign-in to the API of the service MEGA NZ:

  • hxxps://g.api.mega.co[.]nz/cs?id=1674017543

Data encryption and destruction

On devices where files were successfully encrypted, we identified suspicious executables, detected by Microsoft Defender Antivirus as Trojan:Win64/BlackByte!MSR, with the following names:

  • wEFT.exe
  • schillerized.exe

The files were analyzed and determined to be BlackByte 2.0 binaries responsible for encryption across the environment. The binaries require an 8-digit key number to encrypt files.

Two modes of execution were identified:

  • When the -s parameter is provided, the ransomware self-deletes and encrypts the machine it was executed on.
  • When the -a parameter is provided, the ransomware conducts enumeration and uses an Ultimate Packer Executable (UPX) packed version of PsExec to deploy across the network. Several domain admin credentials were hardcoded in the binary, facilitating the deployment of the binary across the network.

Depending on the switch (-s or -a), execution may create the following files:

  • C:\SystemData\M8yl89s7.exe (UPX-packed PsExec with a random name; SHA-256: ba3ec3f445683d0d0407157fda0c26fd669c0b8cc03f21770285a20b3133098f)
  • C:\SystemData\wEFT.exe (Additional BlackByte binary)
  • C:\SystemData\MsExchangeLog1.log (Log file)
  • C:\SystemData\rENEgOtiAtES (A vulnerable (CVE-2019-16098) driver RtCore64.sys used to evade detection by installed antivirus software; SHA-256: 01aa278b07b58dc46c84bd0b1b5c8e9ee4e62ea0bf7a695862444af32e87f1fd)
  • C:\SystemData\iHu6c4.ico (Random name – BlackBytes icon)
  • C:\SystemData\BB_Readme_file.txt (BlackByte ReadMe file)
  • C:\SystemData\skip_bypass.txt (Unknown)

BlackByte 2.0 ransomware capabilities

Some capabilities identified for the BlackByte 2.0 ransomware were:

  • Antivirus bypass
    • The file rENEgOtiAtES created matches RTCore64.sys, a vulnerable driver (CVE-2049-16098) that allows any authenticated user to read or write to arbitrary memory
    • The BlackByte binary then creates and starts a service named RABAsSaa calling rENEgOtiAtES, and exploits this service to evade detection by installed antivirus software
  • Process hollowing
    • Invokes svchost.exe, injects to it to complete device encryption, and self-deletes by executing the following command:
      • cmd.exe /c ping 1.1.1.1 -n 10 > Nul & Del “PATH_TO_BLACKBYTE” /F /Q
  • Modification / disabling of Windows Firewall
    • The following commands are executed to either modify existing Windows Firewall rules, or to disable Windows Firewall entirely:
      • cmd /c netsh advfirewall set allprofiles state off
      • cmd /c netsh advfirewall firewall set rule group=”File and Printer Sharing” new enable=Yes
      • cmd /c netsh advfirewall firewall set rule group=”Network Discovery” new enable=Yes
  • Modification of volume shadow copies
    • The following commands are executed to destroy volume shadow copies on the machine:
      • cmd /c vssadmin Resize ShadowStorge /For=B:\ /On=B:\ /MaxSize=401MB
      • cmd /c vssadmin Resize ShadowStorage /For=B:\ /On=B:\ /MaxSize=UNBOUNDED
  • Modification of registry keys/values
    • The following commands are executed to modify the registry, facilitating elevated execution on the device:
      • cmd /c reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System /v LocalAccountTokenFilterPolicy /t REG_DWORD /d 1 /f
      • cmd /c reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System /v EnableLinkedConnections /t REG_DWORD /d 1 /f
      • cmd /c reg add HKLM\\SYSTEM\\CurrentControlSet\\Control\\FileSystem /v LongPathsEnabled /t REG_DWORD /d 1 /f
  • Additional functionality
    • Ability to terminate running services and processes
    • Ability to enumerate and mount volumes and network shares for encryption
    • Perform anti-forensics technique timestomping (sets the file time of encrypted and ReadMe file to 2000-01-01 00:00:00)
    • Ability to perform anti-debugging techniques

Recommendations

To guard against BlackByte ransomware attacks, Microsoft recommends the following:

  • Ensure that you have a patch management process in place and that patching for internet-exposed devices is prioritized; Understand and assess your cyber exposure with advanced vulnerability and configuration assessment tools like Microsoft Defender Vulnerability Management
  • Implement an endpoint detection and response (EDR) solution like Microsoft Defender for Endpoint to gain visibility into malicious activity in real time across your network
  • Ensure antivirus protections are updated regularly by turning on cloud-based protection and that your antivirus solution is configured to block threats
  • Enable tamper protection to prevent components of Microsoft Defender Antivirus from being disabled
  • Block inbound traffic from IPs specified in the indicators of compromise section of this report
  • Block inbound traffic from TOR exit nodes
  • Block inbound access from unauthorized public VPN services
  • Restrict administrative privileges to prevent authorized system changes

Conclusion

BlackByte ransomware attacks target organizations that have infrastructure with unpatched vulnerabilities.  As outlined in the Microsoft Digital Defense Report, common security hygiene practices, including keeping systems up to date, could protect against 98% of attacks.

As new tools are being developed by threat actors, a modern threat protection solution like Microsoft 365 Defender is necessary to prevent and detect the multiple techniques used in the attack chain, especially where the threat actor attempts to evade or disable specific defense mechanisms. Hunting for malicious behavior should be performed regularly in order to detect potential attacks that could evade detections, as a complementary activity for continuous monitoring from security tools alerts and incidents.

To understand how Microsoft can help you secure your network and respond to network compromise, visit https://aka.ms/MicrosoftIR.

Microsoft 365 Defender detections

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects this threat as the following malware:

  • Trojan:Win32/Kovter!MSR
  • Trojan:Win64/WinGoObfusc.LK!MT
  • Trojan:Win64/BlackByte!MSR
  • HackTool:Win32/AdFind!MSR
  • Trojan:Win64/CobaltStrike!MSR

Microsoft Defender for Endpoint

The following alerts might indicate threat activity related to this threat. Note, however, that these alerts can be also triggered by unrelated threat activity.

  • ‘CVE-2021-31207’ exploit malware was detected
  • An active ‘NetShDisableFireWall’ malware in a command line was prevented from executing.
  • Suspicious registry modification.
  • ‘Rtcore64’ hacktool was detected
  • Possible ongoing hands-on-keyboard activity (Cobalt Strike)
  • A file or network connection related to a ransomware-linked emerging threat activity group detected
  • Suspicious sequence of exploration activities
  • A process was injected with potentially malicious code
  • Suspicious behavior by cmd.exe was observed
  • ‘Blackbyte’ ransomware was detected

Microsoft Defender Vulnerability Management

Microsoft Defender Vulnerability Management surfaces devices that may be affected by the following vulnerabilities used in this threat:

  • CVE-2021-34473
  • CVE-2021-34523
  • CVE-2021-31207
  • CVE-2019-16098

Hunting queries

Microsoft 365 Defender

Microsoft 365 Defender customers can run the following query to find related activity in their networks:

ProxyShell web shell creation events

DeviceProcessEvents| where ProcessCommandLine has_any ("ExcludeDumpster","New-ExchangeCertificate") and ProcessCommandLine has_any ("-RequestFile","-FilePath")

Suspicious vssadmin events

DeviceProcessEvents| where ProcessCommandLine has_any ("vssadmin","vssadmin.exe") and ProcessCommandLine has "Resize ShadowStorage" and ProcessCommandLine has_any ("MaxSize=401MB"," MaxSize=UNBOUNDED")

Detection for persistence creation using Registry Run keys

DeviceRegistryEvents | where ActionType == "RegistryValueSet" | where (RegistryKey has @"Microsoft\Windows\CurrentVersion\RunOnce" and RegistryValueName == "MsEdgeMsE")      or (RegistryKey has @"Microsoft\Windows\CurrentVersion\RunOnceEx" and RegistryValueName == "MsEdgeMsE")    or (RegistryKey has @"Microsoft\Windows\CurrentVersion\Run" and RegistryValueName == "MsEdgeMsE")| where RegistryValueData startswith @"rundll32"| where RegistryValueData endswith @".dll,Default"| project Timestamp,DeviceId,DeviceName,ActionType,RegistryKey,RegistryValueName,RegistryValueData

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace. More details on the Content Hub can be found here:  https://learn.microsoft.com/azure/sentinel/sentinel-solutions-deploy

Microsoft Sentinel also has a range of detection and threat hunting content that customers can use to detect the post exploitation activity detailed in this blog in addition to Microsoft 365 Defender detections list above.

Indicators of compromise

The table below shows IOCs observed during our investigation. We encourage our customers to investigate these indicators in their environments and implement detections and protections to identify past related activity and prevent future attacks against their systems.

IndicatorTypeDescription
4a066569113a569a6feb8f44257ac8764ee8f2011765009fdfd82fe3f4b92d3eSHA-256api-msvc.dll (Backdoor installed through RunKeys)
5f37b85687780c089607670040dbb3da2749b91b8adc0aa411fd6280b5fa7103SHA-256sys.exe (Cobalt Strike Beacon)
01aa278b07b58dc46c84bd0b1b5c8e9ee4e62ea0bf7a695862444af32e87f1fdSHA-256rENEgOtiAtES (Vulnerable driver RtCore64.sys created by BlackByte binary)
ba3ec3f445683d0d0407157fda0c26fd669c0b8cc03f21770285a20b3133098fSHA-256[RANDOM_NAME].exe (UPX Packed PsExec created by BlackByte binary)
1b9badb1c646a19cdf101ac4f6fdd23bc61eaab8c9f925eb41848cea9fd0738eSHA-256“netscan.exe”, “netapp.exe (Netscan network discovery tool)
f157090fd3ccd4220298c06ce8734361b724d80459592b10ac632acc624f455eSHA-256AdFind.exe (Active Directory information gathering tool)
hxxps://myvisit[.]alteksecurity[.]org/tURLC2 for backdoor api-msvc.dll
hxxps://temp[.]sh/szAyn/sys.exeURLDownload URL for sys.exe
109.206.243[.]59IP AddressC2 for Cobalt Strike Beacon sys.exe
185.225.73[.]244IP AddressOriginating IP address for ProxyShell exploitation and web shell interaction

NOTE: These indicators should not be considered exhaustive for this observed activity.

Appendix

File extensions targeted by BlackByte binary for encryption:

.4dd.4dl.accdb.accdc.accde.accdr.accdt.accft
.adb.ade.adf.adp.arc.ora.alf.ask
.btr.bdf.cat.cdb.ckp.cma.cpd.dacpac
.dad.dadiagrams.daschema.db.db-shm.db-wal.db3.dbc
.dbf.dbs.dbt.dbv. dbx. dcb. dct. dcx
. ddl. dlis. dp1. dqy. dsk. dsn. dtsx. dxl
. eco. ecx. edb. epim. exb. fcd. fdb. fic
. fmp. fmp12. fmpsl. fol.fp3. fp4. fp5. fp7
. fpt. frm. gdb. grdb. gwi. hdb. his. ib
. idb. ihx. itdb. itw. jet. jtx. kdb. kexi
. kexic. kexis. lgc. lwx. maf. maq. mar. masmav
. mdb. mpd. mrg. mud. mwb. myd. ndf. nnt
. nrmlib. ns2. ns3. ns4. nsf. nv. nv2. nwdb
. nyf. odb. ogy. orx. owc. p96. p97. pan
. pdb. pdm. pnz. qry. qvd. rbf. rctd. rod
. rodx. rpd. rsd. sas7bdat. sbf. scx. sdb. sdc
. sdf. sis. spg. sql. sqlite. sqlite3. sqlitedb. te
. temx. tmd. tps. trc. trm. udb. udl. usr
. v12. vis. vpd. vvv. wdb. wmdb. wrk. xdb
. xld. xmlff. abcddb. abs. abx. accdw. and. db2
. fm5. hjt. icg. icr. kdb. lut. maw. mdn
. mdt       

Shared folders targeted for encryption (Example: \\[IP address]\Downloads):

UsersBackupVeeamhomeshome
mediacommonStorage ServerPublicWeb
ImagesDownloadsBackupDataActiveBackupForBusinessBackups
NAS-DCDCBACKUPDirectorFilesshare 

File extensions ignored:

.ini.url.msilog.log.ldf.lock.theme.msi
.sys.wpx.cpl.adv.msc.scr.key.ico
.dll.hta.deskthemepack.nomedia.msu.rtp.msp.idx
.ani.386.diagcfg.bin.mod.ics.com.hlp
 .spl.nls.cab.exe.diagpkg.icl.ocx.rom
.prf.thempack.msstyles.icns.mpa.drv.cur.diagcab
.cmd.shs      

Folders ignored:

windowsbootprogram files (x86)windows.oldprogramdata
intelbitdefendertrend microwindowsappsappdata
application datasystem volume informationperflogsmsocache 

Files ignored:

bootnxtntldrbootmgrthumbs.db
ntuser.datbootsect.bakautoexec.baticoncache.db
bootfont.bin   

Processes terminated:

teracopyteamviewernsservicensctrluranium
processhackerprocmonpestudioprocmon64x32dbg
x64dbgcff explorerprocexppslisttcpview
tcpvcondbgviewrammaprammap64vmmap
ollydbgautorunsautorunsscfilemonregmon
idaqidaq64immunitydebuggerwiresharkdumpcap
hookexplorerimportrecpetoolslordpesysinspector
proc_analyzersysanalyzersniff_hitwindbgjoeboxcontrol
joeboxserverresourcehackerfiddlerhttpdebuggerdumpit
rammaprammap64vmmapagntsvccntaosmgr
dbeng50dbsnmpencsvcinfopathisqlplussvc
mbamtraymsaccessmsftesqlmspubmydesktopqos
mydesktopservicemysqldmysqld-ntmysqld-optNtrtscan
ocautoupdsocommocssdonenoteoracle
outlookPccNTMonpowerpntsqbcoreservicesql
sqlagentsqlbrowsersqlservrsqlwritersteam
synctimetbirdconfigthebatthebat64thunderbird
tmlistenvisiowinwordwordpadxfssvccon
zoolz    

Services terminated:

CybereasonRansomFreevnetdbpcdSamSsTeraCopyService
msftesqlnsServiceklvssbridge64vapiendpointShMonitor
SmcinstSmcServiceSntpServicesvcGenericHostSwi_
TmCCSFtmlistenTrueKeyTrueKeySchedulerTrueKeyServiceHelper
WRSVCMcTaskManagerOracleClientCache80mfefirewbengine
mfemmsRESvcmfevtpsacsvrSAVAdminService
SepMasterServicePDVFSServiceESHASRVSDRSVCFA_Scheduler
KAVFSKAVFS_KAVFSGTkavfsslpklnagentmacmnsvc
masvcMBAMServiceMBEndpointAgentMcShieldaudioendpointbuilder
AntivirusAVPDCAgentbedbgEhttpSrv
MMSekrnEPSecurityServiceEPUpdateServicentrtscan
EsgShKernelmsexchangeadtopologyAcrSch2SvcMSOLAP$TPSAMAIntel(R) PROSet Monitoring
msexchangeimap4ARSMunistoresvc_1af40aReportServer$TPSMSOLAP$SYSTEM_BGC
W3SvcMSExchangeSRSReportServer$TPSAMAZoolz 2 ServiceMSOLAP$TPS
aphidmonitorserviceSstpSvcMSExchangeMTAReportServer$SYSTEM_BGCSymantec System Recovery
UI0DetectMSExchangeSAMSExchangeISReportServerMsDtsServer110
POP3SvcMSExchangeMGMTSMTPSvcMsDtsServerIisAdmin
MSExchangeESEraserSvc11710Enterprise Client ServiceMsDtsServer100NetMsmqActivator
stc_raw_agentVSNAPVSSPDVFSServiceAcrSch2SvcAcronis
CASAD2DWebSvcCAARCUpdateSvcMcAfeeavpsusDLPAgentService
mfewcBMR Boot ServiceDefWatchccEvtMgrccSetMgr
SavRoamRTVsc screenconnectransomsqltelemetrymsexch
vncteamviewermsolapveeambackup
sqlmemtasvsssophossvc$
mepocswuauserv   

Drivers that Blackbyte can bypass:

360avflt.sys360box.sys360fsflt.sys360qpesv.sys5nine.cbt.sys
a2acc.sysa2acc64.sysa2ertpx64.sysa2ertpx86.sysa2gffi64.sys
a2gffx64.sysa2gffx86.sysaaf.sysaalprotect.sysabrpmon.sys
accessvalidator.sysacdriver.sysacdrv.sysadaptivaclientcache32.sysadaptivaclientcache64.sys
adcvcsnt.sysadspiderdoc.sysaefilter.sysagentrtm64.sysagfsmon.sys
agseclock.sysagsyslock.sysahkamflt.sysahksvpro.sysahkusbfw.sys
ahnrghlh.sysaictracedrv_am.sysairship-filter.sysajfsprot.sysalcapture.sys
alfaff.sysaltcbt.sysamfd.sysamfsm.sysamm6460.sys
amm8660.sysamsfilter.sysamznmon.sysantileakfilter.sysantispyfilter.sys
anvfsm.sysapexsqlfilterdriver.sysappcheckd.sysappguard.sysappvmon.sys
arfmonnt.sysarta.sysarwflt.sysasgard.sysashavscan.sys
asiofms.sysaswfsblk.sysaswmonflt.sysaswsnx.sysaswsp.sys
aszfltnt.sysatamptnt.sysatc.sysatdragent.sysatdragent64.sys
aternityregistryhook.sysatflt.sysatrsdfw.sysauditflt.sysaupdrv.sys
avapsfd.sysavc3.sysavckf.sysavfsmn.sysavgmfi64.sys
avgmfrs.sysavgmfx64.sysavgmfx86.sysavgntflt.sysavgtpx64.sys
avgtpx86.sysavipbb.sysavkmgr.sysavmf.sysawarecore.sys
axfltdrv.sysaxfsysmon.sysayfilter.sysb9kernel.sysbackupreader.sys
bamfltr.sysbapfecpt.sysbbfilter.sysbd0003.sysbddevflt.sys
bdfiledefend.sysbdfilespy.sysbdfm.sysbdfsfltr.sysbdprivmon.sys
bdrdfolder.sysbdsdkit.sysbdsfilter.sysbdsflt.sysbdsvm.sys
bdsysmon.sysbedaisy.sysbemk.sysbfaccess.sysbfilter.sys
bfmon.sysbhdrvx64.sysbhdrvx86.sysbhkavka.sysbhkavki.sys
bkavautoflt.sysbkavsdflt.sysblackbirdfsa.sysblackcat.sysbmfsdrv.sys
bmregdrv.sysboscmflt.sysbosfsfltr.sysbouncer.sysboxifier.sys
brcow_x_x_x_x.sysbrfilter.sysbrnfilelock.sysbrnseclock.sysbrowsermon.sys
bsrfsflt.sysbssaudit.sysbsyaed.sysbsyar.sysbsydf.sys
bsyirmf.sysbsyrtm.sysbsysp.sysbsywl.sysbwfsdrv.sys
bzsenspdrv.sysbzsenth.sysbzsenyaradrv.syscaadflt.syscaavfltr.sys
cancelsafe.syscarbonblackk.syscatflt.syscatmf.syscbelam.sys
cbfilter20.syscbfltfs4.syscbfsfilter2017.syscbfsfilter2020.syscbsampledrv.sys
cdo.syscdrrsflt.syscdsgfsfilter.syscentrifyfsf.syscfrmd.sys
cfsfdrvcgwmf.syschange.syschangelog.syschemometecfilter.sys
ciscoampcefwdriver.sysciscoampheurdriver.sysciscosam.sysclumiochangeblockmf.syscmdccav.sys
cmdcwagt.syscmdguard.syscmdmnefs.syscmflt.syscode42filter.sys
codex.sysconduantfsfltr.syscontainermonitor.syscpavfilter.syscpavkernel.sys
cpepmon.syscrexecprev.syscrncache32.syscrncache64.syscrnsysm.sys
cruncopy.syscsaam.syscsaav.syscsacentr.syscsaenh.sys
csagent.syscsareg.syscsascr.syscsbfilter.syscsdevicecontrol.sys
csfirmwareanalysis.syscsflt.syscsmon.syscssdlp.sysctamflt.sys
ctifile.sysctinet.sysctrpamon.sysctx.syscvcbt.sys
cvofflineflt32.syscvofflineflt64.syscvsflt.syscwdriver.syscwmem2k64.sys
cybkerneltracker.syscylancedrv64.syscyoptics.syscyprotectdrv32.syscyprotectdrv64.sys
cytmon.syscyverak.syscyvrfsfd.syscyvrlpc.syscyvrmtgn.sys
datanow_driver.sysdattofsf.sysda_ctl.sysdcfafilter.sysdcfsgrd.sys
dcsnaprestore.sysdeepinsfs.sysdelete_flt.sysdevmonminifilter.sysdfmfilter.sys
dgedriver.sysdgfilter.sysdgsafe.sysdhwatchdog.sysdiflt.sys
diskactmon.sysdkdrv.sysdkrtwrt.sysdktlfsmf.sysdnafsmonitor.sys
docvmonk.sysdocvmonk64.sysdpmfilter.sysdrbdlock.sysdrivesentryfilterdriver2lite.sys
drsfile.sysdrvhookcsmf.sysdrvhookcsmf_amd64.sysdrwebfwflt.sysdrwebfwft.sys
dsark.sysdsdriver.sysdsfemon.sysdsflt.sysdsfltfs.sys
dskmn.sysdtdsel.sysdtpl.sysdwprot.sysdwshield.sys
dwshield64.syseamonm.syseaseflt.syseasyanticheat.syseaw.sys
ecatdriver.sysedevmon.sysednemfsfilter.sysedrdrv.sysedrsensor.sys
edsigk.syseectrl.syseetd32.syseetd64.syseeyehv.sys
eeyehv64.sysegambit.sysegfilterk.sysegminflt.sysegnfsflt.sys
ehdrv.syselock2fsctldriver.sysemxdrv2.sysenigmafilemondriver.sysenmon.sys
epdrv.sysepfw.sysepfwwfp.sysepicfilter.sysepklib.sys
epp64.sysepregflt.syseps.sysepsmn.sysequ8_helper.sys
eraser.sysesensor.sysesprobe.sysestprmon.sysestprp.sys
estregmon.sysestregp.sysestrkmon.sysestrkr.syseventmon.sys
evmf.sysevscase.sysexcfs.sysexprevdriver.sysfailattach.sys
failmount.sysfam.sysfangcloud_autolock_driver.sysfapmonitor.sysfarflt.sys
farwflt.sysfasdriverfcnotify.sysfcontrol.sysfdrtrace.sys
fekern.sysfencry.sysffcfilt.sysffdriver.sysfildds.sys
filefilter.sysfileflt.sysfileguard.sysfilehubagent.sysfilemon.sys
filemonitor.sysfilenamevalidator.sysfilescan.sysfilesharemon.sysfilesightmf.sys
filesystemcbt.sysfiletrace.sysfile_monitor.sysfile_protector.sysfile_tracker.sys
filrdriver.sysfim.sysfiometer.sysfiopolicyfilter.sysfjgsdis2.sys
fjseparettifilterredirect.sysflashaccelfs.sysflightrecorder.sysfltrs329.sysflyfs.sys
fmdrive.sysfmkkc.sysfmm.sysfortiaptfilter.sysfortimon2.sys
fortirmon.sysfortishield.sysfpav_rtp.sysfpepflt.sysfsafilter.sys
fsatp.sysfsfilter.sysfsgk.sysfshs.sysfsmon.sys
fsmonitor.sysfsnk.sysfsrfilter.sysfstrace.sysfsulgk.sys
fsw31rj1.sysgagsecurity.sysgbpkm.sysgcffilter.sysgddcv.sys
gefcmp.sysgemma.sysgeprotection.sysggc.sysgibepcore.sys
gkff.sysgkff64.sysgkpfcb.sysgkpfcb64.sysgofsmf.sys
gpminifilter.sysgroundling32.sysgroundling64.sysgtkdrv.sysgumhfilter.sys
gzflt.syshafsnk.syshbflt.syshbfsfltr.syshcp_kernel_acq.sys
hdcorrelatefdrv.syshdfilemon.syshdransomoffdrv.syshdrfs.sysheimdall.sys
hexisfsmonitor.syshfileflt.syshiofs.syshmpalert.syshookcentre.sys
hooksys.syshpreg.syshsmltmon.syshsmltwhl.syshssfwhl.sys
hvlminifilter.sysibr2fsk.sysiccfileioad.sysiccfilteraudit.sysiccfiltersc.sys
icfclientflt.sysicrlmonitor.sysiderafilterdriver.sysielcp.sysieslp.sys
ifs64.sysignis.sysiguard.sysiiscache.sysikfilesec.sys
im.sysimffilter.sysimfilter.sysimgguard.sysimmflex.sys
immunetprotect.sysimmunetselfprotect.sysinisbdrv64.sysino_fltr.sysintelcas.sys
intmfs.sysinuse.sysinvprotectdrv.sysinvprotectdrv64.sysionmonwdrv.sys
iothorfs.sysipcomfltr.sysipfilter.sysiprotect.sysiridiumswitch.sys
irongatefd.sysisafekrnl.sysisafekrnlmon.sysisafermonisecureflt.sys
isedrv.sysisfpdrv.sysisirmfmon.sysisregflt.sysisregflt64.sys
issfltr.sysissregistry.sysit2drv.sysit2reg.sysivappmon.sys
iwdmfs.sysiwhlp.sysiwhlp2.sysiwhlpxp.sysjdppsf.sys
jdppwf.sysjkppob.sysjkppok.sysjkpppf.sysjkppxk.sys
k7sentry.syskavnsi.syskawachfsminifilter.syskc3.syskconv.sys
kernelagent32.syskewf.syskfac.syskfileflt.syskisknl.sys
klam.sysklbg.sysklboot.syskldback.syskldlinf.sys
kldtool.sysklfdefsf.sysklflt.sysklgse.sysklhk.sys
klif.sysklifaa.sysklifks.sysklifsm.sysklrsps.sys
klsnsr.sysklupd_klif_arkmon.syskmkuflt.syskmnwch.syskmxagent.sys
kmxfile.syskmxsbx.sysksfsflt.sysktfsfilter.sysktsyncfsflt.sys
kubwksp.syslafs.syslbd.syslbprotect.syslcgadmon.sys
lcgfile.syslcgfilemon.syslcmadmon.syslcmfile.syslcmfilemon.sys
lcmprintmon.sysldsecdrv.syslibwamf.syslivedrivefilter.sysllfilter.sys
lmdriver.syslnvscenter.syslocksmith.syslragentmf.syslrtp.sys
magicbackupmonitor.sysmagicprotect.sysmajoradvapi.sysmarspy.sysmaxcryptmon.sys
maxproc64.sysmaxprotector.sysmbae64.sysmbam.sysmbamchameleon.sys
mbamshuriken.sysmbamswissarmy.sysmbamwatchdog.sysmblmon.sysmcfilemon32.sys
mcfilemon64.sysmcstrg.sysmearwfltdriver.sysmessage.sysmfdriver.sys
mfeaack.sysmfeaskm.sysmfeavfk.sysmfeclnrk.sysmfeelamk.sys
mfefirek.sysmfehidk.sysmfencbdc.sysmfencfilter.sysmfencoas.sys
mfencrk.sysmfeplk.sysmfewfpk.sysminiicpt.sysminispy.sys
minitrc.sysmlsaff.sysmmpsy32.sysmmpsy64.sysmonsterk.sys
mozycorpfilter.sysmozyenterprisefilter.sysmozyentfilter.sysmozyhomefilter.sysmozynextfilter.sys
mozyoemfilter.sysmozyprofilter.sysmpfilter.sysmpkernel.sysmpksldrv.sys
mpxmon.sysmracdrv.sysmrxgoogle.sysmscan-rt.sysmsiodrv4.sys
msixpackagingtoolmonitor.sysmsnfsflt.sysmspy.sysmssecflt.sysmtsvcdf.sys
mumdi.sysmwac.sysmwatcher.sysmwfsmfltr.sysmydlpmf.sys
namechanger.sysnanoavmf.sysnaswsp.sysndgdmk.sysneokerbyfilter
netaccctrl.sysnetaccctrl64.sysnetguard.sysnetpeeker.sysngscan.sys
nlcbhelpi64.sysnlcbhelpx64.sysnlcbhelpx86.sysnlxff.sysnmlhssrv01.sys
nmpfilter.sysnntinfo.sysnovashield.sysnowonmf.sysnpetw.sys
nprosec.sysnpxgd.sysnpxgd64.sysnravwka.sysnrcomgrdka.sys
nrcomgrdki.sysnregsec.sysnrpmonka.sysnrpmonki.sysnsminflt.sys
nsminflt64.sysntest.sysntfsf.sysntguard.sysntps_fa.sys
nullfilter.sysnvcmflt.sysnvmon.sysnwedriver.sysnxfsmon.sys
nxrmflt.sysoadevice.sysoavfm.sysoczminifilter.sysodfsfilter.sys
odfsfimfilter.sysodfstokenfilter.sysoffsm.sysomfltlh.sysosiris.sys
ospfile_mini.sysospmon.sysparity.syspassthrough.syspath8flt.sys
pavdrv.syspcpifd.syspctcore.syspctcore64.syspdgenfam.sys
pecfilter.sysperfectworldanticheatsys.syspervac.syspfkrnl.syspfracdrv.sys
pgpfs.syspgpwdefs.sysphantomd.sysphdcbtdrv.syspkgfilter.sys
pkticpt.sysplgfltr.sysplpoffdrv.syspointguardvista64f.syspointguardvistaf.sys
pointguardvistar32.syspointguardvistar64.sysprocmon11.sysproggerdriver.syspsacfileaccessfilter.sys
pscff.syspsgdflt.syspsgfoctrl.syspsinfile.syspsinproc.sys
psisolator.syspwipf6.syspwprotect.syspzdrvxp.sysqdocumentref.sys
qfapflt.sysqfilter.sysqfimdvr.sysqfmon.sysqminspec.sys
qmon.sysqqprotect.sysqqprotectx64.sysqqsysmon.sysqqsysmonx64.sys
qutmdrv.sysranpodfs.sysransomdefensexxx.sysransomdetect.sysreaqtor.sys
redlight.sysregguard.sysreghook.sysregmonex.sysrepdrv.sys
repmon.sysrevefltmgr.sysreveprocprotection.sysrevonetdriver.sysrflog.sys
rgnt.sysrmdiskmon.sysrmphvmonitor.sysrpwatcher.sysrrmon32.sys
rrmon64.sysrsfdrv.sysrsflt.sysrspcrtw.sysrsrtw.sys
rswctrl.sysrswmon.sysrtologon.sysrtw.sysruaff.sys
rubrikfileaudit.sysruidiskfs.sysruieye.sysruifileaccess.sysruimachine.sys
ruiminispy.sysrvsavd.sysrvsmon.sysrw7fsflt.sysrwchangedrv.sys
ryfilter.sysryguard.syssafe-agent.syssafsfilter.syssagntflt.sys
sahara.syssakfile.syssakmfile.syssamflt.syssamsungrapidfsfltr.sys
sanddriver.syssanta.syssascan.syssavant.syssavonaccess.sys
scaegis.sysscauthfsflt.sysscauthiodrv.sysscensemon.sysscfltr.sys
scifsflt.syssciptflt.syssconnect.sysscred.syssdactmon.sys
sddrvldr.syssdvfilter.sysse46filter.syssecdodriver.syssecone_filemon10.sys
secone_proc10.syssecone_reg10.syssecone_usb.syssecrmm.syssecufile.sys
secure_os.syssecure_os_mf.syssecurofsd_x64.syssefo.syssegf.sys
segiraflt.syssegmd.syssegmp.syssentinelmonitor.sysserdr.sys
serfs.syssfac.syssfavflt.syssfdfilter.syssfpmonitor.sys
sgresflt.sysshdlpmedia.sysshdlpsf.syssheedantivirusfilterdriver.syssheedselfprotection.sys
shldflt.syssi32_file.syssi64_file.syssieflt.syssimrep.sys
sisipsfilefiltersk.sysskyamdrv.sysskyrgdrv.sysskywpdrv.sys
slb_guard.syssld.syssmbresilfilter.syssmdrvnt.syssndacs.sys
snexequota.syssnilog.syssnimg.syssnscore.syssnsrflt.sys
sodatpfl.syssoftfilterxxx.syssoidriver.syssolitkm.syssonar.sys
sophosdt2.syssophosed.syssophosntplwf.syssophossupport.sysspbbcdrv.sys
spellmon.sysspider3g.sysspiderg3.sysspiminifilter.sysspotlight.sys
sprtdrv.syssqlsafefilterdriver.syssrminifilterdrv.syssrtsp.syssrtsp64.sys
srtspit.sysssfmonm.sysssrfsf.sysssvhook.sysstcvsm.sys
stegoprotect.sysstest.sysstflt.sysstkrnl64.sysstoragedrv.sys
strapvista.sysstrapvista64.syssvcbt.sysswcommfltr.sysswfsfltr.sys
swfsfltrv2.sysswin.syssymafr.syssymefa.syssymefa64.sys
symefasi.syssymevent.syssymevent64x86.syssymevnt.syssymevnt32.sys
symhsm.syssymrg.syssysdiag.syssysmon.syssysmondrv.sys
sysplant.sysszardrv.sysszdfmdrv.sysszdfmdrv_usb.sysszedrdrv.sys
szpcmdrv.systaniumrecorderdrv.systaobserveflt.systbfsfilt.systbmninifilter.sys
tbrdrv.systdevflt.systedrdrv.systenrsafe2.systesmon.sys
tesxnginx.systesxporter.systffregnt.systfsflt.systgfsmf.sys
thetta.systhfilter.systhreatstackfim.systkdac2k.systkdacxp.sys
tkdacxp64.systkfsavxp.systkfsavxp64.systkfsft.systkfsft64.sys
tkpcftcb.systkpcftcb64.systkpl2k.systkpl2k64.systksp2k.sys
tkspxp.systkspxp64.systmactmon.systmcomm.systmesflt.sys
tmevtmgr.systmeyes.systmfsdrv2.systmkmsnsr.systmnciesc.sys
tmpreflt.systmumh.systmums.systmusa.systmxpflt.sys
topdogfsfilt.systrace.systrfsfilter.systritiumfltr.systrpmnflt.sys
trufos.systrustededgeffd.systsifilemon.systss.syststfilter.sys
tstfsredir.syststregredir.systsyscare.systvdriver.systvfiltr.sys
tvmfltr.systvptfile.systvspfltr.systwbdcfilter.systxfilefilter.sys
txregmon.sysuamflt.sysucafltdriver.sysufdfilter.sysuncheater.sys
upguardrealtime.sysusbl_ifsfltr.sysusbpdh.sysusbtest.sysuvmcifsf.sys
uwfreg.sysuwfs.sysv3flt2k.sysv3flu2k.sysv3ift2k.sys
v3iftmnt.sysv3mifint.sysvarpffmon.sysvast.sysvcdriv.sys
vchle.sysvcmfilter.sysvcreg.sysveeamfct.sysvfdrv.sys
vfilefilter.sysvfpd.sysvfsenc.sysvhddelta.sysvhdtrack.sys
vidderfs.sysvintmfs.sysvirtfile.sysvirtualagent.sysvk_fsf.sys
vlflt.sysvmwvvpfsd.sysvollock.sysvpdrvnt.sysvradfil2.sys
vraptdef.sysvraptflt.sysvrarnflt.sysvrbbdflt.sysvrexpdrv.sys
vrfsftm.sysvrfsftmx.sysvrnsfilter.sysvrsdam.sysvrsdcore.sys
vrsdetri.sysvrsdetrix.sysvrsdfmx.sysvrvbrfsfilter.sysvsepflt.sys
vsscanner.sysvtsysflt.sysvxfsrep.syswats_se.syswbfilter.sys
wcsdriver.syswdcfilter.syswdfilter.syswdocsafe.syswfp_mrt.sys
wgfile.syswhiteshield.syswindbdrv.syswindd.syswinfladrv.sys
winflahdrv.syswinfldrv.syswinfpdrv.syswinload.syswinteonminifilter.sys
wiper.syswlminisecmod.syswntgpdrv.syswraekernel.syswrcore.sys
wrcore.x64.syswrdwizfileprot.syswrdwizregprot.syswrdwizscanner.syswrdwizsecure64.sys
wrkrn.syswrpfv.syswsafefilter.syswscm.sysxcpl.sys
xendowflt.sysxfsgk.sysxhunter1.sysxhunter64.sysxiaobaifs.sys
xiaobaifsr.sysxkfsfd.sysxoiv8x64.sysxomfcbt8x64.sysyahoostorage.sys
yfsd.sysyfsd2.sysyfsdr.sysyfsrd.syszampit_ml.sys
zesfsmf.syszqfilter.syszsfprt.syszwasatom.syszwpxesvr.sys
zxfsfilt.syszyfm.syszzpensys.sys  

Further reading

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on Twitter at https://twitter.com/MsftSecIntel.

Source :
https://www.microsoft.com/en-us/security/blog/2023/07/06/the-five-day-job-a-blackbyte-ransomware-intrusion-case-study/

8 Essential Tips for Data Protection and Cybersecurity in Small Businesses

Michelle Quill — June 6, 2023

Small businesses are often targeted by cybercriminals due to their lack of resources and security measures. Protecting your business from cyber threats is crucial to avoid data breaches and financial losses.

Why is cyber security so important for small businesses?

Small businesses are particularly in danger of cyberattacks, which can result in financial loss, data breaches, and damage to IT equipment. To protect your business, it’s important to implement strong cybersecurity measures.

Here are some tips to help you get started:

One important aspect of data protection and cybersecurity for small businesses is controlling access to customer lists. It’s important to limit access to this sensitive information to only those employees who need it to perform their job duties. Additionally, implementing strong password policies and regularly updating software and security measures can help prevent unauthorized access and protect against cyber attacks. Regular employee training on cybersecurity best practices can also help ensure that everyone in the organization is aware of potential threats and knows how to respond in the event of a breach.

When it comes to protecting customer credit card information in small businesses, there are a few key tips to keep in mind. First and foremost, it’s important to use secure payment processing systems that encrypt sensitive data. Additionally, it’s crucial to regularly update software and security measures to stay ahead of potential threats. Employee training and education on cybersecurity best practices can also go a long way in preventing data breaches. Finally, having a plan in place for responding to a breach can help minimize the damage and protect both your business and your customers.

Small businesses are often exposed to cyber attacks, making data protection and cybersecurity crucial. One area of particular concern is your company’s banking details. To protect this sensitive information, consider implementing strong passwords, two-factor authentication, and regular monitoring of your accounts. Additionally, educate your employees on safe online practices and limit access to financial information to only those who need it. Regularly backing up your data and investing in cybersecurity software can also help prevent data breaches.

Small businesses are often at high risk of cyber attacks due to their limited resources and lack of expertise in cybersecurity. To protect sensitive data, it is important to implement strong passwords, regularly update software and antivirus programs, and limit access to confidential information.

It is also important to have a plan in place in case of a security breach, including steps to contain the breach and notify affected parties. By taking these steps, small businesses can better protect themselves from cyber threats and ensure the safety of their data.

Tips for protecting your small business from cyber threats and data breaches are crucial in today’s digital age. One of the most important steps is to educate your employees on cybersecurity best practices, such as using strong passwords and avoiding suspicious emails or links.

It’s also important to regularly update your software and systems to ensure they are secure and protected against the latest threats. Additionally, implementing multi-factor authentication and encrypting sensitive data can add an extra layer of protection. Finally, having a plan in place for responding to a cyber-attack or data breach can help minimize the damage and get your business back on track as quickly as possible.

Small businesses are attackable to cyber-attacks and data breaches, which can have devastating consequences. To protect your business, it’s important to implement strong cybersecurity measures. This includes using strong passwords, regularly updating software and systems, and training employees on how to identify and avoid phishing scams.

It’s also important to have a data backup plan in place and to regularly test your security measures to ensure they are effective. By taking these steps, you can help protect your business from cyber threats and safeguard your valuable data.

To protect against cyber threats, it’s important to implement strong data protection and cybersecurity measures. This can include regularly updating software and passwords, using firewalls and antivirus software, and providing employee training on safe online practices. Additionally, it’s important to have a plan in place for responding to a cyber attack, including backing up data and having a designated point person for handling the situation.

In today’s digital age, small businesses must prioritize data protection and cybersecurity to safeguard their operations and reputation. With the rise of remote work and cloud-based technology, businesses are more vulnerable to cyber attacks than ever before. To mitigate these risks, it’s crucial to implement strong security measures for online meetings, advertising, transactions, and communication with customers and suppliers. By prioritizing cybersecurity, small businesses can protect their data and prevent unauthorized access or breaches.

Here are 8 essential tips for data protection and cybersecurity in small businesses.

8 Essential Tips for Data Protection and Cybersecurity in Small Businesses

1. Train Your Employees on Cybersecurity Best Practices

Your employees are the first line of defense against cyber threats. It’s important to train them on cybersecurity best practices to ensure they understand the risks and how to prevent them. This includes creating strong passwords, avoiding suspicious emails and links, and regularly updating software and security systems. Consider providing regular training sessions and resources to keep your employees informed and prepared.

2. Use Strong Passwords and Two-Factor Authentication

One of the most basic yet effective ways to protect your business from cyber threats is to use strong passwords and two-factor authentication. Encourage your employees to use complex passwords that include a mix of letters, numbers, and symbols, and to avoid using the same password for multiple accounts. Two-factor authentication adds an extra layer of security by requiring a second form of verification, such as a code sent to a mobile device, before granting access to an account. This can help prevent unauthorized access even if a password is compromised.

3. Keep Your Software and Systems Up to Date

One of the easiest ways for cybercriminals to gain access to your business’s data is through outdated software and systems. Hackers are constantly looking for vulnerabilities in software and operating systems, and if they find one, they can exploit it to gain access to your data. To prevent this, make sure all software and systems are kept up-to-date with the latest security patches and updates. This includes not only your computers and servers but also any mobile devices and other connected devices used in your business. Set up automatic updates whenever possible to ensure that you don’t miss any critical security updates.

4. Use Antivirus and Anti-Malware Software

Antivirus and anti-malware software are essential tools for protecting your small business from cyber threats. These programs can detect and remove malicious software, such as viruses, spyware, and ransomware before they can cause damage to your systems or steal your data. Make sure to install reputable antivirus and anti-malware software on all devices used in your business, including computers, servers, and mobile devices. Keep the software up-to-date and run regular scans to ensure that your systems are free from malware.

5. Backup Your Data Regularly

One of the most important steps you can take to protect your small business from data loss is to back up your data regularly. This means creating copies of your important files and storing them in a secure location, such as an external hard drive or cloud storage service. In the event of a cyber-attack or other disaster, having a backup of your data can help you quickly recover and minimize the impact on your business. Make sure to test your backups regularly to ensure that they are working properly and that you can restore your data if needed.

6. Carry out a risk assessment

Small businesses are especially in peril of cyber attacks, making it crucial to prioritize data protection and cybersecurity. One important step is to assess potential risks that could compromise your company’s networks, systems, and information. By identifying and analyzing possible threats, you can develop a plan to address security gaps and protect your business from harm.

For Small businesses making data protection and cybersecurity is a crucial part. To start, conduct a thorough risk assessment to identify where and how your data is stored, who has access to it, and potential threats. If you use cloud storage, consult with your provider to assess risks. Determine the potential impact of breaches and establish risk levels for different events. By taking these steps, you can better protect your business from cyber threats

7. Limit access to sensitive data

One effective strategy is to limit access to critical data to only those who need it. This reduces the risk of a data breach and makes it harder for malicious insiders to gain unauthorized access. To ensure accountability and clarity, create a plan that outlines who has access to what information and what their roles and responsibilities are. By taking these steps, you can help safeguard your business against cyber threats.

8. Use a firewall

For Small businesses, it’s important to protect the system from cyber attacks by making data protection and reducing cybersecurity risk. One effective measure is implementing a firewall, which not only protects hardware but also software. By blocking or deterring viruses from entering the network, a firewall provides an added layer of security. It’s important to note that a firewall differs from an antivirus, which targets software affected by a virus that has already infiltrated the system.

Small businesses can take steps to protect their data and ensure cybersecurity. One important step is to install a firewall and keep it updated with the latest software or firmware. Regularly checking for updates can help prevent potential security breaches.

Conclusion

Small businesses are particularly vulnerable to cyber attacks, so it’s important to take steps to protect your data. One key tip is to be cautious when granting access to your systems, especially to partners or suppliers. Before granting access, make sure they have similar cybersecurity practices in place. Don’t hesitate to ask for proof or to conduct a security audit to ensure your data is safe.

Source :
https://onlinecomputertips.com/support-categories/networking/tips-for-cybersecurity-in-small-businesses/

All about the TeamViewer company profile

By JeanK

Last Updated: 

A TeamViewer company profile allows the ability within the TeamViewer Management Console to manage user permissions and access centrally.

Company admins can add existing users to the license and create new TeamViewer accounts. Both will allow users to log into any TeamViewer application and license the device so they may make connections.

Before starting

It is highly recommended to utilize a Master Account for a company profile, which will be the account that manages all licenses and users.

Please see the following article: Using a Master Account for the TeamViewer Management Console

This article applies to TeamViewer customers with a Premium, Corporate, or Tensor plan.

Benefits of a company profile

Managing users as the company administrator of a company profile also gives access to:

Licensing

Each company profile must have one TeamViewer Core multi-user license activated; this license can be combined with other licenses of the TeamViewer product family (e.g., Assist AR, Remote Management, IoT, etc. ), but cannot be combined with another TeamViewer Core license.

📌Note: If a company admin attempts to activate a second TeamViewer license, they will need to choose between keeping the existing license or replacing it with the new license.

image.png

📌Note: In some cases (with older company profiles and an active perpetual license), multiple core TeamViewer licenses may be activated to one company profile. One subscription license may be added to an existing perpetual license for such company profiles.

License management

Through the TeamViewer Management Console, company admins can manage the licensing of their users directly, including:

  • Assign/un-assign the license to various members of the company profile.
  • Reserve one or more channels for specific teams or persons via Channel Groups.

💡Hint: To ensure the license on your company profile best matches your use case, we highly recommend reaching out to our TeamViewer licensing experts. You may find local numbers here.

 

How to create a company profile

To create a company profile, please follow the instructions below:

  1. Log into the Management Console
  2. On the left-hand side, under the Company header, select User management
  3. In the text box provided, enter the desired company name and click Create.
    • 📌Note: The name of a company profile must be unique and cannot be re-used. If another company profile already uses a name, an error will appear, requesting another name be used instead. 
  4. Once the company profile is created, User management will load with the user that created the company profile as a company administrator.

How to add a new user

To add a new user, please follow the instructions below:

  1. Under User management, click the icon of a person with a + sign. Click on Add user.
  2. On the General tab, add the user’s name and email address and enter a password for the user and click Add user.
    • 💡Hint: Other settings for the user can be adjusted under Advanced, Licenses, and Permissions.
  3. The user will now appear under the User management tab. An email is sent to the user with instructions on activating their account.
    • 📌Note: If the user does not activate their account via email, they will receive an error that the account has not yet been activated when trying to sign in.

How to add an existing user

Users that already have an existing TeamViewer account can request to join a company profile using a few simple steps:

  1. Under User management, click the icon of a person with a + sign. Select Add existing account.
  2. A pop-up will appear, including a URL. Please send this URL to the user you want to add: https://login.teamviewer.com/cmd/joincompany
  3. Once the user opens the link within a browser, they must sign in with their TeamViewer account. Once logged in, they will be prompted to enter the email address of the company administrator. Once completed, they must tick the box I allow to transfer my account and click Join Company.
  4. The company admin will receive a join request via email. The user will appear in user management, where the company admin can approve or decline the addition of the user to the company profile

📌Notes:

  • Every user that joins a company profile will be informed that the company admin will take over full management of their account, including the ability to connect to and control all their devices. It is recommended never to join a company profile the user does not know or fully trust.
  • A user can only be part of one company profile.

How to set user permissions

Users of a company profile have multiple options that can be set by the current company admin, including promoting other users to administrator or company administrator. Permissions are set for each user individually. To access user permissions:

  1. In the User management tab, hovering the cursor over the desired user’s account will produce a three-dots menu (⋮) to the far right of the account. Click this menu and select Edit user from the drop-down.
  2. Once in Edit user, select the Permissions tab. Overall permissions for the account can be changed using the drop-down under the Role header.
image.png

Four options are available:

  • Company administrator: Can make changes to company settings, other administrator accounts, and user accounts.
  • User administrator: Can make changes to other user accounts but cannot change company settings or company administrator accounts.
  • Member: Cannot change the company profile or other users.
  • Customized permissions: The company admin sets permissions for each aspect of the account.

Once the appropriate role is selected, click Save in the window’s upper-left corner.

📌Note: Changes to user permissions are automatic once saved.

How to remove/deactivate/delete users

Along with adding new or existing accounts, company admins can remove, deactivate, or even delete users from the company profile.

📌Note: A current company admin of that license can only remove a TeamViewer account currently connected to a company profile. TeamViewer Customer Support is unable to remove any account from a company profile.

To remove, deactivate or delete an account, please follow the instructions below:

  1. In the User management tab, hovering the cursor over the desired user’s account will produce a three-dots menu (⋮) to the far right of the account. In the drop-down menu that appears are the three options
  2. Select Delete accountRemove user or Deactivate user.
image.png

Consequences of deleting an account

When an account is deleted, the account is not only removed from the company profile but deleted from TeamViewer altogether. The user can no longer use the account or access any information associated with it as it no longer exists.

📌Note: When an account is deleted, the email address associated with the account can be re-used to create a new TeamViewer account.

image.png

When a TeamViewer account is deleted from a company profile:

  • Connection reports, custom modules, and TeamViewer/Remote management policies will be transferred to the current company admin.
  • Web API Tokens for the deleted user are logged out, and their company functionality is removed
  • License activations are removed from the deleted user’s account
  • Shared groups from the deleted user’s account are deleted.

Once the company admin checks the box to confirm that this process cannot be undone, the Delete account button becomes available. Once pressed, the account is deleted.

📌Note: Deletion of any TeamViewer account deletion is irreversible. Only a new account can be created after deletion. All user data will be lost.

Remove user

When an account is removed, the account is removed from the company profile and reverted to a free TeamViewer account. The account is reverted to a free account, and the user is still able to log in with the account. All information associated with the account is still accessible.

When an account is removed from a company profile:

  • Connection reports, custom modules, and TeamViewer /Remote management policies will be transferred to the current company admin.
  • Contacts in the contact book are transferred to the current company admin
  • Web API Tokens for the user’s account are logged out and their company functionality is removed
  • License activations are removed from the user’s account

📌Note: Groups & devices in the Computers & Contacts of the removed user’s account are not affected. Any groups shared also will remain shared.

Once the company admin checks the box to confirm that this process cannot be undone, the Remove user button becomes available. Once pressed, the account is removed from the company profile and reverted to a free TeamViewer account.

📌Note: Once a user account is removed from the current company profile, it can request to join another company profile.

Deactivate user

When an account is deactivated, the account is reverted to inactive. The deactivated account is still associated with the company profile but cannot be used to log into TeamViewer on a free or licensed device. The account is rendered completely unusable.

📌Note: When an account is deactivated, the email address associated with the account cannot be used to create a new free TeamViewer account.

💡Hint: To view inactivated users within the company profile, select the drop-down menu under User Status and check the box for Inactive. All inactive users will now appear in user management.

How to reactivate inactive users

When Deactivate user is selected, the account disappears from user management. They are, however, still a part of the Company Profile and can be reactivated back to the license instantly at any time.

image.png
  1. To view inactivated users within the company profile, select the menu under User Status and check the box for Inactive. All inactive users will now appear in user management.
  2. Once the user is located, hover the cursor over the account. Select the three-dots menu (⋮) to the right of the user’s account and select Activate user
  3. The user’s original permissions status is reverted, and the account can again be used with any TeamViewer device.
image.png

Troubleshooting

Below you will find answers to some common issues encountered when interacting with a company profile.

▹User(s) on a company profile show a free license

In some cases, older users on a company profile may appear as ‘free’ users, especially after upgrading or changing a license. The company admin can resolve this:

  1. Log in to the TeamViewer Management Console under https://login.teamviewer.com
  2. Click Company administration on the left-hand side:
  3. Select the Licenses tab and locate the license. Hovering the cursor over the license will produce a three-dots menu (⋮). Click the menu and select Assign from the drop-down.
  4. The users who show ‘free’ will appear in Unassigned. Select the desired users and click the Add button at the bottom of the page.
image.png

📌Note: Affected users should log out and then back in to see the licensing changes.

▹Your account is already associated with a company 

If a user who is already associated with one company profile attempts to join another company profile, the following pop-up will appear:

image.png

The user’s account must be removed from the current company profile to resolve this. The steps required vary depending on whether it is their active or expired company profile or if they are associated with a company profile created by another account.

SCENARIO 1: As company administrator of an active company profile

If a user who created a company profile wishes to delete the company profile associated with their account, they will need to perform the following steps:

  1. Log in to the TeamViewer Management Console under https://login.teamviewer.com
  2. Click User Management in the upper left corner 
  3. Remove all other accounts: Before deleting a company profile, the company admin must remove all other accounts. Perform these steps for each user on the company profile
  4. Remove the company admin account: Once all other accounts have been removed, the company admin will remove their account. This will delete the company profile altogether
  5. The user is immediately logged out and can now follow the process to add their account to an existing company profile

SCENARIO 2: As company administrator of an expired company profile

In some cases, the user may have created a company profile on an older license that is no longer used or active. In such cases, the company profile will appear as expired in the Management Console.

In such cases, it is still possible to delete the company profile:

  1. Log in to the TeamViewer Management Console under https://login.teamviewer.com
  2. Click Company administration on the left-hand side.
  3. On the General tab, select Delete company.
  4. A pop-up will appear confirming the request to delete the company profile. Check the box at the bottom to validate, and select Delete company.

SCENARIO 3: The account is a member of a company profile

📌Note: Only a company administrator can remove a user from their company profile – not even TeamViewer can remove a user from a company profile, regardless of the request’s origin.

If the user is a member of another company profile, they will need to contact the company admin of that license to request removal.

Once removed, they can then request to join the correct company profile.

Source :
https://community.teamviewer.com/English/kb/articles/3573-all-about-the-teamviewer-company-profile

Teamviewer Block and allowlist

By .Carol.fg.

Last Updated: 

You have the possibility to restrict remote access to your device by using the Block and Allowlist feature in the TeamViewer full version and the TeamViewer Host.

You can find the feature easily by clicking in your TeamViewer full version on the Gear icon (⚙) in the upper right corner of the TeamViewer (Classic) application, then Security ➜ Block and Allowlist.

Let´s begin with the difference between a blocklist and an allowlist.

This article applies to all TeamViewer (Classic) users.

What is a Blocklist?

The Blocklist generally lets you prevent certain partners or devices from establishing a connection to your computer. TeamViewer accounts or TeamViewer IDs on the blocklist cannot connect to your computer.

📌Note: You will still be able to set up outgoing TeamViewer sessions with partners on the blocklist.

What is an Allowlist?

If you add TeamViewer accounts to the Allowlist, only these accounts will be able to connect to your computer. The possibility of a connection to your computer through other TeamViewer accounts or TeamViewer IDs will be denied

If you have joined a company profile with your TeamViewer account, you can also place the entire company profile on the Allowlist. Thus only the TeamViewer accounts that are part of the company profile can access this device.

📌Note: To work with a company profile you will need a TeamViewer Premium or Corporate license

 

How to set up a Blocklist?

If you would like to deny remote access to your device to specific persons or TeamViewer IDs, we recommend setting up a Blocklist.

You can find the feature easily by clicking in your TeamViewer full version on the Gear icon (⚙) in the upper right corner of the TeamViewer (Classic) application, then Security ➜ Block and Allowlist ➜ Click on Configure…

A new window will open. Activate the first option Deny access for the following partners and click on Add 

Blocklist_01.png

📌Note: If you activate the Also apply for meetings check box, these settings will also be applied to meetings. Contacts from your blocklist are excluded from being able to join your meetings.

After clicking on Add, you can either choose partners saved on your Computers & Contacts list or add TeamViewer IDs/contacts manually to your blocklist.

Blocklist_02.png
Blocklist_03.PNG

How to set up an Allowlist?

If you would like to allow only specific TeamViewer accounts or TeamViewer IDs remote access to your device, we recommend setting up an Allowlist.

You can find the feature easily by clicking in your TeamViewer full version on the Gear icon (⚙) in the upper right corner of the TeamViewer (Classic) application, then Security ➜ Block and Allowlist ➜ Click on Configure…

A new window will open. Activate the second option Allow access only for the following partners and click on Add 

image.png

📌Note: If you activate the Also apply for meetings check box, these settings will also be applied to meetings. Only contacts from your allowlist will then be able to join your meetings.

After clicking on Add, you can either choose partners saved on your Computers & Contacts list, add TeamViewer IDs/contacts manually to your blocklist, or add the whole company you are part of (only visible if you are part of a company profile). 

image.png
image.png
image.png

 

How to delete blocklisted/allowlisted partners?

If you no longer wish to have certain partners block or allowlisted, you can easily remove them from the list.

To do so navigate in your TeamViewer full version to the Gear icon (⚙) in the upper right corner of the TeamViewer (Classic) application, then Security ➜ Block and Allowlist ➜ Click on Configure… and choose whether you would like to remove partners from the Blocklist or from the Allowlist by choosing either Deny access for the following partners (Blocklist) or Allow access only for the following partner (Allowlist). Now click on the partners you would like to remove and finally click Remove  OK

image.png

📌Note: You can choose multiple partners at once by pressing CTRG when clicking on the different partners.

Learn more about how you can benefit from a Master Allowlist: Why Master Allowlists are So Effective to Secure Customers

Source :
https://community.teamviewer.com/English/kb/articles/29739-block-and-allowlist

Teamviewer Two-Factor Authentication for connections

By .Carol.fg.

Last Updated: 

This article provides a step-by-step guide to activating Two-factor authentication for connections (also known as TFA for connections). This feature enables you to allow or deny connections via push notifications on a mobile device.

This article applies to all Windows users using TeamViewer (Classic) 15.17 (and newer) and macOS and Linux users in version 15.22 (and newer).

What is Two-factor authentication for connections?

TFA for connections offers an extra layer of protection to desktop computers.

When enabled, connections to that computer need to be approved using a push notification sent to specific mobile devices. 

Enabling Two-factor authentication for connections and adding approval devices

Windows and Linux:

1. In the TeamViewer (Classic) application, click the gear icon at the top right menu.

2. Click on the Security tab on the left.

3. You will find the Two-factor authentication for connections section at the bottom.

4. Click on Configure… to open the list of approval devices.

5. To add a new mobile device to receive the push notifications, click Add.

6. You will now see a QR code that needs to be scanned by your mobile device.

Below please find a step-by-step gif for Windows, Linux, and macOS:

Windows

TFA for connections.gif

Linux

Linux add new device.gif

macOS

MAC1_community.gif

7. On the mobile device, download and install the TeamViewer Remote Control app:

a. Android

📌Note: This feature is only available on Android 6.0 or higher.

b. iOS

8. In the TeamViewer Remote Control app, go to Settings → TFA for connections.

9. You will see a short explanation and the option to open the camera to scan the QR code.

image.png

10. Tap on Scan QR code and you will be asked to give the TeamViewer app permission to access the camera.

11. After permission is given, the camera will open. Point the camera at the QR code on the desktop computer (see Step 6 above).

12. The activation will happen automatically, and a success message will be displayed. 

image.png

13. The new device is now included in the list of approval devices.

image.png

14. From now on, any connection to this desktop computer will need to be approved using a push notification.

📌 Note: TFA for connections cannot be remotely disabled if the approval device is not accessible. Due to this, we recommend setting up an additional approval device as a backup.

Removing approval devices

1. Select an approval device from the list and click Remove or the X.

2. You will be asked to confirm the action.

3. By clicking Remove again, the mobile device will be removed from the list of approval devices and won’t receive any further push notifications.

4. If the Approval devices list is empty, Two-factor authentication for connections will be completely disabled.

Below please find a step by step gif for Windows, Linux and macOS:

▹ Windows:

Removing approval devices[1).gif

▹ Linux:

linux remove device.gif

▹ macOS:

MAC2_community.gif

Remote connections when Two-factor authentication for connections is enabled

TFA for connections does not replace any existing authentication method. When enabled, it adds an extra security layer against unauthorized access.

When connecting to a desktop computer protected by TFA for connections, a push notification will be sent to all of the approval devices.

You can either:

  • accept/deny the connection request via the system notification:
image.png
  • accept/deny the connection request by tapping the TeamViewer notification. It will lead to you the following screen within the TeamViewer application to accept/deny the connection:
image.png

Multiple approval devices

All approval devices in the list will receive a push notification. 

The first notification that is answered on any of the devices will be used to allow or deny the connection.

Source :
https://community.teamviewer.com/English/kb/articles/108791-two-factor-authentication-for-connections

Ports used by TeamViewer

By Ying_Q

Last Updated: 

TeamViewer is designed to connect easily to remote computers without any special firewall configurations being necessary.

This article applies to all users in all licenses.

In the vast majority of cases, TeamViewer will always work if surfing on the internet is possible. TeamViewer makes outbound connections to the internet, which are usually not blocked by firewalls.

However, in some situations, for example in a corporate environment with strict security policies, a firewall might be set up to block all unknown outbound connections, and in this case, you will need to configure the firewall to allow TeamViewer to connect out through it.

TeamViewer ‘s Ports

These are the ports that TeamViewer needs to use.

TCP/UDP Port 5938

TeamViewer prefers to make outbound TCP and UDP connections over port 5938 – this is the primary port it uses, and TeamViewer performs best using this port. Your firewall should allow this at a minimum.

TCP Port 443

If TeamViewer can’t connect over port 5938, it will next try to connect over TCP port 443.

However, our mobile apps running on iOS and Windows Mobile don’t use port 443.

📌Note: port 443 is also used by our custom modules which are created in the Management Console. If you’re deploying a custom module, eg. through Group Policy, then you need to ensure that port 443 is open on the computers to which you’re deploying. Port 443 is also used for a few other things, including TeamViewer (Classic) update checks.

TCP Port 80

If TeamViewer can’t connect over port 5938 or 443, then it will try on TCP port 80. The connection speed over this port is slower and less reliable than ports 5938 or 443, due to the additional overhead it uses, and there is no automatic reconnection if the connection is temporarily lost. For this reason port 80 is only used as a last resort.

Our mobile apps running on Windows Mobile don’t use port 80. However, our iOS and Android apps can use port 80 if necessary.

Windows Mobile

Our mobile apps running on Windows Mobile can only connect out over port 5938. If the TeamViewer app on your mobile device won’t connect and tells you to “check your internet connection”, it’s probably because this port is being blocked by your mobile data provider or your WiFi router/firewall.

Destination IP addresses

The TeamViewer software makes connections to our master servers located around the world. These servers use a number of different IP address ranges, which are also frequently changing. As such, we are unable to provide a list of our server IPs. However, all of our IP addresses have PTR records that resolve to *.teamviewer.com. You can use this to restrict the destination IP addresses that you allow through your firewall or proxy server.

 Having said that, from a security point-of-view this should not really be necessary – TeamViewer only ever initiates outgoing data connections through a firewall, so it is sufficient to simply block all incoming connections on your firewall and only allow outgoing connections over port 5938, regardless of the destination IP address.

Ports Used per Operating System

image.png

Source :
https://community.teamviewer.com/English/kb/articles/4139-ports-used-by-teamviewer

Ubiquiti Unifi reset to Factory Defaults

Updated on 27 giu 2023

A factory reset is useful for a creating fresh setup of a UniFi Console, or device that was already configured in a managed state.

Restoring with the Reset Button

All UniFi devices have a Reset button. You can return a device to a factory-default state by holding this for 5-10 seconds (depending on the device), or until the LEDs indicate the restore has begun. Your device must remain powered during this process.

UniFi PoE Adapters also have a Reset button that can be used if the actual device is mounted and out of reach. 

Example: The diagram below illustrates how to locate this button on the UDM Pro.

udm-pro-topology.png

Restoring From Your UniFi Application

UniFi Devices

All UniFi devices can be restored to their factory defaults via their respective web or mobile applications. This is located in the Manage section of a device’s settings. Depending on the application, this may be referred to as Forget (UniFi Network) or Unmanage (UniFi Protect).

Selecting this option will unmanage the device from your UniFi Console and restore the device to a factory default state.

UniFi Consoles

A UniFi Console admin with Owner privileges has the ability to restore their console using the “Factory Reset” button located in the UniFi OS System settings. 

Frequently Asked Questions

Why does my device still appear in my application after I restored it using the physical Reset button?

Why does my device say “Managed by Other”?

This will occur if the device was managed by another instance of a UniFi application. This includes cases where the UniFi Console (e.g., Dream Machine Pro, or Cloud Key) was factory restored, because the UniFi device still considers itself as being managed by the ‘old’ application console, prior to restoration.

There are several options to resolve this:

  • Restore the UniFi Console from a backup in which the device was already managed.
  • Factory restore the UniFi device and then re-adopt it.
  • Reassign the device using the UniFi Network mobile app.
    Note: This can only be done by the account owner and requires them to have previously signed into the mobile app while the device was managed.

Note: If you are self-hosting the Network application, you should only ever download the UniFi software on a single machine which will act as the UniFi Console. Some users mistakenly download this multiple times because they believe it is a requirement to manage their Network Application from other devices, but this is actually creating a completely new instance. To manage your network from another device, you can type in the IP address of the UniFi Console while connected to the same local network. Alternatively, you can enable Remote Access to manage your network anywhere. See Connecting to UniFi to learn more.

Why is my UniFi Device not factory restoring?

Ensure that your device remains powered on during the restoration process, otherwise it will not occur. 

It is also possible that you held the button for too short of a time (resulting in a reboot), or too long of a time (resulting in entering TFTP Recovery Mode). Refer to our UniFi Device LED Status guide for more information.


Source:
https://help.ubnt.com/hc/en-us/articles/205143490-UniFi-How-to-Reset-the-UniFi-Access-Point-to-Factory-Defaults

10 Best Firewalls for Small & Medium Business Networks in 2023

BY AMINU ABDULLAHI MAY 16, 2023

Small and medium-sized businesses (SMBs) are increasingly becoming targets for cyber attacks. According to Verizon, about 61 percent of SMBs reported at least one cyber attack in 2021. Worse, Joe Galvin, chief research officer at Vistage, reported that about 60 percent of small businesses fold within six months of a cyber attack.

To protect your network from potential threats, you need a reliable and effective firewall solution. This tool will act as the first line of defense against unauthorized access and can help prevent malicious attacks from infiltrating a business’s network.

We reviewed the top SMB firewall solutions to help you determine the best one for your business.

Top SMB firewall software comparison

 Best forIPSContent filteringStarting price
Perimeter 81Best overallYesYes$8 per user per month, billed annually
pfSenseOpen sourceYesYes$0.01 per hour 
Comodo Free FirewallWindows PCsYesYesFree
ManageEngine Firewall AnalyzerLog, policy, and firewall configuration managementYesYes$395 per device
Fortinet FortiGateHybrid workforcesYesYesApprox. $335
SonicWall TZ400 Security FirewallAdvanced threat protectionYesYesApprox. $1,000–$1,500
Cisco Meraki MX68Small branches with up to 50 usersYesYesApprox $640
Sophos XGS SeriesRemote workersYesYesApprox. $520
Protectli Vault – 4 PortBuilding your own OPNsense or pfSense router and firewallYesYes$269 for FW4B – 4x 1G Port Intel J3160
OPNSenseFlexibilityYesYesFree, or $170.46/yr for business ed.

Jump to:

Perimeter81 icon

Perimeter 81

Best overall

Founded in 2018, Perimeter 81 is a cloud and network security company that provides organizations with a secure and unified platform for accessing and managing their applications and data.

It provides many security solutions, including firewall as a service (FWaaS), secure web gateway (SWG), zero trust network access (ZTNA), malware protection, software-defined perimeter, VPN-alternative and secure access service edge (SASE) capabilities, to ensure that data is secure and accessible to authorized personnel. It also provides centralized management and user access monitoring, enabling organizations to monitor and control user activity across the network.

Perimeter 81 provides granular access control policies that enable organizations to define and enforce access rules for their network resources based on the user’s identity, device type, and other contextual factors—making it easy for employees to access the company’s resources without compromising security.

Pricing

Pricing plansMinimum usersCost per month, plus gateway costCost per year, plus gateway costCloud firewallAgentless application accessDevice posture check
Essential10$10 per user, plus $50 per month per gateway$8 per user, plus $40 per month per gatewayNo2 applicationsNo
Premium10$12 per user, plus $50 per month per gateway$15 per user, plus $40 per month per gateway10 policies10 applications3 profiles
Premium Plus20$16 per user, plus $50 per month per gateway$20 per user, plus $40 per month per gateway100 policies100 applications20 profiles
Enterprise50Custom quotesCustom quotesUnlimitedUnlimitedUnlimited

Features

  • Identity-based access for devices and users.
  • Network segmentation.
  • OS and application-level security and mutual TLS encryption.
  • Enable traffic encryption enforcement, 2FA, Single Sign-On, DNS filtering, and authentication.

Pros

  • Provides visibility into the company network.
  • Allows employee access from on-premise.
  • Automatic Wi-Fi security.
  • 30-day money-back guarantee.

Cons

  • Low and mid-tiered plans lack phone support.
  • Limited support for Essential, Premium, and Premium Plus.
pfSense icon

pfSense

Best open-source-driven firewall

pfSense is an open-source firewall/router network security solution based on FreeBSD. Featuring firewall, router, VPN, and DHCP servers, pfSense is a highly customizable tool that can be used in various network environments, from small home networks to large enterprise networks.

The tool supports multiple WAN connections, failover and load balancing, and traffic shaping, which can help optimize network performance. pfSense can be used on computers, network appliances, and embedded systems to provide a wide range of networking services.

Pricing

pfSense pricing varies based on your chosen medium—cloud, software, or hardware appliances.

For pfSense cloud:

  • pfSense on AWS: Pricing starts from $0.01 per hour to $0.40 per hour.
  • pfSense on Azure: Pricing starts from $0.08 per hour to $0.24 per hour.

For pfSense software:

  • pfSense CE: Open source version available to download for free.
  • pfSense+ Home or Lab: Available at no cost for evaluation purposes only.
  • pfSense+ W/TAC LITE: Currently available at no charge, but vendor may increase rate to $129 per year in the future. 
  • pfSense+ W/TAC PRO: $399 per year.
  • pfSense+ W/TAC ENT: $799 per year.

For pfSense appliances:

pfSense+ appliancesDevice costBest forFirewall speed (IPERF3 TRAFFIC)Firewall speed
(IMIX TRAFFIC)
Netgate 1100$189Home607 Mbps(10k ACLs)191 Mbps(10k ACLs)
Netgate 2100$349Home
Home Pro
Branch/Small Business
964 Mbps(10k ACLs)249 Mbps(10k ACLs)
Netgate 4100$599Home Pro
Branch/Small Business
Medium Business
4.09 Gbps(10k ACLs)1.40 Gbps(10k ACLs)
Netgate 6100$799Home Pro
Branch/Small Business
Medium Business
9.93 Gbps(10k ACLs)2.73 Gbps(10k ACLs)
Netgate 8200$1,395Branch/Small Business
Medium Business
Large Business
18.55 Gbps5.1 Gbps
Netgate 1537$2,199Medium Business
Large Business
Data Center
18.62 Gbps(10k ACLs)10.24 Gbps(10k ACLs)
Netgate 1541$2,899Medium Business
Large Business
Data Center
18.64 Gbps(10k ACLs)12.30 Gbps(10k ACLs)

Features

  • Stateful packet inspection (SPI).
  • IP/DNS-based filtering.
  • Captive portal guest network.
  • Time-based rules.
  • NAT mapping (inbound/outbound).

Pros

  • Anti-spoofing capability.
  • Connection limits option.
  • Community support.

Cons

  • The tool’s open-source version support is limited to community or forum. It lacks remote login support, private login support, a private support portal, email, telephone, and tickets.
  • Complex initial setup for inexperienced users.
Comodo icon

Comodo Free Firewall

Best for Windows PCs

Comodo Firewall is a free firewall software designed to protect computers from unauthorized access and malicious software by monitoring all incoming and outgoing network traffic. 

The firewall features packet filtering, intrusion detection and prevention, and application control. It also includes a “sandbox” feature that allows users to run potentially risky applications in a protected environment without risking damage to the underlying system. 

The software works seamlessly with other Comodo products, such as Comodo Antivirus and Comodo Internet Security.

Pricing

Comodo is free to download and use. The vendor recommends adding its paid antivirus product (Comodo Internet Security Pro) to its firewall for added security. The antivirus costs $29.99 per year for one PC or $39.99 per year for three PCs. 

Features

  • Auto sandbox technology.
  • Cloud-based behavior analysis. 
  • Cloud-based allowlisting. 
  • Supports all Windows OS versions since Windows XP (Note: Windows 11 support forthcoming).
  • Website filtering.
  • Virtual desktop.

Pros

  • Monitors in/out connections.
  • Learn user behavior to deliver personalized protection.
  • Real-time malware protection.

Cons

  • Lacks modern user interface.
  • Pop-up notifications—some users may find the frequent alerts generated by the software annoying and intrusive.
ManageEngine icon

ManageEngine Firewall Analyzer

Best for log, policy, and firewall configuration management

ManageEngine Firewall Analyzer is a web-based log analytics and configuration management software for firewall devices. 

It provides real-time visibility into network activity and helps organizations identify network threats, malicious traffic, and policy violations. It supports various firewalls, including Cisco ASA, Palo Alto, Juniper SRX, Check Point, SonicWall, and Fortinet. 

Firewall Analyzer helps monitor network security, analyze the security posture of the network, and ensure compliance with security policies. It also provides reports, dashboards, and automated alerting to ensure the network remains secure.

Pricing

The amount you will pay for this tool depends on the edition you choose and the number of devices in your organization. 

You can download the enterprise edition’s 30-day free trial to test-run it and learn more about its capabilities. It’s available in two versions: Windows OS or Linux. You can also download it for mobile devices, including iPhone devices and Android phones or tablets.

  • Standard Edition: Starts at $395 per device, up to 60 devices.
  • Professional Edition: Starts at $595 per device, up to 60 devices.
  • Enterprise Edition: Starts at $8,395 for 20 devices, up to 1,200 devices.

Feature

  • Firewall rules report and firewall device audit report.
  • Regulatory compliance with standards such as ISO, PCI-DSS, NERC-CIP, SANS, and NIST.
  • Network behavioral anomaly alert.
  • Security reports for viruses, attacks, spam, denied hosts, and event summaries.
  • Historical configuration change tracking.
  • Bandwidth report for live bandwidth, traffic analyzer, URL monitor, and employee internet usage.
  • Compatible with over 70 firewall versions.

Pros

  • Excellent technical support.
  • Users praise its reporting capability.
  • In-depth auditing with aggregated database entries capability.
  • VPN and security events analysis.

Cons

  • Complex initial setup.
  • Users reported that the tool is occasionally slow.
Fortinet icon

Fortinet FortiGate

Best for hybrid workforces

Fortinet FortiGate is a network security platform that offers a broad range of security and networking services for enterprises of all sizes. It provides advanced threat protection, secure connectivity, and secure access control. It also provides advanced firewall protection, application control, and web filtering. 

Business owners can use Fortinet’s super-handy small business product selector to determine the best tool for their use cases. 

Small and mid-sized businesses may find the following FortiGate’s model suitable for their needs:

 IPSNGFWThreat ProtectionInterfacesSeries
FortiGate 80F1.4 Gbps1 Gbps900 MbpsMultiple GE RJ45 | Variants with PoE, DSL,3G4G, WiFi and/or storageFG-80F, FG-80F-PO, FG-80F-Bypass, FG-81F, FG-81F-PO, FG-80F-DSL, FWF-81F-2R-POE, FWF-81, F-2R-3G4G-POE, FWF-80F/81F-2R, and FWF-80F/81F-2R-3G4G-DSL
FortiGate 70F 1.4 Gbps1 Gbps800 MbpsMultiple GE RJ45 | Variants with internalstorageFG-70F and FG-71F
FortiGate 60F 1.4 Gbps1 Gbps700 MbpsMultiple GE RJ45 | Variants with internalstorage | WiFi variantsFG-60F, FG-61F, FWF-60F, and FWF-61F
FortiGate 40F 1 Gbps800 Mbps 600 MbpsMultiple GE RJ45 | WiFi variantsFG-40F, FG-40F-3G4G, FWF-40F, FWF-40F-3G4G

Fortinet FortiGate is compatible with several operating systems and can easily be integrated into existing networks. 

Pricing

Unfortunately, Fortinet doesn’t publish their prices. Reseller prices start around $335 for the FortiGate 40F with no support. Contact Fortinet’s sales team for quotes.

Features

  • Offers AI-powered security services, including web, content, and device security, plus advanced tools for SOC/NOC.
  • Continuous risk assessment. 
  • Threat protection capability.

Pros

  • Top-rated firewall by NSS Labs.
  • Intrusion prevention.

Cons

  • According to user reviews, the CLI is somewhat complex.
  • Complex initial setup.
SonicWall icon

SonicWall TZ400 Security Firewall

Best for advanced threat protection

The SonicWall TZ400 is a mid-range, enterprise-grade security firewall designed to protect small to midsize businesses. It supports up to 150,000 maximum connections, 6,000 new connections per second, and 7×1-Gbe. 

The TZ400 features 1.3 Gbps firewall inspection throughput, 1.2 Gbps application inspection throughput, 900 Mbps IPS throughput, 900 Mbps VPN throughput, and 600 Mbps threat prevention throughput. 

Pricing

This product’s pricing is not available on the Sonicwall website. However, resellers such as CDW, Staples, and Office Depot typically sell it in the $1,000–$1,500 range. You can request a quote for your particular use case directly from Sonicwall.

Features

  • Deep memory inspection.
  • Single-pane-of-glass management and reporting.
  • SSL/TLS decryption and inspection.
  • SD-WAN and zero-touch deployment capabilities.

Pros

  • Optional PoE and Wi-Fi options.
  • DDoS attack protection (UDP/ICMP/SYN flood).
  • Fast performance with gigabit and multi-gigabit Ethernet interfaces.
  • Protects against intrusion, malware, and ransomware.
  • High-performance IPS, VPN, and threat prevention throughput.
  • Efficient ​​firewall inspection and application inspection throughput.

Cons

  • Support can be improved.
  • It can be difficult to configure for inexperienced users.
Cisco icon

Cisco Meraki MX68

Best for small branches with up to 50 users

The Cisco Meraki MX68 is a security appliance designed for SMBs. It’s part of the Cisco Meraki MX series of cloud-managed security appliances that provide network security, content filtering, intrusion prevention, and application visibility and control.

The MX68 is equipped with advanced security features such as a stateful firewall, VPN, and intrusion prevention system (IPS) to protect your network from cyber attacks. The MX68 has a variety of ports and interfaces, including LAN and WAN ports and a USB port for 3G/4G failover. It also supports multiple WAN uplinks, providing redundancy and failover options to ensure your network remains online and available.

Pricing

The Cisco Meraki MX68 pricing isn’t listed on the company’s website, but resellers typically list it starting around $640. You can request a demo, free trial, or quotes by contacting the Cisco sales team.

Features

  • Centralized management via web-based dashboard or API.
  • Intrusion detection and prevention (IDS/IPS).
  • Next-generation layer 7 firewalls and content filtering.
  • SSL decryption/inspection, data loss prevention (DLP), and cloud access security broker (CASB).
  • Instant wired failover with added 3G/4G failover via a USB modem.

Pros

  • Remote browser isolation, granular app control, and SaaS tenant restrictions.
  • Support for native IPsec or Cisco AnyConnect remote client VPN.
  • Provides unified management for security, SD-WAN, Wi-Fi, switching, mobile device management (MDM), and internet of things (IoT)

Cons

  • The license cost is somewhat high.
  • Support can be improved.
Sophos icon

Sophos XGS Series

Best for remote workers

Sophos XGS Series Desktop is a range of network security appliances designed to provide comprehensive protection for SMBs. These appliances combine several security technologies, including firewall, intrusion prevention, VPN, web filtering, email filtering, and application control, to provide a robust and integrated security solution.

Here’s a comparison table of the Sophos XGS series firewalls:

 FirewallTLS inspectionIPSIPSEC VPNNGFWFirewall IMIXThreat protectionLatency (64 byte UDP)
XGS Desktop Models3,850 Mbps375 Mbps1,200 Mbps3,000 Mbps700 Mbps3,000 Mbps280 Mbps6 µs
XGS 107 / 107w7,000 Mbps420 Mbps1,500 Mbps4,000 Mbps1,050 Mbps3,750 Mbps370 Mbps6 µs
XGS 116 / 116w7,700 Mbps650 Mbps2,500 Mbps4,800 Mbps2,000 Mbps4,500 Mbps720 Mbps8 µs
126/126w10,500 Mbps800 Mbps3,250 Mbps5,500 Mbps2,500 Mbps5,250 Mbps900 Mbps8 µs
136/136w11,500 Mbps950 Mbps4,000 Mbps6,350 Mbps3,000 Mbps6,500 Mbps1,000 Mbps8 µs

The Sophos XGS Series Desktop appliances are available in several models with varying performance capabilities, ranging from entry-level models suitable for small offices to high-performance models suitable for large enterprises. They are designed to be easy to deploy and manage, with a user-friendly web interface and centralized management capabilities.

Pricing

Sophos doesn’t advertise the pricing for their XGS Series Desktop appliances online, but they typically retail starting at about $520 from resellers. 

Potential customers are encouraged to request a free trial and pricing information by filling out a form on the “Get Pricing” page of their website.

Features

  • Centralized management and reporting.
  • Wireless, SD-WAN, application aware routing, and traffic shaping capability.
  • SD-WAN orchestration.
  • Advanced web and zero-day threat protection.

Pros

  • Zero-touch deployment.
  • Lateral movement protection.
  • Users find the tool scalable.

Cons

  • Performance limitations.
  • Support can be improved.
Protectli icon

Protectli Vault – 4 Port

Best for building your own OPNsense or pfSense router and firewall

The Protectli Vault is a small form-factor network appliance designed to act as a firewall, router, or other network gateway. The 4-Port version has four gigabit Intel Ethernet NIC ports, making it ideal for SMB or home networks.

The device is powered by a low-power Intel processor and can run a variety of open-source firewall and router operating systems, such as pfSense, OPNsense, or Untangle. It comes with 8GB DDR3 RAM and up to 32GB DDR4 RAM. 

The Protectli Vault is designed to be fanless, silent, and compact, making it ideal for use in the home or office environments where noise and space may be an issue. It’s also designed to be energy-efficient, consuming only a few watts of power, which can save businesses considerable amounts of money on energy costs over time.

Pricing

The amount you will pay for this tool depends on the model you select and your desired configuration. The rates below are starting prices; your actual rate may vary based on your configuration. Note that all these items ship free to U.S. addresses.

  • VP2410 – 4x 1G Port Intel J4125: Starts at $329.
  • VP2420 – 4x 2.5G Port Intel J6412: Starts at $379.
  • FW4B – 4x 1G Port Intel J3160: Starts at $269.
  • FW4C – 4x 2.5G Port Intel J3710: Starts at $289.

Features

  • Solid-state and fanless tool.
  • Provides 2.5 GB ports unit.
  • AES-NI, VPN, and coreboot options.

Pros

  • A 30-day money-back guarantee.
  • Transparent pricing.
  • Coreboot support.
  • CPU supports AES-NI.

Cons

  • Steep learning curve.
OPNSense icon

OPNSense

Best for flexibility 

OPNsense is a free and open-source firewall and routing platform based on the FreeBSD OS. It was forked from the popular pfSense and m0n0wall project in 2014 and was officially released in January 2015.

OPNsense provides a modular design that allows users to easily add or remove functionality based on their needs. 

OPNsense is popular among IT professionals and network administrators who need a flexible and customizable firewall and routing platform that they can tailor to their specific needs. It’s also a good choice for small businesses and home users who want to improve their networks’ security without spending a lot of money on commercial solutions.

Pricing

OPNSense is a free, open source tool. It is available in two editions: Community edition and business edition. You can download the community version at no cost. For the business version, a one-year subscription costs $170.46 per year.

Features

  • High availability and hardware failover.
  • Intrusion detection and prevention.
  • Captive portal.
  • VPN (site-to-site and road warrior, IPsec, OpenVPN, and legacy PPTP support).
  • Built-in reporting and monitoring tools, including RRD Graphs.

Pros

  • Free, open source.
  • Traffic shaper.
  • Support for plugins.
  • Multi-language support, including English, Czech, Chinese, French, German, Italian, Japanese, Portuguese, Russian, and Spanish.

Cons

  • Reporting capability can be improved.
  • The interface can be improved.

Key features of SMB firewalls

Firewalls designed for SMBs share many of the same characteristics as their enterprise-grade cousins—such as firewall rule and policy configuration, content filtering, reporting and analytics—while placing additional emphasis on affordability and ease of use.

Firewall rules and policies

Administrators should be able to set up firewall rules and policies that control traffic flow and block or permit traffic based on various criteria, such as source/destination IP addresses, ports, and protocols. 

These rules and policies can be used to control the types of applications, services, and data that are allowed to traverse the network, as well as create restrictions on access. 

Firewall rules and policies are essential to the security of a network, as they provide the first line of defense against malicious attacks.

Content filtering

Content filtering is the process of blocking or restricting certain types of content from entering or leaving a network. It can be used to block websites, applications, or data that may contain malicious or unwanted content, such as malware, viruses, or pornographic material. 

Content filtering is typically implemented using a combination of hardware and software solutions. Hardware solutions, such as routers and switches, can be configured to block certain types of traffic or data or to restrict access to certain websites or applications. Software solutions, such as firewall rules and policies, can also be used to block or restrict certain types of content.

Reporting and analytics 

Reporting and analytics are essential for any business network, as they provide important insights into the health and security of the network. Firewall reporting and analytics features allow network administrators to identify trends, detect potential threats, and analyze the performance of the network over time.

Reporting and analytics can also be used to identify any areas of the network that may be vulnerable to attack, as well as identify any areas where the network may not be performing optimally.

Affordability

For SMBs, affordability is a key factor when it comes to purchasing a firewall. SMB firewalls are typically more affordable than enterprise firewalls and can be purchased for as little as a few hundred dollars, so it is important to consider your budget when selecting a firewall.

Some SMB firewalls offer additional features for a fee, so consider what features are necessary for your network and the ones you can do without, as this will help you decide on the most cost-effective firewall solution. At the same time, be careful not to cut corners—your business’s data is too important to be insufficiently protected.

Ease of use and support

For SMBs, finding a firewall solution that is easy to use and has good support is essential. Firewalls should be easy to configure and manage so the network administrator can quickly and easily make changes as needed.

Additionally, good support should be available for any issues or questions that arise. This support should include an online knowledge base and access to technical support staff that can assist with any questions or problems, ideally 24/7.

How to choose the best SMB firewall software for your business

When shopping for the best SMB firewall software for your business, look for software that offers the features you need, easy installation and management, scalability to grow with your business, minimal impact on network performance, and an affordable price.

It’s also important to choose a vendor with a good reputation in the industry, backed up by positive reviews and customer feedback.

Frequently asked questions (FAQs)

What is an SMB firewall?

An SMB firewall is a type of network security device that is designed specifically for small and medium-sized businesses. It’s used to protect networks from unauthorized access, malicious attacks, and other security threats.

What features should I look for in an SMB firewall?

Above all you need a solution with a strong security profile. Look for specific security measures such as:

  • Intrusion prevention
  • Content filtering
  • Malware protection
  • Application control
  • Traffic shaper 

Other factors to consider include ease of management, scalability, and cost.

Do small businesses need a firewall?

Yes, small businesses need a firewall. It provides an essential layer of network security that helps protect against unauthorized access, malware, and other security threats. Without a firewall, small businesses are vulnerable to attacks that could compromise sensitive data, cause network downtime, and damage their reputation.

How much does a firewall cost for SMBs?

The cost of an SMB firewall can vary widely depending on the features, capabilities, and brand of the firewall. Generally, SMB firewalls can range in price from a few hundred to several thousand dollars.

How many firewalls do you need for a small business?

The number of firewalls needed for a small business will depend on the size and complexity of the network. In many cases, a single firewall may be sufficient to protect the entire network. However, in larger networks, it may be necessary to deploy multiple firewalls to provide adequate protection.

Factors such as network segmentation, geographic location, and compliance requirements may also influence the number of firewalls needed. It’s best to consult with a network security expert to determine the appropriate number of firewalls for your small business.

Methodology

We analyzed dozens of SMB firewall software and narrowed down our list to the top ten. We gathered primary data—including pricing details, features, support, and more—from each tool provider’s website, as well as third-party reviews. We selected each software based on five key data points: security, ease of use, affordability, quality of service, and user satisfaction.

Bottom line: Choosing an SMB firewall

The solutions we evaluated are some of the best SMB firewalls currently available on the market. They are designed to provide SMBs with advanced security features, easy management, and scalability at affordable rates.

If your business is growing fast and you need an enterprise-grade network firewall solution, we also reviewed the best firewall software for enterprise networks.

Read our complete guide to designing and configuring a firewall policy for your organization, complete with a free, downloadable template.

Source :
https://www.enterprisenetworkingplanet.com/guides/best-firewalls-for-small-medium-business/