Why Organizations Should Adopt Wi-Fi 6 Now

With its new SonicWave 641 and SonicWave 681 access points, SonicWall has combined the security and performance benefits of Wi-Fi 6 with our simplified management and industry-leading TCO.

Organizations are evolving — some more quickly, others more reluctantly. But over the past three years, the pace of change for everyone has accelerated to hyperspeed.

In early 2020, very few people could have foreseen the changes that were about to be unleashed on the world. And even fewer could have successfully predicted the long-term impact that COVID-19 would have on the way the world’s eight billion people live and work.

Prior to the pandemic, only about 2% of employees worked remotely. By May 2020, that number had risen to 70%, according to the Society for Human Resource Management. This pivot was possible because organizations were able to adjust their infrastructure to meet new working demands — and wireless technology played an important part in this solution.

The importance of wireless technology goes far beyond simply enabling employees to work remotely.  According to a study, 87% of organizations believe that adopting advanced wireless capabilities can be a competitive advantage, because it allows them to innovate and increase agility. And 86% of networking executives believe advanced wireless will soon transform their organization.

But wireless technology impacts more than just how we work: It has changed the way we shop, watch movies, listen to music, navigate in our cars, or spend time with family and friends (some of whom may be a half a world away). And every one of us expects a good experience every single time we use wireless. That’s a tall order, especially given the sheer number of existing devices and the ever-growing amount of bandwidth being consumed.

The need for high-performing, secure wireless technology has never been greater — and Wi-Fi 6 is a massive next step toward this reality. SonicWall’s SonicWave 641 and SonicWave 681 access points provide the combination of performance and security that we all demand.

What is Wi-Fi 6?

Wi-Fi 6, also known as 802.11ax, is the successor to 802.11ac Wave 2, or Wi-Fi 5. While the primary goal of Wi-Fi 6 is to enhance throughput in complex environments, there are additional benefits:

  • OFDMA’s multi-user support can make Wi-Fi 6 access points more efficient than Wi-Fi 5’s single-user OFDM. This results in lower latency.
  • Wi-Fi 6 utilizes WPA3, which provides advanced security features to enable more robust authentication.
  • BSS coloring marks traffic on a shared frequency to determine if it can be used. The result is less interference and more consistent service in complex environments.
  • Target Wake Time (TWT) allows devices to determine how often to wake to send or receive data, improving battery life.
  • Wi-Fi 6’s multi-user, multiple input, multiple output (or MU-MIMO) supports multiple users within a single network environment. This allows multiple users to upload and download data at the same time, resulting in less wait time and faster network speed.

Some of these features are designed to improve performance, while some are designed to improve security. Any one of them can make a positive difference in an organization’s wireless network.  Combined, however, the feature improvements provided by Wi-Fi 6 can create a significant wireless network advancement for any organization.

SonicWave 641 and SonicWave 681

SonicWall’s SonicWave 641 and SonicWave 681 are Wi-Fi 6 access points that deliver wireless performance and security that are superior to the 802.11ac standard.

But there are additional benefits available with the SonicWave 641 and SonicWave 681, such as SonicWall Capture Security Center, a scalable cloud security management system that helps you control assets and defend your entire network against cyberattacks.

SonicWave 600 series APs also integrate with Wireless Network Manager, an intuitive centralized network management system that leverages the cloud to make it easy to manage complex wireless and security environments with a single-pane-of-glass management portal.

WiFi Planner is a site-survey tool that allows you to optimally design and deploy a wireless network to get maximum coverage with the fewest number of APs, resulting in a lower TCO.

And the SonicExpress mobile app allows you to easily register and use the Wireless Network Manager to set up, manage and monitor SonicWall wireless appliances.

A strong wireless network is not a “nice to have” — it’s a necessity. What today’s organizations require is the high performance and security of the SonicWave 641 and SonicWave 681 access points.

To learn more about the SonicWave 641 and SonicWave 681 access points, as well as SonicWall’s entire wireless portfolio, visit www.sonicwall.com/wireless.

Source :
https://blog.sonicwall.com/en-us/2022/08/why-organizations-should-adopt-wi-fi-6-now/

Ten Cybersecurity Books for Your Late Summer Reading List

While you probably aren’t headed back to school this fall, that doesn’t mean it’s not a great time to hit the books.

August 9 is National Book Lovers Day. While there’s really no bad time for a good book, we know it’s often hard to find space in your schedule to stop and read. If this is you, we’ve put together ten compelling reasons to get back into the habit — including two that were released just this past year.

The Hacker and the State: Cyberattacks and The New Normal of Geopolitics
Ben Buchanan2020
In the recently released mid-year update to the 2022 SonicWall Cyber Threat Report, we outline the growing role the geopolitical environment plays in cybercrime and cybersecurity. In “The Hacker and the State: Cyberattacks and The New Normal of Geopolitics,” author Ben Buchanan explores how the world’s superpowers use cyberattacks in a relentless struggle for dominance.

Women Know Cyber: 100 Fascinating Females Fighting Cybercrime
Steve Morgan, 2019
Women are still underrepresented in cybersecurity, but their numbers — as well as their mark on the industry — is growing. This book outlines the contributions of 100 women from every corner of cybersecurity, including government digital forensics, corporate risk assessment, law and more, and argues that encouraging and recruiting women will be key to closing the cybersecurity skills gap.

American Kingpin: The Epic Hunt for the Criminal Mastermind Behind the Silk Road 
Nick Bilton, 2018
Detailing the saga of the notorious Dark Web destination for hacking tools, drugs, forged passports and more, “American Kingpin: The Epic Hunt for the Criminal Mastermind Behind the Silk Road” is endlessly compelling. It follows founder Ross Ulbricht on his journey from boy-next-door programmer, to head of a sprawling illegal empire, to fugitive and captive, and tracks the growth and legacy of the Silk Road.

The Wires of War: Technology and the Global Struggle for Power (Oct 12 2021)
Jacob Helberg, October 2021
There’s a high-stakes global cyberwar brewing between Western democracies and authoritarian regimes — and the latter have a major advantage. Author Jacob Helberg headed efforts to combat misinformation and foreign influence at Google from 2016 to 2020, and “The Wires of War” draws upon this experience to expose the various means used to destabilize nations. In it, he explains why we’re fighting enemies of freedom both over the information we receive and how we receive it, as well as what’s at stake if democratic nations lose this war.

Click Here to Kill Everybody: Security and Survival in a Hyperconnected World
Bruce Schneier, 2018
As we’ve detailed numerous times before, smart devices aren’t necessarily, well, smart. As the world increases its reliance on internet-connected devices, author Bruce Schneier argues, the risks from bad actors will continue to increase in tandem — and if cybersecurity measures don’t keep up, the results could be fatal.

This Is How They Tell Me The World Ends
Nicole Perlroth, 2021
For years, the U.S. government became a major collector of zero-days. But when that cache was compromised, these vulnerabilities fell into the hands of cybercriminals and hostile nations. In her book, “This Is How They Tell Me the World Ends,” author Nicole Perlroth gives a journalistic account of how these vulnerabilities could endanger our democracy, our infrastructure and our lives.

Inside Jobs: Why Insider Risk Is the Biggest Cyber Threat You Can’t Ignore
Joe Payne, Jadee Hanson, Mark Wojtasiak, 2020
While greater access and collaboration are necessary for modern organizations, they bring with them greater risk — not just from cybercriminals, but also from employees and business partners. “Inside Jobs: Why Insider Risk is the Biggest Cyber Threat You Can’t Ignore” details the main types of insider risk, and provides ways to combat them without hampering productivity.

The Art of Invisibility: The World’s Most Famous Hacker Teaches You How to Be Safe in the Age of Big Brother and Big Data
Kevin Mitnick, 2019
Kevin Mitnick was once the FBI’s most wanted hacker. In his recent book, “The Art of Invisibility,” he uses what he learned through years of successfully sneaking into networks to offer readers tips on how to be invisible in a world where privacy is a vanishing commodity: everything from smart Wi-Fi usage, password protection and more. While you may already be familiar with some of the guidance offered, Mitnik’s experience, as well as his account of how we got here in the first place, make this well worth a read.

The Smartest Person in the Room: The Root Cause and New Solution for Cybersecurity
Christian Espinoza, 2021
Having the best cybersecurity tools to protect your organization is only one piece of the puzzle. In “The Smartest Person in the Room,” cybersecurity expert Christian Espinosa outlines the extent to which your cybersecurity team impacts your ability to protect your organization — and offers ways to help upskill even your most intelligent employees.

Cybersecurity Is Everybody’s Business: Solve the Security Puzzle for Your Small Business and Home
Scott N. Schober, 2019
Not all cybersecurity professionals work in a SOC or safeguard huge enterprises — many work to defend millions of small organizations or home offices. If this is you (or someone you know), you know how challenging it can be to find cybersecurity information geared to your security environment. In his most recent book, “Hacked Again” author Scott Schober explains why small businesses are becoming cybercriminals’ biggest targets, and what they can do to protect against threats like identity theft, phishing and ransomware.

Happy Book Lovers Day, and happy reading!

Source :
https://blog.sonicwall.com/en-us/2022/08/ten-cybersecurity-books-for-your-late-summer-reading-list/

Enhance Security and Control Access to Critical Assets with Network Segmentation

Before COVID-19, most corporate employees worked in offices, using computers connected to the internal network. Once users connected to these internal networks, they typically had access to all the data and applications without many restrictions. Network architects designed flat internal networks where the devices in the network connected with each other directly or through a router or a switch.

But while flat networks are fast to implement and have fewer bottlenecks, they’re extremely vulnerable — once compromised, attackers are free to move laterally across the internal network.

Designing flat networks at a time when all the trusted users were on the internal networks might have been simpler and more efficient. But times have changed: Today, 55% of those surveyed say they work more hours remotely than at the physical office. Due to the rapid evolution of the way we work, corporations must now contend with:

  • Multiple network perimeters at headquarters, in remote offices and in the cloud
  • Applications and data scattered across different cloud platforms and data centers
  • Users who expect the same level of access to internal networks while working remotely

While this is a complex set of issues, there is a solution. Network segmentation, when implemented properly, can unflatten the network, allowing security admins to compartmentalize internal networks and provide granular user access.

What is network segmentation?

The National Institute of Standards and Technology (NIST) offers the following definition for network segmentation: “Splitting a network into sub-networks; for example, by creating separate areas on the network which are protected by firewalls configured to reject unnecessary traffic. Network segmentation minimizes the harm of malware and other threats by isolating it to a limited part of the network.”

The main principle of segmentation is making sure that each segment is protected from the other, so that if a breach does occur, it is limited to only a portion of the network. Segmentation should be applied to all entities in the IT environment, including users, workloads, physical servers, virtual machines, containers, network devices and endpoints.

Connections between these entities should be allowed only after their identities have been verified and proper access rights have been established. The approach of segmenting with granular and dynamic access is also known as Zero Trust Network Access (ZTNA).

As shown in Figure 1, instead of a network with a single perimeter, inside which entities across the network are freely accessible, a segmented network environment features smaller network zones with firewalls separating them.

Achieving network segmentation

Implementing segmentation may seem complex, and figuring out the right place to start might seem intimidating. But by following these steps, it can be achieved rather painlessly.

1. Understand and Visualize

Network admins need to map all the subnets and virtual local area networks (VLANs) on the corporate networks. Visualizing the current environment provides a lot of value right away in understanding both how to and what to segment.

At this step, network and security teams also need to work together to see where security devices such as firewalls, IPS and network access controls are deployed in the corporate network. An accurate map of the network and a complete inventory of security systems will help tremendously in creating efficient segments.

2. Segment and Create Policies

The next step in the process is to create the segments themselves: Large subnets or zones should be segmented, monitored and protected with granular access policies. Segments can be configured based on a variety of categories, including geo-location, corporate departments, server farms, data centers and cloud platforms.

After defining segments, create security policies and access-control rules between those segments. These polices can be created and managed using firewalls, VLANs or secure mobile access devices. In most cases, security admins can simply use existing firewalls or secure mobile access solutions to segment and create granular policies. It’s best for administrators to ensure that segments and policies are aligned with business processes.

3. Monitor and Enforce Policies

After creating segments and policies, take some time to monitor the traffic patterns between those segments. The first time the security policies are enforced, it may cause disruption to regular business functions. So it’s best to apply policies in non-blocking or alert mode and monitor for false positives or other network errors.

Next, it’s the time to enforce policies. Once the individual policies are pushed, each segment is protected from cyber attackers’ lateral movements and from internal users trying to reach resources they are not authorized to use. It’s a good idea to continuously monitor and apply new policies as needed whenever there are changes to networks, applications or user roles.

Policy-based segmentation: A way forward for distributed networks

What today’s enterprises require is a way to deliver granular policy enforcement to multiple segments within the network. Through segmentation, companies can protect critical digital assets against any lateral attacks and provide secure access to remote workforces.

The good news is that, with the power and flexibility of a next-generation firewall (NGFW) and with other technologies such as secure mobile access and ZTNA solutions, enterprises can safeguard today’s distributed networks by enforcing policy-based segmentation.

SonicWall’s award-winning hardware and advanced technologies include NGFWsSecure Mobile Access and Cloud Edge Secure Access. These solutions are designed to allow any network— from small businesses to large enterprises, from the datacenter to the cloud — to segment and achieve greater protection with SonicWall.

Source :
https://blog.sonicwall.com/en-us/2022/06/enhance-security-and-control-access-to-critical-assets-with-network-segmentation/

High Severity Vulnerability Patched in Download Manager Plugin

On July 8, 2022 the Wordfence Threat Intelligence team initiated the responsible disclosure process for a vulnerability we discovered in “Download Manager,” a WordPress plugin that is installed on over 100,000 sites. This flaw makes it possible for an authenticated attacker to delete arbitrary files hosted on the server, provided they have access to create downloads. If an attacker deletes the wp-config.php file they can gain administrative privileges, including the ability to execute code, by re-running the WordPress install process.

Wordfence PremiumWordfence Care, and Wordfence Response received a firewall rule on July 8, 2022 to provide protection against any attackers that try to exploit this vulnerability. Wordfence Free users will receive this same protection 30 days later on August 7, 2022.

We attempted to reach out to the developer on July 8, 2022, the same day we discovered the vulnerability. We never received a response so we sent the full details to the WordPress.org plugins team on July 26, 2022. The plugin was fully patched the next day on July 27, 2022.

We strongly recommend ensuring that your site has been updated to the latest patched version of “Download Manager”, which is version 3.2.53 at the time of this publication.

Description: Authenticated (Contributor+) Arbitrary File Deletion
Affected Plugin: Download Manager
Plugin Slug: download-manager
Plugin Developer: W3 Eden, Inc.
Affected Versions: <= 3.2.50
CVE ID: CVE-2022-2431
CVSS Score: 8.8 (High)
CVSS Vector: CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
Researcher/s: Chloe Chamberland
Fully Patched Version: 3.2.51

Download Manager is a popular WordPress plugin designed to allow site content creators to share downloadable files that are stored as posts. These downloads can be displayed on the front-end of the WordPress site for users to download. Unfortunately, vulnerable versions of the plugin contain a bypass in how the downloadable file is stored and subsequently deleted upon post deletion that make it possible for attackers to delete arbitrary files on the server.

More specifically, vulnerable versions of the plugin register the deleteFiles() function that is called via the before_delete_post hook. This hook is triggered right before a post has been deleted and its intended functionality in this case is to delete any files that may have been uploaded and associated with a “download” post.

At first glance this looks like a relatively safe functionality assuming the originally supplied file path is validated. Unfortunately, however, that is not the case as the path to the file saved with the “download” post is not validated to ensure it was a safe file type or in a location associated with a “download” post. This means that a path to an arbitrary file with any extension can be supplied via the file[files][] parameter when saving a post and that would be the file associated with the “download” post. On many configurations an attacker could supply a path such as /var/www/html/wp-config.php that would associate the site’s WordPress configuration file with the download post.

32add_action('before_delete_post', array($this, 'deleteFiles'), 10, 2);
979899100101102103104functiondeleteFiles($post_id, $post){    $files= WPDM()->package->getFiles($post_id, false);    foreach($filesas$file) {        $file= WPDM()->fileSystem->locateFile($file);        @unlink($file);    }}

When the user goes to permanently delete the “download” post the deleteFiles() function will be triggered by the before_delete_post hook and the supplied file will be deleted, if it exists.

This can be used by attackers to delete critical files hosted on the server. The wp-config.php file in particular is a popular target for attackers as deletion of this file would disconnect the existing database from the compromised site and allow the attacker to re-complete the initial installation process and connect their own database to the site. Once a database is connected, they would have access to the server and could upload arbitrary files to further infect the system.

Demonstrating site reset upon download post deletion.

This vulnerability requires contributor-level access and above to exploit, so it serves as an important reminder to make sure you don’t provide contributor-level and above access to untrusted users. It’s also important to validate that all users have strong passwords to ensure your site won’t subsequently be compromised as a result of a vulnerability like this due to an unauthorized actor gaining access via a weak or compromised password.

Timeline

  • July 8, 2022 – Discovery of the Arbitrary File Deletion Vulnerability in the “Download Manager” plugin. A firewall rule is released to Wordfence PremiumWordfence Care, and Wordfence Response users. We attempt to initiate contact with the developer.
  • July 26, 2022 – After no response from the developer, we send the full disclosure details to the WordPress plugins team. They acknowledge the report and make contact with the developer.
  • July 27, 2022. – A fully patched version of the plugin is released as version 3.2.51.
  • August 7, 2022 – Wordfence free users receive the firewall rule.

Conclusion

In today’s post, we detailed a flaw in the “Download Manager” plugin that makes it possible for authenticated attackers to delete arbitrary files hosted on an affected server, which could lead to remote code execution and ultimately complete site compromise. This flaw has been fully patched in version 3.2.51.

We recommend that WordPress site owners immediately verify that their site has been updated to the latest patched version available, which is version 3.2.53 at the time of this publication.

Wordfence PremiumWordfence Care, and Wordfence Response received a firewall rule on July 8, 2022 to provide protection against any attackers trying to exploit this vulnerability. Wordfence Free users will receive this same protection 30 days later on August 7, 2022.

If you believe your site has been compromised as a result of this vulnerability or any other vulnerability, we offer Incident Response services via Wordfence Care. If you need your site cleaned immediately, Wordfence Response offers the same service with 24/7/365 availability and a 1-hour response time. Both these products include hands-on support in case you need further assistance.

Source :
https://www.wordfence.com/blog/2022/08/high-severity-vulnerability-patched-in-download-manager-plugin/

Juniper Releases Patches for Critical Flaws in Junos OS and Contrail Networking

Juniper Networks has pushed security updates to address several vulnerabilities affecting multiple products, some of which could be exploited to seize control of affected systems.

The most critical of the flaws affect Junos Space and Contrail Networking, with the tech company urging customers to release versions 22.1R1 and 21.4.0, respectively.

Chief among them is a collection of 31 bugs in the Junos Space network management software, including CVE-2021-23017 (CVSS score: 9.4) that could result in a crash of vulnerable devices or even achieve arbitrary code execution.

“A security issue in nginx resolver was identified, which might allow an attacker who is able to forge UDP packets from the DNS server to cause 1-byte memory overwrite, resulting in worker process crash or potential other impact,” the company said.

The same security vulnerability has also been remediated in Northstar Controller in versions 5.1.0 Service Pack 6 and 6.2.2.

Additionally, the networking equipment maker cautioned of multiple known issues exist in CentOS 6.8 that’s shipped with Junos Space Policy Enforcer before version 22.1R1. As mitigations, the version of CentOS packed with the Policy Enforcer component has been upgraded to 7.9.

Also listed are 166 security vulnerabilities impacting its Contrail Networking product that impact all versions prior to 21.4.0 and have been collectively given the maximum CVSS score of 10.0.

“Multiple vulnerabilities in third party software used in Juniper Networks Contrail Networking have been resolved in release 21.4.0 by upgrading the Open Container Initiative (OCI)-compliant Red Hat Universal Base Image (UBI) container image from Red Hat Enterprise Linux 7 to Red Hat Enterprise Linux 8,” it noted in an advisory.

Source :
https://thehackernews.com/2022/07/juniper-releases-patches-for-critical.html

5 Key Things We Learned from CISOs of Smaller Enterprises Survey

New survey reveals lack of staff, skills, and resources driving smaller teams to outsource security.

As business begins its return to normalcy (however “normal” may look), CISOs at small and medium-size enterprises (500 – 10,000 employees) were asked to share their cybersecurity challenges and priorities, and their responses were compared the results with those of a similar survey from 2021.

Here are the 5 key things we learned from 200 responses:

— Remote Work Has Accelerated the Use of EDR Technologies

In 2021, 52% of CISOs surveyed were relying on endpoint detection and response (EDR) tools. This year that number has leapt to 85%. In contrast, last year 45% were using network detection and response (NDR) tools, while this year just 6% employ NDR. Compared to 2021, double the number of CISOs and their organizations are seeing the value of extended detection and response (XDR) tools, which combine EDR with integrated network signals. This is likely due to the increase in remote work, which is more difficult to secure than when employees work within the company’s network environment.

— 90% of CISOs Use an MDR Solution

There is a massive skills gap in the cybersecurity industry, and CISOs are under increasing pressure to recruit internally. Especially in small security teams where additional headcount is not the answer, CISOs are turning to outsourced services to fill the void. In 2021, 47% of CISOs surveyed relied on a Managed Security Services Provider (MSSP), while 53% were using a managed detection and response (MDR) service. This year, just 21% are using an MSSP, and 90% are using MDR.

— Overlapping Threat Protection Tools are the #1 Pain Point for Small Teams

The majority (87%) of companies with small security teams struggle to manage and operate their threat protection products. Among these companies, 44% struggle with overlapping capabilities, while 42% struggle to visualize the full picture of an attack when it occurs. These challenges are intrinsically connected, as teams find it difficult to get a single, comprehensive view with multiple tools.

— Small Security Teams Are Ignoring More Alerts

Small security teams are giving less attention to their security alerts. Last year 14% of CISOs said they look only at critical alerts, while this year that number jumped to 21%. In addition, organizations are increasingly letting automation take the wheel. Last year, 16% said they ignore automatically remediated alerts, and this year that’s true for 34% of small security teams.

— 96% of CISOs Are Planning to Consolidate Security Platforms

Almost all CISOs surveyed have consolidation of security tools on their to-do lists, compared to 61% in 2021. Not only does consolidation reduce the number of alerts – making it easier to prioritize and view all threats – respondents believe it will stop them from missing threats (57%), reduce the need for specific expertise (56%), and make it easier to correlate findings and visualize the risk landscape (46%). XDR technologies have emerged as the preferred method of consolidation, with 63% of CISOs calling it their top choice.

Download 2022 CISO Survey of Small Cyber Security Teams to see all the results.

Source :
https://thehackernews.com/2022/07/5-key-things-we-learned-from-cisos-of.html

Spectre and Meltdown Attacks Against OpenSSL

The OpenSSL Technical Committee (OTC) was recently made aware of several potential attacks against the OpenSSL libraries which might permit information leakage via the Spectre attack.1 Although there are currently no known exploits for the Spectre attacks identified, it is plausible that some of them might be exploitable.

Local side channel attacks, such as these, are outside the scope of our security policy, however the project generally does introduce mitigations when they are discovered. In this case, the OTC has decided that these attacks will not be mitigated by changes to the OpenSSL code base. The full reasoning behind this is given below.

The Spectre attack vector, while applicable everywhere, is most important for code running in enclaves because it bypasses the protections offered. Example enclaves include, but are not limited to:

The reasoning behind the OTC’s decision to not introduce mitigations for these attacks is multifold:

  • Such issues do not fall under the scope of our defined security policy. Even though we often apply mitigations for such issues we do not mandate that they are addressed.
  • Maintaining code with mitigations in place would be significantly more difficult. Most potentially vulnerable code is extremely non-obvious, even to experienced security programmers. It would thus be quite easy to introduce new attack vectors or fix existing ones unknowingly. The mitigations themselves obscure the code which increases the maintenance burden.
  • Automated verification and testing of the attacks is necessary but not sufficient. We do not have automated detection for this family of vulnerabilities and if we did, it is likely that variations would escape detection. This does not mean we won’t add automated checking for issues like this at some stage.
  • These problems are fundamentally a bug in the hardware. The software running on the hardware cannot be expected to mitigate all such attacks. Some of the in-CPU caches are completely opaque to software and cannot be easily flushed, making software mitigation quixotic. However, the OTC recognises that fixing hardware is difficult and in some cases impossible.
  • Some kernels and compilers can provide partial mitigation. Specifically, several common compilers have introduced code generation options addressing some of these classes of vulnerability:
    • GCC has the -mindirect-branch-mfunction-return and -mindirect-branch-register options
    • LLVM has the -mretpoline option
    • MSVC has the /Qspectre option

  1. Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel, “Axiomatic Hardware-Software Contracts for Security,” in Proceedings of the 49th ACM/IEEE International Symposium on Computer Architecture (ISCA), 2022.

Posted by OpenSSL Technical Committee May 13th, 2022 12:00 am

Source :
https://www.openssl.org/blog/blog/2022/05/13/spectre-meltdown/

Securing Port 443: The Gateway To A New Universe

At Wordfence our business is to secure over 4 million WordPress websites and keep them secure. My background is in network operations, and then I transitioned into software development because my ops role was at a scale where I found myself writing a lot of code. This led me to founding startups, and ultimately into starting the cybersecurity business that is Wordfence. But I’ve maintained that ops perspective, and when I think about securing a network, I tend to think of ports.

You can find a rather exhaustive list of TCP and UDP ports on Wikipedia, but for the sake of this discussion let’s focus on a few of the most popular ports:

  • 20 and 21 – FTP
  • 22 – SSH
  • 23 – (Just kidding. You better not be running Telnet)
  • 25 – Email via SMTP
  • 53 – DNS
  • 80 – Unencrypted Web
  • 110 – POP3 (for older email clients)
  • 443 – Web encrypted via TLS
  • 445 – Active Directory or SMB sharing
  • 993 – IMAP (for email clients)
  • 3306 – MySQL
  • 6378 – Redis
  • 11211 – Memcached

If you run your eye down this list, you’ll notice something interesting. The options available to you for services to run on most of these ports are quite limited. Some of them are specific to a single application, like Redis. Others, like SMTP, provide a limited number of applications, either proprietary or open-source. In both cases, you can change the configuration of the application, but it’s rare to write a custom application on one of those ports. Except port 443.

In the case of port 443 and port 80, you have a limited range of web servers listening on those ports, but users are writing a huge range of bespoke applications on port 443, and have a massive selection of applications that they can host on that port. Everything from WordPress to Drupal to Joomla, and more. There are huge lists of Content Management Systems.

Not only do you have a wide range of off-the-shelf web applications that you can run on port 443 or (if you’re silly) port 80, but you also have a range of languages they might be coded in, or in which you can code your own web application. Keep in mind that the web server, in this case, is much like an SSH or IMAP server in that it is listening on the port and handling connections, but the difference is that it is handing off execution to these languages, their various development frameworks, and ultimately the application that a developer has written to handle the incoming request.

With SSH, SMTP, FTP, IMAP, MySQL, Redis and most other services, the process listening on the port is the process that handles the request. With web ports, the process listening on the port delegates the incoming connection to another application, usually written in another language, running at the application layer, that is part of the extremely large and diverse ecosystem of web applications.

This concept in itself – that the applications listening on the web ports are extremely diverse and either home-made or selected from a large and diverse ecosystem – presents unique security challenges. In the case of, say, Redis, you might worry about running a secure version of Redis and making sure it is not misconfigured. In the case of a web server, you may have 50 application instances written in two languages from five different vendors all on the same port, which all need to be correctly configured, have their patch levels maintained, and be written using secure coding practices.

As if that doesn’t make the web ports challenging enough, they are also, for the most part, public. Putting aside internal websites for the moment, perhaps the majority of websites derive their value from making services available to users on the Internet by being public-facing. If you consider the list of ports I have above, or in the Wikipedia article I linked to, many of those ports are only open on internal networks or have access to them controlled if they are external. Web ports for public websites, by their very nature, must be publicly accessible for them to be useful. There are certain public services like SMTP or DNS, but as I mentioned above, the server that is listening on the port is the server handling the request in these cases.

A further challenge when securing websites is that often the monetary and data assets available to an attacker when compromising a website are greater than the assets they may gain compromising a corporate network. You see this with high volume e-commerce websites where a small business is processing a large number of web-based e-commerce transactions below $100. If the attacker compromises their corporate network via leaked AWS credentials, they may gain access to the company bank account and company intellectual property, encrypt the company’s data using ransomware, or perhaps even obtain customer PII. But by compromising the e-commerce website, they can gain access to credit card numbers in-flight, which are far more tradeable, and where the sum of available credit among all cards is greater than all the assets of the small business, including the amount of ransom that business might be able to pay.

Let’s not discount breaches like the 2017 Equifax breach that compromised 163 million American, British and Canadian citizen’s records. That was extremely valuable to the attackers. But targets like this are rare, and the Web presents a target-rich environment. Which is the third point I’d like to make in this post. While an organization may run a handful of services on other ports, many companies – with hosting providers in particular – run a large number of web applications. And an individual or company is far more likely to have a service running on a web port than any other port. Many of us have websites, but how many of us run our own DNS, SMTP, Redis, or another service listening on a port other than 80 or 443? Most of us who run websites also run MySQL on port 3306, but that port should not be publicly accessible if configured correctly.

That port 443 security is different has become clear to us at Wordfence over the years as we have tracked and cataloged a huge number of malware variants, web vulnerabilities, and a wide range of tactics, techniques, and procedures (TTP) that attackers targeting web applications use. Most of these have no relationship with the web server listening on port 443, and nearly all of them have a close relationship with the web application that the web server hands off control to once communication is established.

My hope with this post has been to catalyze a different way of thinking about port 443 and that other insecure port (80) we all hopefully don’t use. Port 443 is not just another service. It is, in fact, the gateway to a whole new universe of programming languages, dev frameworks, and web applications.

In the majority of cases, the gateway to that new universe is publicly accessible.

Once an attacker passes through that gateway, a useful way to think about the web applications hosted on the server is that each application is its own service that needs to have its patch level maintained, needs to be configured correctly, and should be removed if it is not in use to reduce the available attack surface.

If you are a web developer you may already think this way, and if anything, you may be guilty of neglecting services on ports other than port 80 or 443. If you are an operations engineer, or an analyst working in a SOC protecting an enterprise network, you may be guilty of thinking about port 443 as just another port you need to secure.

Think of port 443 as a gateway to a new universe that has no access control, with HTTPS providing easy standardized access, and with a wide range of diverse services running on the other side, that provide an attacker with a target and asset-rich environment.

Footnote: We will be exhibiting at Black Hat in Las Vegas this year at booth 2514 between the main entrance and Innovation City. Our entire team of over 30 people will be there. We’ll have awesome swag, as always. Come and say hi! Our team will also be attending DEF CON immediately after Black Hat.

Written by Mark Maunder – Founder and CEO of Wordfence. 

Source :
https://www.wordfence.com/blog/2022/06/securing-port-443/

Three Keys to Modern Cyberdefense: Affordability, Availability, Efficacy

Choosing a cybersecurity vendor can feel like a never-ending series of compromises. But with SonicWall’s portfolio of high-quality solutions — available at industry-leading TCOs and in stock — it doesn’t have to.

(Our previous supply-chain updates can be found here and here.)

If you’ve ever been to a small-town mechanic, chances are you’ve seen the sign: “We offer three types of service here — Good, Fast and Cheap. Pick any two!”

In cybersecurity, this can be framed as “Affordability, Availability and Efficacy,” but the idea is the same — when making your choice, something’s got to give.

The effects of this mentality are sending ripples across the cybersecurity industry. At the recent 2022 RSA Conference, Joe Hubback of cyber risk management firm ISTARI explained that based on his survey, a full 90% of CISOs, CIOs, government organizations and more reported they aren’t getting the efficacy promised by vendors.

Several reasons for this were discussed, but most came back to this idea of compromise —buyers want products now, and they’re facing budget constraints. So, they often believe the vendors’ claims (which tend to be exaggerated). With little actual evidence or confirmation for these claims available, and little time to evaluate these solutions for themselves, customers are left disappointed.

To make the buying process more transparent and objective, Hubback says, vendor solutions should be evaluated in terms of CapabilityPracticalityQuality and Provenance. While his presentation didn’t reference the Affordability-Availability-Efficacy trifecta directly, these ideas are interconnected — and regardless of whether you use either metric or both, SonicWall comes out ahead.

Availability: Supply-Chain Constraints and Lack of Inventory

Order and install times have always been a consideration. But the current climate has led to a paradox in modern cybersecurity: With cyberattack surfaces widening and cybercrime rising, you really ought to have upgraded yesterday. But in many cases, the components you need won’t be in stock for several months.

While many customers are being locked into high-dollar contracts and then being forced to wait for inventory, this isn’t true for SonicWall customers: Our supply chain is fully operational and ready to safeguard your organization.

SonicWall is currently fulfilling 95% of orders within three days.

Procurement Planning & Forecasting

“We’re hearing more often than not that our competitors don’t have the product on the shelf, but we’ve been managing this for nearly two years,” SonicWall Executive Vice President of Operations Yew-Joo Hoe said.

In autumn of 2020, as lead times began to creep up, SonicWall’s operations department immediately began altering internal processes, changing the way it works with suppliers and ships goods, and even re-engineering some products to deliver the same performance with more readily available components.

So now, even amid remarkable growth — 2021 saw a 33% increase in new customer growth, along with a 45% rise in new customer sales — SonicWall is currently fulfilling 95% of orders within three days.

But even as we’ve zeroed in on supply-chain continuity, our dedication to the Provenance of our supply chain has been unwavering. We aim to secure, connect and mobilize organizations operating within approved or authorized regions, territories and countries by ensuring the integrity of our supply chain from start to finish.

SonicWall products are also compliant with the Trade Agreements Act in the U.S., and our practices help ensure SonicWall products aren’t compromised by third parties during the manufacturing process.

Affordability: The Two Facets of TCO

SonicWall’s goal is to deliver industry-leading TCO. But this is more than a marketing message for us — we put it to the test.

SonicWall recently commissioned the Tolly Group to evaluate the SonicWall NSsp 13700, the NSsp 15700, the NSa 2700 and more against equivalent competitor products. Each time, the SonicWall product was named the better value, saving customers thousands, tens of thousands and even hundreds of thousands while delivering superior threat protection.

But we also recognize that the measure of a product’s affordability extends beyond the number on an order sheet, to how much labor that solution requires. Hubback summarized the idea of Practicality as “Is this actually something I can use in my company without needing some kind of Top Gun pilot to fly it and make it work?” With cybersecurity professionals getting harder to find, and their experience becoming more expensive every day, the ideas of Practicality and Affordability have never been so intertwined.

Fortunately, SonicWall has long recognized this association, and we’ve built our products to reduce both the amount of human intervention and the required skill level needed to run our solutions.

Innovations such as Zero-Touch Deployment, cloud-based management, single-pane-of-glass interfaces, simplified policy creation and management, and one-click rollback in the event of a breach have brought increased simplicity to our portfolio without sacrificing performance or flexibility.

Efficacy: How It’s Built and How It Performs

Hubback’s final two criteria, Quality and Capability, describe how well a solution is built, and how well it can do what it promises. Taken together, these form the core of what we think of as Efficacy.

While Quality is the most enigmatic of Hubback’s criteria, it can be reasonably ascertained based on a handful of factors, such as longevity, customer satisfaction and growth.

With over 30 years of experience, SonicWall is a veteran cybersecurity leader trusted by SMBs, enterprises and government agencies around the globe. In the crowded cybersecurity market, this sort of longevity isn’t possible without quality offerings — and our quantity of repeat purchasers and scores of customer case studies attest to the high standards we maintain for every solution we build.

In contrast, Capability can be very easy to judge — if a vendor chooses to put its products to the test. Independent, third-party evaluation is the gold standard for determining whether products live up to their promises. And based on this metric, SonicWall comes out on top.

To provide customers objective information about its performance, SonicWall Capture ATP with RTDMI has been evaluated by third-party testing firm ICSA Labs, an independent division of Verizon. For the past five consecutive quarters, the solution has found 100% of the threats without issuing a single false positive. SonicWall has now earned more perfect scores — and more back-to-back perfect scores — than any other active vendor.

Today, thousands of organizations will shop for new or upgraded cybersecurity solutions. While they may differ in size, industry, use case and more, at the end of the day, they’re all looking for basically the same thing: A reliable solution that performs as advertised, at a price that fits within their budget, that can be up and running as soon as possible.

There will always be those who tell you that you can’t have everything; that the center of this Venn diagram will always be empty. But at SonicWall, we refuse to compromise — and we think you should, too.

Source :
https://blog.sonicwall.com/en-us/2022/06/three-keys-to-modern-cyberdefense-affordability-availability-efficacy/

BEC Attacks: Can You Stop the Imposters in Your Inbox?

BEC attacks are a $1.8 billion dollar racket — and statistically, your business will be targeted sooner rather than later. Watch this webinar to learn how to stop them.

If asked which of the threat types tracked by the FBI causes the most financial damage, most people would say ransomware.

They’d be wrong.

In 2021, the FBI’s Internet Crime Complaint Center (IC3) received 19,954 Business Email Compromise (BEC) reports, with adjusted losses totaling almost $2.4 billion. That’s an average of more than $120,270 per incident, compared with just under $13,200 per incident for ransomware attacks.

Since the FBI began tracking these threats in 2013, tens of billions in financial losses have been recorded, resulting from nearly 170,000 incidents in 178 countries.

So why hasn’t this threat risen to the notoriety of ransomware?

During many ransomware attacks, business operations grind to a halt. When a company loses access to customer information, payment systems and mission-critical applications, it often becomes clear in short order that something is wrong.

But BEC attacks are comparatively silent. Even when these attacks have a huge impact on an organization’s bottom line, operations can generally continue as usual. As a result, businesses frequently opt to keep these attacks out of the public eye to avoid risking reputation damage and loss of trust.

But although ransomware still dominates security news, the growing frequency, volume and cost of BEC attacks have begun attracting more attention.

As a result, BEC attacks have become a top threat concern for many organizations today, according to a recent SonicWall-sponsored white paper by Osterman Research. “How to Deal with Business Email Compromise” reports primary research data from an in-depth customer survey of 119 respondents, each of which has direct knowledge of how their organization is addressing or planning to address the risk of BEC.

The results from this study offer a look at how security influencers and decision-makers are taking BEC into account when formulating their spending plans for the next 12 months. For example, while just 46% of organizations said they considered protecting against BEC attacks “important” or “extremely important” 12 months ago, 76% said they considered it important or extremely important today.

Image describing BEC Importance

80%

Organizations indicating that protecting against BEC attacks in 2023 is of high importance

The data also shows that three-fifths of organizations in the study view protecting against BEC attacks as one of their top five security priorities.

62%

Organizations ranking protecting against BEC attacks as one of their top five priorities.

How BEC Attacks Fly Under the Radar

But what makes BEC attacks so dangerous when compared with other forms of cyberattacks? And why are they harder to stop?

BEC is a specialized type of phishing attack that relies on social engineering. They often use a proven pretexting technique to engineer a quick introduction and establish a believable scenario in order to manipulate the victim to take a specific action.

While these attacks can target employees at any level of an organization, they generally start with an attacker impersonating a person with authority, such as a CEO or CFO, a manager, or a supplier. The attacker uses the authority figure’s identity to start a chain of plausible (but fake) requests to gain monetary payment. This typically involves instructing someone in accounts payable, someone in HR or even someone with a company credit card to pay a fake invoice, transfer funds, send gift cards or make payroll payouts. The urgent tone of these messages encourages the victim to respond or act quickly, bypassing any checks and balances that may be in place.

Compared with other forms of cyberattacks, BEC attacks are among the hardest to detect because the threat signals are far less obvious. Relying on trickery and impersonation, the approach is very subtle, and the actual delivery generally doesn’t use weaponized URLs or malicious attachments, which are easily detected.

In addition, the email content and the delivery mechanism are usually of higher quality and often tailored to target a specific person or persons. With little to no apparent sign of a threat, these messages can bypass most email security filters to reach the inbox — and the absence of any sort of alert, such as a contextual warning advising them to exercise caution, leaves the victim more vulnerable to falling for the scam.

Because so many of these scams are successful, their use has grown dramatically — today, roughly 80% of companies targeted by BEC attacks each year. While there isn’t much you can do to avoid being targeted, there’s plenty you can do to safeguard your organization’s finances. To learn more about BEC attacks and how to stop them, check out our webinar, “Can You Stop the Imposters in Your Inbox?

Source :
https://blog.sonicwall.com/en-us/2022/06/bec-attacks-can-you-stop-the-imposters-in-your-inbox/