Record-Breaking DDoS Attack in Europe

They’re back! 

Or, more accurately, the cybercriminals responsible for July’s record-setting European DDoS attack may have never left. In the weeks following our coverage of the previous incident, the victim (a customer based in Eastern Europe) has been bombarded relentlessly with sophisticated distributed denial-of-service (DDoS) attacks, ultimately paving the way for a new European packets per second (pps) DDoS record.

On Monday, September 12, 2022, Akamai successfully detected and mitigated the now-largest DDoS attack ever launched against a European customer on the Prolexic platform, with attack traffic abruptly spiking to 704.8 Mpps in an aggressive attempt to cripple the organization’s business operations.

Attack breakdown

Adversaries are constantly evolving their techniques, tactics, and procedures to evade detection and maximize disruption, as demonstrated by this ongoing attack campaign. Let’s break down and compare the two record-setting events. 

 July AttackSeptember Attack
Peak pps659.6 Mpps704.8 Mpps
Cumulative Attacks75201
IPs Targeted5121813
VectorUDPUDP
Distribution1 location6 locations
Date of AttackJuly 21, 2022September 12, 2022
Top Scrubbing LocationsHKG, LON, TYOHKG, TYO, LON

Prior to June 2022, this customer only saw attack traffic against its primary data center; however, they recognized the importance of a comprehensive defensive strategy early on, and onboarded their 12 remaining global data centers to the Prolexic platform for peace of mind. This proved highly fortuitous, as the attack campaign expanded unexpectedly, hitting six different global locations, from Europe to North America. These events reflect a growing trend in which adversaries are increasingly hitting deep-reconnaissance targets

Attack mitigation

To thwart an attack of this magnitude and complexity, Akamai leveraged a balanced combination of automated and human mitigation: 99.8% of the assault was pre-mitigated thanks to the customer’s proactive defensive posture, a preemptive security measure implemented by the Akamai Security Operations Command Center (SOCC). Remaining attack traffic and follow-up attacks leveraging different vectors were swiftly mitigated by our frontline security responders. In the wake of increasingly sophisticated DDoS attacks worldwide, many businesses struggle with the staffing of internal security resources, and instead look to Akamai’s SOCC to augment and act as an extension of their incident response team.

The attackers’ command and control system had no delay in activating the multidestination attack, which escalated in 60 seconds from 100 to 1,813 IPs active per minute. Those IPs were spread across eight distinct subnets in six distinct locations. An attack this heavily distributed could drown an underprepared security team in alerts, making it difficult to assess the severity and scope of the intrusion, let alone fight the attack. Sean Lyons, Senior Vice President and General Manager of Infrastructure Security says, “Akamai Prolexic’s DDoS specialization culture, focus on customer infrastructure designs and history are rooted in defending the most complex, multifaceted attacks, and our platform is equipped with purpose-built tooling for rapid threat mitigation, even in the ‘fog of war.’ “

Akamai Prolexic’s DDoS specialization culture, focus on customer infrastructure designs and history are rooted in defending the most complex, multifaceted attacks, and our platform is equipped with purpose-built tooling for rapid threat mitigation, even in the ‘fog of war.

Sean Lyons, Senior Vice President and General Manager of Infrastructure Security
Distinct IP Count Per Minute.

 

Conclusion

Having a proven DDoS mitigation strategy and platform in place is imperative for shielding your business from downtime and disruption. Learn more about Akamai’s industry-leading DDoS solutions and how our advanced attack-fighting capabilities keeps organizations safe from increasingly sophisticated threats. 

Under attack? 

Click here for 24/7 emergency DDoS protection.

Guidance on minimizing DDoS risk

  • Immediately review and implement Cybersecurity and Infrastructure Security Agency (CISA) recommendations. 
  • Review critical subnets and IP spaces, and ensure that they have mitigation controls in place.
  • Deploy DDoS security controls in an always-on mitigation posture as a first layer of defense, to avoid an emergency integration scenario and to reduce the burden on incident responders. If you don’t have a trusted and proven cloud-based provider, get one now. 
  • Proactively pull together a crisis response team and ensure runbooks and incident response plans are up-to-date. For example, do you have a runbook to deal with catastrophic events? Are the contacts within the playbooks updated? A playbook that references outdated tech assets or people who have long left the company isn’t going to help.

For additional information on the steps you can take to protect your organization, please visit the following CISA resources:

How GRC protects the value of organizations — A simple guide to data quality and integrity

Contemporary organizations understand the importance of data and its impact on improving interactions with customers, offering quality products or services, and building loyalty.

Data is fundamental to business success. It allows companies to make the right decisions at the right time and deliver the high-quality, personalized products and services that customers expect.

There is a challenge, though.

Businesses are collecting more data than ever before, and new technologies have accelerated this process dramatically. As a result, organizations have significant volumes of data, making it hard to manage, protect, and get value from it.

Here is where Governance, Risk, and Compliance (GRC) comes in. GRC enables companies to define and implement the best practices, procedures, and governance to ensure the data is clean, safe, and reliable across the board.

More importantly, organizations can use GRC platforms like StandardFusion to create an organizational culture around security. The objective is to encourage everyone to understand how their actions affect the business’s success.

Now, the big question is:

Are organizations getting value from their data?

To answer that, first, it’s important to understand the following two concepts.

Data quality

Data quality represents how reliable the information serves an organization’s specific needs — mainly supporting decision-making.

Some of these needs might be:

  • Operations – Where and how can we be more efficient?
  • Resource distribution – Do we have any excess? Where? And why?
  • Planning – How likely is this scenario to occur? What can we do about it?
  • Management – What methods are working? What processes need improvement?

From a GRC standpoint, companies can achieve data quality by creating rules and policies so the entire organization can use that data in the same ways. These policies could, for example, define how to label, transfer, process, and maintain information.

Data Integrity

Data integrity focuses on the trustworthiness of the information in terms of its physical and logical validity. Some of the key characteristics to ensure the usability of data are:

  • Consistency
  • Accuracy
  • Validity
  • Truthfulness

GRC’s goal for data integrity is to keep the information reliable by eliminating unwanted changes between updates or modifications. It is all about the data’s accuracy, availability, and trust.

How GRC empowers organizations achieve high-quality data

Organizations that want to leverage their data to generate value must ensure the information they collect is helpful and truthful. The following are the key characteristics of high-quality data:

  • Completeness: The expected data to make decisions is present.
  • Uniqueness: There is no duplication of data.
  • Timeliness: The data is up-to-date and available to use when needed.
  • Validity: The information has the proper format and matches the requirements.
  • Accuracy: The data describes the object correctly in a real-world context.
  • Consistency: The data must be the same across multiple databases

A powerful way to make sure the company’s data maintains these six characteristics is by leveraging the power of GRC.

Why?

Because GRC empowers organizations to set standards, regulations, and security controls to avoid mistakes, standardize tasks and guide personnel when collecting and dealing with vital information.

GRC helps organizations answer the following questions:

  • How is the company ensuring that data is available for internal decision and for the clients?
  • Is everyone taking the proper steps to collect and process data?
  • Have redundancies been removed?
  • Is the organization prepared for unexpected events?
  • Does the organization have a backup system?
  • Are the key processes standardized?

Overall, GRC aims to build shared attitudes and actions towards security.

Why every organization needs high-quality data and how GRC helps

Unless the data companies collect is high-quality and trustworthy, there’s no value in it — it becomes a liability and a risk for the organization.

Modern companies recognize data as an essential asset that impacts their bottom line. Furthermore, they understand that poor data quality can damage credibility, reduce sales, and minimize growth.

In today’s world, organizations are aiming to be data-driven. However, becoming a data-driven organization is tough without a GRC program.

How so?

Governance, Risk, and Compliance enable organizations to protect and manage data quality by creating standardized, controlled, and repeatable processes. This is key because every piece of data an organization process has an associated risk.

By understanding these risks, companies can implement the necessary controls and policies for handling and extracting data correctly so that every department can access the same quality information.

Organizations without structured data can’t provide any value, and they face the following risks:

  • Missed opportunities: Many leads are lost because of incomplete or inaccurate data. Also, incorrect data means wrong insights, resulting in missing critical business opportunities.
  • Lost revenue: According to 2021 Gartner’s research, the average financial impact of poor data quality on organizations is $12.9 million annually.
  • Poor customer experience: When data quality is poor, organizations can’t identify customers’ pain points and preferences. As a result, the offer of products or services doesn’t match customers’ needs and expectations.
  • Lack of compliance: In some industries where regulations control relationships or customer transactions, maintaining good-quality data can be the difference between compliance and fines of millions of dollars. GRC is vital to keep compliance in the loop as new regulations evolve worldwide.
  • Increased expenses: A few years ago, IBM’s research showed that businesses lost 3.1 trillion dollars in the US alone. How? Spending time to find the correct data, fixing errors, and just hunting for information and confirmed sources.
  • Misanalysis: Around 84% of CEOs are concerned about the quality of data they are deciding on. Wrong data will lead to bad decisions and ultimately damage operations, finances, HR, and every area within the company.
  • Reputational damage: In today’s world, customers spend a lot of their time reading reviews before making a decision. For instance, if a company fails to satisfy its customers, everyone will know.
  • Reduced efficiency: Poor data quality forces employees to do manual data quality checks, losing time and money.

To sum up:

Having the right processes to manipulate data will prevent organizations from missing business opportunities, damaging their reputation, and doing unnecessary repetitive tasks.

How GRC supports data-driven business and what are the key benefits of clean data

Data-driven businesses embrace the use of data (and its analysis) to get insights that can improve the organization. The efficient management of big data through GRC tools helps identify new business opportunities, strengthen customer experiences, grow sales, improve operations, and more.

For example, GRC helps data-driven businesses by allowing them to create and manage the right policies to process and protect the company’s data.

More importantly, organizations can also control individual policies to ensure they have been distributed and acknowledged accordingly.

In terms of benefits, although clean data has numerous “easy-to-identify” benefits, many others are not easily identified. Trusting data not just improves efficiency and results; it also helps with fundamental, vital factors that affect business performance and success.

What are these factors?

Fundamental benefits:

  • Profits/Revenue
  • Internal communication
  • Employees confidence to share information
  • Company’s reputation
  • Trust

Operational benefits:

  • Efficiency
  • Business outcome
  • Privacy issues
  • Customer satisfaction
  • Better audience-targeting

How GRC protect the value of businesses and their data

In this contemporary world, companies should be measured not only via existing financial measurements but also by the amount of monetizable data they can capture, consume, store and use. More importantly, how the data helps the organization’s internal processes to be faster and more agile.

When people think of high-quality data and big data, they usually associate these two with big organizations, especially technology and social media platforms. However, big quality data gives organizations of any size plenty of benefits.

Data quality and integrity help organizations to:

  • Understand their clients
  • Enhance business operations
  • Understand industry best practices
  • Identify the best partnership options
  • Strengthen business culture
  • Deliver better results
  • Make more money

Using the right GRC platform helps companies create and control the policies and practices to ensure their data is valid, consistent, accurate, and complete — allowing them to get all these benefits.

The key to using GRC tools is that businesses can produce what customers expect on a greater scale and with higher precision and velocity.

Now, what does this have to do with value?

By protecting the value of data, organizations are protecting their overall worth. Indeed, GRC empowers companies to create a culture of value, giving everyone education and agency so they can make better decisions.

Also, GRC helps companies tell better security stories. These stories aim to build trust with customers and partners, enter new markets, and shorten sale cycles.

To summarize:

A better understanding of customers and processes — through data — will lead to better products and services, enhanced experiences, and long-lasting relationships with customers. All these represent growth and more revenue for companies.

What happens when a company’s data is not safe? Can it damage their value?

Trust is a vital component of any interaction (business or personal) and, as such, is mandatory for organizations to protect it — without trust, there is no business.

When data is not protected, the chances of breaches are higher, causing direct and indirect costs.

Direct costs are:

  • Fines
  • Lawsuits
  • Stolen information
  • Compensations
  • Potential business loss

Indirect costs are:

  • Reputation/Trust
  • PR activities
  • Lost revenue from downtime
  • New and better protection

Often, reputation damages can cause long-term harm to organizations, making it hard for them to acquire and maintain business. In fact, reputation loss is the company’s biggest worry, followed by financial costs, system damage, and downtime.

So, what does all this mean?

It’s not just about collecting data; it is also about how companies reduce risks and leverage and protect the data they have. GRC integrates data security, helping organizations be better prepared against unauthorized access, corruption, or theft.

Moreover, GRC tools can help elevate data security by controlling policies, regulations, and predictable issues within the organization.

The bottom line?

When companies can’t get or maintain customers because of a lack of trust, the organization’s value will be significantly lower — or even zero. Unfortunately, this is even more true for small and medium size companies.

How to use GRC to achieve and maintain high-quality data?

Many organizations have trouble managing their data, which, unfortunately, leads to poor decisions and a lack of trust from employees and customers.

Moreover, although companies know how costly wrong information is, many are not working on ensuring quality data through the right processes and controls. In fact, Harward Business Review said that 47% of newly created data records have at least one critical error.

Why is that?

Because there is a lack of focus on the right processes and systems that need to be in place to ensure quality data.

What do poor processes cause?

  • Human errors
  • Wrong data handling
  • Inaccurate formatting
  • Different sets of data for various departments
  • Unawareness of risks
  • Incorrect data input or extraction

Fortunately, GRC’s primary goal is to develop the right policies and procedures to ensure everyone in the organization appropriately manages the data.

GRC aims to create a data structure based on the proper governance that will dictate how people organize and handle the company’s information. As a result, GRC will empower companies to be able to extract value from their data.

That is not everything.

Governance, Risk, and Compliance allow organizations to understand the risks associated with data handling and guide managers to create and distribute the policies that will support any data-related activity.

The following are some of the ways GRC is used to achieve and maintain high-quality data:

  • Data governance: Data governance is more than setting rules and telling people what to do. Instead, it is a collection of processes, roles, policies, standards, and metrics that will lead to a cultural change to ensure effective management of information throughout the organization.
  • Education: Achieving good data quality is not easy. It requires a deep understanding of data quality principles, processes, and technologies. GRC facilitates the education process by allowing the organization to seamlessly implement, share, and communicate its policies and standards to every department.
  • Everyone is involved: Everyone must understand the organization’s goal for data quality and the different processes and approaches that will be implemented. GRC focuses on cultural change.
  • Be aware of threats: When managing data, each process has risks associated with it. The mission of GRC is for the organization to recognize and deal with potential threats effectively. When companies are aware of risks, they can implement the necessary controls and rules to protect the data.
  • One single source of truth: A single source of truth ensures everyone in the organization makes decisions based on the same consistent and accurate data. GRC can help by defining the governance over data usage and manipulation. Furthermore, GRC makes it easy to communicate policies, see who the policy creator is, and ensure employees are acting according to the standards.

Get a free consultation with StandardFusion to learn more about how GRC and data governance can boost your organization’s value.

Source :
https://thehackernews.com/2022/09/how-grc-protects-value-of-organizations.html

High-Severity Firmware Security Flaws Left Unpatched in HP Enterprise Devices

A number of firmware security flaws uncovered in HP’s business-oriented high-end notebooks continue to be left unpatched in some devices even months after public disclosure.

Binarly, which first revealed details of the issues at the Black Hat USA conference in mid-August 2022, said the vulnerabilities “can’t be detected by firmware integrity monitoring systems due to limitations of the Trusted Platform Module (TPM) measurement.”

Firmware flaws can have serious implications as they can be abused by an adversary to achieve long-term persistence on a device in a manner that can survive reboots and evade traditional operating system-level security protections.

CyberSecurity

The high-severity weaknesses identified by Binarly affect HP EliteBook devices and concern a case of memory corruption in the System Management Mode (SMM) of the firmware, thereby enabling the execution of arbitrary code with the highest privileges –

  • CVE-2022-23930 (CVSS score: 8.2) – Stack-based buffer overflow
  • CVE-2022-31640 (CVSS score: 7.5) – Improper input validation
  • CVE-2022-31641 (CVSS score: 7.5) – Improper input validation
  • CVE-2022-31644 (CVSS score: 7.5) – Out-of-bounds write
  • CVE-2022-31645 (CVSS score: 8.2) – Out-of-bounds write
  • CVE-2022-31646 (CVSS score: 8.2) – Out-of-bounds write

Three of the bugs (CVE-2022-23930, CVE-2022-31640, and CVE-2022-31641) were notified to HP in July 2021, with the remaining three vulnerabilities (CVE-2022-31644, CVE-2022-31645, and CVE-2022-31646) reported in April 2022.

It’s worth noting that CVE-2022-23930 is also one of the 16 security flaws that were previously flagged this February as impacting several enterprise models from HP.

SMM, also called “Ring -2,” is a special-purpose mode used by the firmware (i.e., UEFI) for handling system-wide functions such as power management, hardware interrupts, or other proprietary original equipment manufacturer (OEM) designed code.

Shortcomings identified in the SMM component can, therefore, act as a lucrative attack vector for threat actors to perform nefarious activities with higher privileges than that of the operating system.

CyberSecurity

Although HP has released mitigations to address the flaws in March and August, the vendor has yet to push the patches for all impacted models, potentially exposing customers to the risk of cyberattacks.

“In many cases, firmware is a single point of failure between all the layers of the supply chain and the endpoint customer device,” Binarly said, adding, “fixing vulnerabilities for a single vendor is not enough.”

“As a result of the complexity of the firmware supply chain, there are gaps that are difficult to close on the manufacturing end since it involves issues beyond the control of the device vendors.”

The disclosure also arrives as the PC maker last week rolled out fixes for a privilege escalation flaw (CVE-2022-38395, CVSS score: 8.2) in its Support Assistant troubleshooting software.

“It is possible for an attacker to exploit the DLL hijacking vulnerability and elevate privileges when Fusion launches the HP Performance Tune-up,” the company noted in an advisory.

Source :
https://thehackernews.com/2022/09/high-severity-firmware-security-flaws.html

Password Security and the Internet of Things (IoT)

The Internet of Things (IoT) is here, and we’re using it for everything from getting instant answers to random trivia questions to screening visitors at the door. According to Gartner, we were expected to use more than 25 billion internet-connected devices by the end of 2021. But as our digital lives have become more convenient, we might not yet have considered the risks involved with using IoT devices.

How can you keep yourself secure in today’s IoT world, where hackers aim to outsmart your smart home? First we’ll look at how hackers infiltrate the IoT, and then we’ll look at what you can do right now to make sure the IoT is working for you – not against you.

How hackers are infiltrating the Internet of Things

While we’ve become comfortable asking voice assistants to give us the weather forecast while we prep our dinners, hackers have been figuring out how to commandeer our IoT devices for cyber attacks. Here are just a few examples of how cyber criminals are already infiltrating the IoT.

Gaining access to and control of your camera

Have you ever seen someone with a sticker covering the camera on their laptop or smartphone? There’s a reason for that. Hackers have been known to gain access to these cameras and spy on people. This has become an even more serious problem in recent years, as people have been relying on videoconferencing to safely connect with friends and family, participate in virtual learning, and attend telehealth appointments during the pandemic. Cameras now often come with an indicator light that lets you know whether they’re being used. It’s a helpful protective measure, but not a failsafe one.

Using voice assistants to obtain sensitive information

According to Statista, 132 million Americans used a digital voice assistant once a month in 2021. Like any IoT gadget, however, they can be vulnerable to attack. According to Ars Technica, academic researchers have discovered that the Amazon Echo can be forced to take commands from itself, which opens the door to major mischief in a smart home. Once an attacker has compromised an Echo, they can use it to unlock doors, make phone calls and unauthorized purchases, and control any smart home appliances that the Echo manages.

Many bad actors prefer the quiet approach, however, slipping in undetected and stealing information. They can piggyback on a voice assistant’s privileged access to a victim’s online accounts or other IoT gadgets and make off with any sensitive information they desire. With the victim being none the wiser, the attackers can use that information to commit identity fraud or stage even more ambitious cyber crimes.

Hacking your network and launching a ransomware attack

Any device that is connected to the internet, whether it’s a smart security system or even a smart fridge, can be used in a cyber attack. Bad actors know that most people aren’t keeping their IoT gadgets’ software up to date in the same way they do their computers and smartphones, so they take advantage of that false sense of security. Once cyber criminals have gained access to an IoT device, they can go after other devices on the same network. (This is because most home networks are designed to trust devices that are already connected to them.) When these malicious actors are ready, they can launch a ransomware attack that brings your entire digital life to a halt – unless you agree to fork over a hefty sum in bitcoin, that is.

Using bots to launch a DDOS attack

Although most people never notice it, hackers can and do infect IoT devices with malware en masse, gaining control over them in the process. Having turned these zombie IoT devices into bots, the hackers then collectively use them to stage what’s called a botnet attack on their target of choice. This form of assault is especially popular for launching distributed denial of service (DDOS) attacks, in which all the bots in a botnet collectively flood a target with network requests until it buckles and goes offline.

How you can keep your Internet of Things gadgets safe from hackers

So how can you protect your IoT devices from these determined hackers? Fortunately, you can take back control by becoming just a little more cyber smart. Here are a few ways to keep your IoT gadgets safe from hackers:

  • Never use the default settings on your IoT devices. Although IoT devices are designed to be plug-and-play so you can start enjoying them right away, their default settings are often not nearly as secure as they should be. With that in mind, set up a unique username and strong password combination before you start using any new IoT technology. While you’re at it, see if there’s an option to encrypt the traffic to and from your IoT device. If there is, turn it on.
  • Keep your IoT software up to date. Chances are, you regularly install the latest software updates on your computer and phone. Hackers are counting on you to leave your IoT gadgets unpatched, running outdated software with vulnerabilities they can exploit, so be sure to keep the software on your IoT devices up to date as well.
  • Practice good password hygiene. We all slip into bad password habits from time to time – it’s only human – but they put our IoT security at risk. With this in mind, avoid re-using passwords and be sure to set unique, strong passwords on each of your IoT devices. Update those passwords from time to time, too. Don’t store your passwords in a browser, and don’t share them via email. A password manager can help you securely store and share your passwords, so hackers never have a chance to snatch them.
  • Use secure, password-protected WiFi. Cyber criminals are notorious for sneaking onto open, insecure WiFi networks. Once they’re connected, they can spy on any internet activity that happens over those networks, steal login credentials, and launch cyber attacks if they feel like it. For this reason, make sure that you and your IoT devices only use secure, password-protected WiFi.
  • Use multi-factor authentication as an extra layer of protection. Multi-factor authentication (MFA), gives you extra security on top of all the other measures we mentioned above. It asks you to provide one more credential, or factor, in addition to a password to confirm you are who you say you are. If you have MFA enabled and a hacker tries to log in as you, you’ll get a notification that a login attempt is in progress. Whenever you have the option to enable MFA on any account or technology, take advantage of it.

Protect your Internet of Things devices with smart password security

The IoT is making our lives incredibly convenient, but that convenience can be a little too seductive at times. It’s easy to forget that smart home devices, harmless-looking and helpful as they are, can be targeted in cyber attacks just like our computers and phones. Hackers are counting on you to leave your IoT gadgets unprotected so they can use them to launch damaging attacks. By following these smart IoT security tips, you can have the best of both worlds, enjoying your smart life and better peace of mind at the same time.

Learn how LastPass Premium helps you strengthen your password security.

Source :
https://blog.lastpass.com/2022/08/password-security-and-the-iot/

Staying Safe With QR Codes

QR codes link the offline to the online. What started as a way to streamline manufacturing in the automotive industry is now a widespread technology helping connect the physical world to digital content. And as the world embraced remote, no-touch solutions during the Covid pandemic, QR codes became especially popular. QR codes offer convenience and immediacy for businesses and consumers, but cybercriminals also take advantage of them. Here’s what you need to know about QR codes and how to stay safe when using them. 

Why QR codes? 

Due to their size and structure, the two-dimensional black and white barcodes we call QR codes are very versatile. And since most people carry a smartphone everywhere, they can quickly scan QR codes with their phone’s camera. Moreover, since QR codes are relatively easy to program and accessible for most smartphone users, they can be an effective communication tool. 

They also have many uses. For example, QR codes may link to a webpage, start an app or file download, share contact information, initiate a payment, and more. Covid forced businesses to be creative with touchless experiences, and QR codes provide a convenient way to transform a physical touchpoint into a digital interaction. During Covid, QR codes became a popular way to look at restaurant menus, communicate Covid policies, check in for an appointment, and view marketing promotions, among other scenarios.  

As a communication tool, QR codes can transmit a lot of information from one person to another, making it easy for someone to take action online and interact further with digital content.  

What hackers do with QR codes 

QR codes are inherently secure, and no personally identifiable information (PII) is transmitted while you’re scanning them. However, the tricky part about QR codes is that you don’t know what information they contain until you scan them. So just looking at the QR code won’t tell you if it’s entirely trustworthy or not. 

For example, cybercriminals may try to replace or sticker over a QR code in a high-traffic, public place. Doing so can trick people into scanning a malicious QR code. Or, hackers might send malicious QR codes digitally by email, text, or social media. The QR code scam might target a specific individual, or cybercriminals may design it to attract as many scans as possible from a large number of people. 

Once scanned, a malicious QR code may take you to a phishing website, lead you to install malware on your device, redirect a payment to the wrong account, or otherwise compromise the security of your private information.  

In the same way that cybercriminals try to get victims to click phishing links in email or social media, they lure people into scanning a QR code. These bad actors may be after account credentials, financial information, PII, or even company information. With that information, they can steal your identity or money or even break into your employer’s network for more valuable information (in other words, causing a data breach). 

QR code best practices for better security 

For the most part, QR code best practices mirror the typical security precautions you should take on social media and elsewhere in your digital life. However, there are also a few special precautions to keep in mind regarding QR codes. 

Pay attention to context. Where is the code available? What does the code claim to do (e.g., will it send you to a landing page)? Is there someone you can ask to confirm the purpose of the QR code? Did someone send it unprompted? Is it from a business or individual you’ve never heard of? Just like with phishing links, throw it out when in doubt. 

Look closely at the code. Some codes may have specific colors or branding to indicate the code’s purpose and destination. Many codes are generic black and white designs, but sometimes there are clues about who made the code. 

Check the link before you click. If you scan the QR code and a link appears, double-check it before clicking. Is it a website URL you were expecting? Is it a shortened link that masks the full URL? Is the webpage secure (HTTPS)? Do you see signs of a phishing attack (branding is slightly off, strange URL, misspelled words, etc.)? If it autogenerates an email or text message, who is the recipient and what information is it sending them? If it’s a payment form, who is receiving the payment? Read carefully before taking action. 

Practice password security. Passwords and account logins remain one of the top targets of cyber attacks. Stolen credentials give cybercriminals access to valuable personal and financial information. Generate every password for every account with a random password generator, ideally built into a password manager for secure storage and autofill. Following password best practices ensures one stolen password results in minimal damage. 

Layer with MFA. Adding multi-factor authentication to logins further protects against phishing attacks that steal passwords. With MFA in place, a hacker still can’t access an account after using a stolen password. By requiring additional login data, MFA can prevent cybercriminals from gaining access to personal or business accounts. 

QR codes remain a popular marketing and communication tool. They’re convenient and accessible, so you can expect to encounter them occasionally. Though cyber attacks via QR codes are less common, you should still stay vigilant for signs of phishing and social engineering via QR codes. To prevent and mitigate attacks via QR codes, start by building a solid foundation of digital security with a trusted password manager

Source :
https://blog.lastpass.com/2022/08/staying-safe-with-qr-codes/

New UEFI firmware flaws impact over 70 Lenovo laptop models

The UEFI firmware used in several laptops made by Lenovo is vulnerable to three buffer overflow vulnerabilities that could enable attackers to hijack the startup routine of Windows installations.

Lenovo has issued a security advisory disclosing three medium severity vulnerabilities tracked as CVE-2022-1890, CVE-2022-1891, and CVE-2022-1892.

The first is an issue in the ReadyBootDxe driver used in some Lenovo notebook products, while the last two are buffer overflow bugs in the SystemLoadDefaultDxe driver.

This second driver is used in the Yoga, IdeaPad, Flex, ThinkBook, V14, V15, V130, Slim, S145, S540, and S940 Lenovo lines, affecting over 70 individual models.

For more information on the impacted models, check out Lenovo’s product impact table at the bottom of the security advisory.

According to ESET, whose analysts discovered the three bugs and reported them to Lenovo, an attacker could leverage them to hijack the OS execution flow and disable security features.

“These vulnerabilities were caused by insufficient validation of DataSize parameter passed to the UEFI Runtime Services function GetVariable,” explains ESET Research in a tweet.

“An attacker could create a specially crafted NVRAM variable, causing buffer overflow of the Data buffer in the second GetVariable call.”

Variable to trigger exploitation of CVE-2022-1892
Variable to trigger exploitation of CVE-2022-1892 (ESET Research)

To help the cybersecurity community identify and fix similar issues, ESET submitted code improvements to Binarly’s UEFI firmware analyzer ‘efiXplorer,’ which is freely available on GitHub.

Hijacking the OS

UEFI firmware attacks are extremely dangerous because they enable threat actors to run malware early in an operating system’s boot process, even before Windows built-in security protections are activated.

This early level of access allows the malware to bypass or disable OS-level security protections, evade detection, and persist even after a disk is formatted.

While low-skilled remote actors can’t easily exploit these flaws, more capable hackers with access (malware or hands-on) to a targeted machine could leverage the vulnerabilities for silent yet ultra-powerful compromises.

To address the security risk, users of the affected devices are recommended to download the latest available driver version for their products which can be found on Lenovo’s official software download portal.

If you have trouble determining what model you’re using, Lenovo offers an automatic online detector that you can use instead.

Source :
https://www.bleepingcomputer.com/news/security/new-uefi-firmware-flaws-impact-over-70-lenovo-laptop-models/https://www.bleepingcomputer.com/news/security/new-uefi-firmware-flaws-impact-over-70-lenovo-laptop-models/

Spectre and Meltdown Attacks Against OpenSSL

The OpenSSL Technical Committee (OTC) was recently made aware of several potential attacks against the OpenSSL libraries which might permit information leakage via the Spectre attack.1 Although there are currently no known exploits for the Spectre attacks identified, it is plausible that some of them might be exploitable.

Local side channel attacks, such as these, are outside the scope of our security policy, however the project generally does introduce mitigations when they are discovered. In this case, the OTC has decided that these attacks will not be mitigated by changes to the OpenSSL code base. The full reasoning behind this is given below.

The Spectre attack vector, while applicable everywhere, is most important for code running in enclaves because it bypasses the protections offered. Example enclaves include, but are not limited to:

The reasoning behind the OTC’s decision to not introduce mitigations for these attacks is multifold:

  • Such issues do not fall under the scope of our defined security policy. Even though we often apply mitigations for such issues we do not mandate that they are addressed.
  • Maintaining code with mitigations in place would be significantly more difficult. Most potentially vulnerable code is extremely non-obvious, even to experienced security programmers. It would thus be quite easy to introduce new attack vectors or fix existing ones unknowingly. The mitigations themselves obscure the code which increases the maintenance burden.
  • Automated verification and testing of the attacks is necessary but not sufficient. We do not have automated detection for this family of vulnerabilities and if we did, it is likely that variations would escape detection. This does not mean we won’t add automated checking for issues like this at some stage.
  • These problems are fundamentally a bug in the hardware. The software running on the hardware cannot be expected to mitigate all such attacks. Some of the in-CPU caches are completely opaque to software and cannot be easily flushed, making software mitigation quixotic. However, the OTC recognises that fixing hardware is difficult and in some cases impossible.
  • Some kernels and compilers can provide partial mitigation. Specifically, several common compilers have introduced code generation options addressing some of these classes of vulnerability:
    • GCC has the -mindirect-branch-mfunction-return and -mindirect-branch-register options
    • LLVM has the -mretpoline option
    • MSVC has the /Qspectre option

  1. Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel, “Axiomatic Hardware-Software Contracts for Security,” in Proceedings of the 49th ACM/IEEE International Symposium on Computer Architecture (ISCA), 2022.

Posted by OpenSSL Technical Committee May 13th, 2022 12:00 am

Source :
https://www.openssl.org/blog/blog/2022/05/13/spectre-meltdown/

Altaro VM Backup’s Services Explained

Altaro VM Backup has a number of services, handing different types of operations and in certain cases it’s important to know the role of a specific service.

Below you can find an extensive list of each service’s responsibility.

Services on the Altaro VM Backup Console


The list below can also be used for services running on an Altaro Offsite Server machine only.

Display Name                          Description
Altaro VM Backup EngineManagement of backup schedules and configuration
Altaro VM Backup Deduplication ServicePerforms deduplication of data during backup operations
Altaro Offsite Server 6Altaro Offsite Server for v5 & v6 Offsite Copies
Altaro Offsite Server 8Altaro Offsite Server for Offsite Copies
Altaro Offsite Server 8 ControllerProvides an interface between the Offsite Server Management Console UI and the Altaro Offsite Server
Altaro VM Backup API ServiceEnables a RESTful API interface to Altaro VM Backup
Altaro VM Backup Hyper-V Host Agent – N1Facilitates backup and restore operations for Virtual machines on a Hyper-V Host and/or a VMware Host using VDDK 5.5
Altaro VM Backup Hyper-V Host Agent – N2Facilitates backup and restore operations for Virtual machines on a VMware Host using VDDK 6.5 & 6.7
Altaro VM Backup ControllerProvides an interface between the Management Console UI and the Altaro VM Backup Service

Services on a Hyper-V Host added to Altaro VM Backup

DisplayName                          Description
Altaro VM Backup Hyper-V Host Agent – N1Facilitates backup and restore operations for Virtual machines on a Hyper-V Host and/or a VMware Host using VDDK 5.5
Altaro VM Backup Hyper-V Host Agent – N2Facilitates backup and restore operations for Virtual machines on a VMware Host using VDDK 6.5 & 6.7
Altaro Offsite Server 6Altaro Offsite Server for v5 & v6 Offsite Copies
Altaro Offsite Server 8Altaro Offsite Server for Offsite Copies

Source :
https://help.altaro.com/hc/en-us/articles/4416906020625-Altaro-VM-Backup-s-Services-Explained

Log4Shell Still Being Exploited to Hack VMWare Servers to Exfiltrate Sensitive Data

The U.S. Cybersecurity and Infrastructure Security Agency (CISA), along with the Coast Guard Cyber Command (CGCYBER), on Thursday released a joint advisory warning of continued attempts on the part of threat actors to exploit the Log4Shell flaw in VMware Horizon servers to breach target networks.

“Since December 2021, multiple threat actor groups have exploited Log4Shell on unpatched, public-facing VMware Horizon and [Unified Access Gateway] servers,” the agencies said. “As part of this exploitation, suspected APT actors implanted loader malware on compromised systems with embedded executables enabling remote command-and-control (C2).”

In one instance, the adversary is said to have been able to move laterally inside the victim network, obtain access to a disaster recovery network, and collect and exfiltrate sensitive law enforcement data.

Log4Shell, tracked as CVE-2021-44228 (CVSS score: 10.0), is a remote code execution vulnerability affecting the Apache Log4j logging library that’s used by a wide range of consumers and enterprise services, websites, applications, and other products.

Successful exploitation of the flaw could enable an attacker to send a specially-crafted command to an affected system, enabling the actors to execute malicious code and seize control of the target.

Based on information gathered as part of two incident response engagements, the agencies said that the attackers weaponized the exploit to drop rogue payloads, including PowerShell scripts and a remote access tool dubbed “hmsvc.exe” that’s equipped with capabilities to log keystrokes and deploy additional malware.

“The malware can function as a C2 tunneling proxy, allowing a remote operator to pivot to other systems and move further into a network,” the agencies noted, adding it also offers a “graphical user interface (GUI) access over a target Windows system’s desktop.”

The PowerShell scripts, observed in the production environment of a second organization, facilitated lateral movement, enabling the APT actors to implant loader malware containing executables that include the ability to remotely monitor a system’s desktop, gain reverse shell access, exfiltrate data, and upload and execute next-stage binaries.

Furthermore, the adversarial collective leveraged CVE-2022-22954, a remote code execution vulnerability in VMware Workspace ONE Access and Identity Manager that came to light in April 2022, to deliver the Dingo J-spy web shell.

Ongoing Log4Shell-related activity even after more than six months suggests that the flaw is of high interest to attackers, including state-sponsored advanced persistent threat (APT) actors, who have opportunistically targeted unpatched servers to gain an initial foothold for follow-on activity.

According to cybersecurity company ExtraHop, Log4j vulnerabilities have been subjected to relentless scanning attempts, with financial and healthcare sectors emerging as an outsized market for potential attacks.

“Log4j is here to stay, we will see attackers leveraging it again and again,” IBM-owned Randori said in an April 2022 report. “Log4j buried deep into layers and layers of shared third-party code, leading us to the conclusion that we’ll see instances of the Log4j vulnerability being exploited in services used by organizations that use a lot of open source.”

Source :
https://thehackernews.com/2022/06/log4shell-still-being-exploited-to-hack.html

How to Enable a Pre-Boot BitLocker PIN on Windows

If you encrypt your Windows system drive with BitLocker, you can add a PIN for additional security. You’ll need to enter the PIN each time you turn on your PC, before Windows will even start. This is separate from a login PIN, which you enter after Windows boots up.

RELATED: How to Use a USB Key to Unlock a BitLocker-Encrypted PC

A pre-boot PIN prevents the encryption key from automatically being loaded into system memory during the boot process, which protects against direct memory access (DMA) attacks on systems with hardware vulnerable to them. Microsoft’s documentation explains this in more detail.

Step One: Enable BitLocker (If You Haven’t Already)

RELATED: How to Set Up BitLocker Encryption on Windows

This is a BitLocker feature, so you have to use BitLocker encryption to set a pre-boot PIN. This is only available on Professional and Enterprise editions of Windows. Before you can set a PIN, you have to enable BitLocker for your system drive.

Note that, if you go out of your way to enable BitLocker on a computer without a TPM, you’ll be prompted to create a startup password that’s used instead of the TPM. The below steps are only necessary when enabling BitLocker on computers with TPMs, which most modern computers have.

If you have a Home version of Windows, you won’t be able to use BitLocker. You may have the Device Encryption feature instead, but this works differently from BitLocker and doesn’t allow you to provide a startup key.

Step Two: Enable the Startup PIN in Group Policy Editor

Once you’ve enabled BitLocker, you’ll need to go out of your way to enable a PIN with it. This requires a Group Policy settings change. To open the Group Policy Editor, press Windows+R, type “gpedit.msc” into the Run dialog, and press Enter.

Head to Computer Configuration > Administrative Templates > Windows Components > BitLocker Drive Encryption > Operating System Drives in the Group Policy window.

Double-click the “Require Additional Authentication at Startup” Option in the right pane.

Select “Enabled” at the top of the window here. Then, click the box under “Configure TPM Startup PIN” and select the “Require Startup PIN With TPM” option. Click “OK” to save your changes.

Step Three: Add a PIN to Your Drive

You can now use the manage-bde command to add the PIN to your BitLocker-encrypted drive.

To do this, launch a Command Prompt window as Administrator. On Windows 10 or 8, right-click the Start button and select “Command Prompt (Admin)”. On Windows 7, find the “Command Prompt” shortcut in the Start menu, right-click it, and select “Run as Administrator”

Run the following command. The below command works on your C: drive, so if you want to require a startup key for another drive, enter its drive letter instead of c: .

manage-bde -protectors -add c: -TPMAndPIN

You’ll be prompted to enter your PIN here. The next time you boot, you’ll be asked for this PIN.

To double-check whether the TPMAndPIN protector was added, you can run the following command:

manage-bde -status

(The “Numerical Password” key protector displayed here is your recovery key.)

How to Change Your BitLocker PIN

To change the PIN in the future, open a Command Prompt window as Administrator and run the following command:

manage-bde -changepin c:

You’ll need to type and confirm your new PIN before continuing.

How to Remove the PIN Requirement

If you change your mind and want to stop using the PIN later, you can undo this change.

First, you’ll need to head to the Group Policy window and change the option back to “Allow Startup PIN With TPM”. You can’t leave the option set to “Require Startup PIN With TPM” or Windows won’t allow you to remove the PIN.

Next, open a Command Prompt window as Administrator and run the following command:

manage-bde -protectors -add c: -TPM

This will replace the “TPMandPIN” requirement with a “TPM” requirement, deleting the PIN. Your BitLocker drive will automatically unlock via your computer’s TPM when you boot.

To check that this completed successfully, run the status command again:

manage-bde -status c:

If you forget the PIN, you’ll need to provide the BitLocker recovery code you should have saved somewhere safe when you enabled BitLocker for your system drive.

Source :
https://www.howtogeek.com/262720/how-to-enable-a-pre-boot-bitlocker-pin-on-windows/