Key Insights into Healthcare Compliance in 2023

27.07.2023

Healthcare compliance in 2023 is being driven by a combination of increased regulatory scrutiny, technological advancements, and a growing focus on patient-centric care. As a result, organizations are increasingly expected to adhere to stringent regulations, safeguard patient data, maintain ethical practices, and ensure the delivery of high-quality care.

This necessitates a proactive approach to compliance, with healthcare providers and institutions striving to stay ahead by adopting robust systems, training staff, and embracing innovative solutions to mitigate risks and protect both patients and their reputation.

What is Healthcare Compliance?

Compliance is the adherence to regulations, guidelines, and ethical standards aimed at safeguarding patient privacy, data security, and overall quality of care. It involves staying up to date with evolving laws, implementing necessary measures, and ensuring organizational practices align with industry standards. 

Healthcare Compliance Regulations

Healthcare compliance regulations include:

  • The Health Insurance Portability and Accountability Act (HIPAA), which sets standards for protecting patient health information and establishes penalties for non-compliance.
  • The Affordable Care Act (ACA), which focuses on improving healthcare access and quality while combating fraud and abuse. 
  • The Centers for Medicare and Medicaid Services (CMS), which plays a crucial role by overseeing programs and regulations related to these government-sponsored healthcare services.

Compliance with these regulations is essential for healthcare organizations to maintain trust, avoid penalties, and provide high-quality care.

Who Regulates the Healthcare Industry?

The healthcare industry is regulated by several entities, including government agencies and regulatory bodies. In the United States, the primary regulators include:

  • The U.S. Department of Health and Human Services (HHS), which oversees several agencies responsible for healthcare regulation, such as the Centers for Medicare and Medicaid Services (CMS) and the Office for Civil Rights (OCR).
  • The Food and Drug Administration (FDA) who regulate drugs, medical devices, and food safety
  • The Drug Enforcement Administration (DEA) who monitor controlled substances. State health departments and professional boards.

What are the Most Important Healthcare Regulations?

Several regulations stand out as the most important in the healthcare industry as follows:

The Social Security Act 

The Social Security Act, enacted in 1935, is a landmark piece of legislation in the United States that established the Social Security program. It provides benefits to retirees, disabled individuals, and surviving family members, aiming to alleviate poverty and provide economic security.

The Health Insurance Portability and Accountability Act (HIPAA) 

The Health Insurance Portability and Accountability Act (HIPAA), enacted in 1996, safeguards the privacy and security of individuals’ health information. It sets standards for the electronic exchange of health information, ensures the confidentiality of medical records, and grants patients certain rights over their health data.

The Health Information Technology for Economic and Clinical Health ACT (HITECH)

The Health Information Technology for Economic and Clinical Health Act (HITECH) was passed in 2009 as part of the American Recovery and Reinvestment Act. It promotes the adoption and meaningful use of electronic health records (EHRs) and strengthens privacy and security protections for health information.

The False Claims Act 

The False Claims Act is a federal law that dates back to the Civil War era. It allows private individuals, known as whistleblowers, to file lawsuits on behalf of the government against those who defraud federal programs, such as Medicare and Medicaid, by submitting false claims for payment.

The Anti-Kickback Statute 

The Anti-Kickback Statute prohibits the exchange of anything of value in return for referrals or generating business for federal healthcare programs. This law aims to prevent kickbacks and improper financial arrangements that could compromise medical judgment and inflate healthcare costs.

The Physician Self-Referral Law

The Physician Self-Referral Law, also known as the Stark Law, prohibits physicians from referring Medicare or Medicaid patients to entities in which they have a financial interest, with exceptions. This law prevents potential conflicts of interest that could influence medical decision-making and billing practices.

The Patient Protection and Affordable Care Act

The Patient Protection and Affordable Care Act (ACA), passed in 2010, is a comprehensive healthcare reform law. It expands access to health insurance, implements consumer protections, such as prohibiting denial of coverage due to pre-existing conditions, and introduces various cost-containment measures.

The Interoperability and Patient Access Final Rule 

The Interoperability and Patient Access Final Rule, issued in 2020, is part of the 21st Century Cures Act. It requires healthcare providers, health plans, and health information technology developers to improve interoperability and facilitate patient access to their electronic health information.

The Hospital Price Transparency Final Rule

The Hospital Price Transparency Final Rule, implemented in 2021, requires hospitals to disclose their standard charges for healthcare services in a machine-readable format. This rule aims to increase price transparency, empower patients to make informed decisions and promote competition in the healthcare market.

Why is Healthcare Compliance so Important?

Healthcare compliance is necessary due to the following main reasons:

First and foremost, it ensures that healthcare organizations operate in accordance with applicable laws, regulations, and industry standards. Compliance helps protect patient safety and privacy by ensuring that healthcare providers follow protocols for handling sensitive health information, maintaining secure systems, and implementing proper safeguards against data breaches.

By adhering to compliance regulations, healthcare organizations demonstrate their commitment to maintaining the highest standards of care and ethical practices.

Moreover, healthcare compliance helps mitigate legal and financial risks. Non-compliance can result in severe consequences, such as hefty fines, penalties, and legal actions, which can significantly impact an organization’s reputation and financial stability. By actively engaging in compliance efforts, healthcare organizations can minimize the risk of violations, protect their reputation, and avoid potential litigation.

Finally, healthcare compliance promotes a culture of integrity, accountability, and transparency. It encourages healthcare professionals to adhere to ethical guidelines, maintain accurate records, and engage in responsible billing practices.

Compliance programs also promote internal monitoring, auditing, and reporting mechanisms, fostering an environment where unethical or fraudulent activities are detected and addressed promptly. 

Ultimately, healthcare compliance helps ensure the delivery of high-quality care, protects patients’ rights, and maintains the trust of individuals seeking healthcare services.

Privacy & Quality Patient Care

Protecting patient privacy is essential for ensuring quality patient care. When patients trust that their personal health information will remain confidential, they are far more likely to share vital details with healthcare providers, leading to accurate diagnoses and tailored treatment plans.

By implementing robust privacy measures, healthcare organizations can uphold patient confidentiality, enhance trust, and maintain the integrity of the patient-provider relationship, improving the quality of care delivered.

Healthcare Worker Protection

By implementing measures such as appropriate staffing levels, comprehensive training, and access to personal protective equipment, healthcare organizations can protect their workers from occupational hazards, minimize the risk of injuries or infections, and promote a healthy work environment.

Safeguarding healthcare workers’ physical and mental well-being contributes to their ability to provide quality care and ensures the sustainability of the healthcare workforce.

Avoiding Fraud

Healthcare fraud involves deceptive practices such as submitting false claims, providing unnecessary services, or billing for services not rendered. By implementing robust fraud detection and prevention mechanisms, such as auditing processes and internal controls, healthcare organizations can identify and prevent fraudulent activities.

This helps protect valuable healthcare resources, ensure that funds are directed towards legitimate patient care, and maintain the public’s trust in the healthcare system.

Staying Compliant with Regulations

By staying compliant, healthcare organizations mitigate legal and financial risks, maintain their reputation, and demonstrate a commitment to providing high-quality care while upholding ethical standards. Regular monitoring, training, and robust compliance programs are key to achieving and maintaining regulatory compliance.

10 Best Practices for Creating a Healthcare Compliance Plan

By implementing key strategies, organizations can establish a strong foundation for compliance and risk management as follows:

1. Designate a Chief Compliance Officer

Designate a CCO who has the authority and resources to develop, implement, and oversee the compliance program, ensuring adherence to regulatory requirements and promoting a culture of compliance throughout the organization.

2. Educate the Employees

Employees should be knowledgeable about their roles and responsibilities in maintaining compliance, including privacy and security of patient information, ethical billing practices, and reporting mechanisms for potential compliance violations.

3. Build an Effective Compliance Reporting System

Clear reporting channels, such as hotlines or anonymous reporting mechanisms, should be in place to capture and address compliance-related issues promptly.

4. Build a Risk Mitigation Plan

Conduct regular risk assessments to proactively identify vulnerabilities, implement controls and mitigation strategies, and monitor ongoing compliance to minimize the likelihood of compliance breaches.

5. Ensure Cybersecurity at Every Level

Implement robust security measures, such as encryption, access controls, and regular security audits to safeguard electronic health records and other sensitive information from unauthorized access or breaches.

6. Make Sure Your Telemedicine Services Are Secure

Implement secure telemedicine platforms, encryption protocols, and HIPAA-compliant telehealth practices to maintain compliance while delivering remote care.

7. Use a Compliant Talent Acquisition Process

Establish a compliant talent acquisition process that includes thorough background checks, verification of licenses and credentials, and adherence to equal employment opportunity guidelines. By ensuring compliance in the hiring process, organizations can minimize the risk of employing individuals with a history of compliance violations.

8. Develop Very Clear Policies

Put clear and comprehensive policies and procedures in place that cover all aspects of healthcare compliance, including privacy, security, billing, and ethical conduct. Policies should be readily accessible, regularly reviewed, and updated to reflect changes in regulations or organizational practices.

9. Conduct Regular Compliance Audits

Carry out regular compliance audits to assess the effectiveness of the compliance program, identify areas for improvement, and ensure ongoing adherence to regulatory requirements. Audits should include internal reviews, assessments of documentation and procedures, and external audits if necessary.

10. Address Noncompliance Swiftly

Establish protocols for investigating and resolving compliance violations, implementing corrective actions, and ensuring accountability. Timely response and appropriate disciplinary measures demonstrate a commitment to compliance and discourage further non-compliance.

The Repercussions of Noncompliance

Noncompliance with healthcare regulations can have severe consequences which can include financial penalties, legal actions, damage to reputation, loss of trust, and potential harm to patients. Subsequently, it is essential for healthcare organizations to prioritize compliance and proactively mitigate risks. 

To help ensure your organization’s compliance, we recommend using a comprehensive compliance checklist our HIPAA Compliance Checklist.

Source :
https://www.perimeter81.com/blog/compliance/healthcare-compliance

What is Firewall Design?

27.07.2023

firewall is a network security device designed to monitor and control network traffic flow based on predetermined security rules. It acts as a barrier, selectively allowing or blocking incoming and outgoing network connections to protect the internal network from external threats. Essentially, a firewall ensures that only authorized and secure connections are made by filtering network traffic based on defined criteria.

Firewalls operate using a combination of rule-based filtering and packet inspection techniques. When network traffic passes through a firewall, it undergoes scrutiny based on various parameters, including source and destination IP addresses, ports, protocols, and the state of connections.

The Importance of Firewall Design for Network Security

So how does firewall design impact your network security? Here are the top reasons.

Protecting Against Unauthorized Access

One of the primary functions of firewall design is to prevent unauthorized access to an organization’s network resources. Firewalls act as gatekeepers, examining incoming and outgoing network traffic and enforcing access control policies based on predefined rules.

Identifying and configuring firewalls carefully will help organizations prevent unauthorized access by ensuring that only legitimate connections are allowed.

Mitigating Cyber Threats

Firewalls employ packet filtering, deep packet inspection, and stateful inspection to analyze network traffic and identify potential threats. They can detect and block suspicious or malicious traffic. Organizations can reduce the risk of successful attacks and protect their networks and sensitive information.

Preventing Data Breaches

Data breaches can severely affect organizations, resulting in financial losses, reputational damage, and legal liabilities. Firewall design prevents data breaches by monitoring and controlling network traffic. Also, firewall design principles advocate for network segmentation, which helps contain potential breaches and limit the impact on critical assets.

Enforcing Security Policies

Firewall design allows organizations to enforce and manage their security policies effectively. Organizations can align firewall configurations with security objectives and compliance requirements by defining rules and access controls.

Firewall policies can be customized based on traffic, user roles, and data sensitivity. Regular review and updates of firewall policies can ensure the effectiveness of their security measures.

Compliance with Regulations

Compliance with industry regulations and data protection laws is crucial for organizations across various sectors. Firewall design plays a significant role in achieving compliance by implementing security controls and access restrictions mandated by regulatory frameworks.

Organizations can demonstrate their commitment to protecting sensitive data by enforcing policies in line with GDPR, HIPAA, or PCI DSS regulations.

Characteristics of a Firewall

1. Physical Barrier

A firewall is a physical barrier between an internal network and the external world. It inspects incoming and outgoing network traffic, allowing or blocking connections based on predetermined security rules. By serving as a protective boundary, a firewall helps safeguard the internal network from unauthorized access and potential threats.

2. Multi-Purpose

A firewall is a versatile security tool that performs various functions beyond basic network traffic filtering. It can support additional security features, such as intrusion detection/prevention systems, VPN connectivity, antivirus scanning, content filtering, and more. This multi-purpose nature enables firewalls to provide comprehensive security measures tailored to an organization’s needs.

3. Security Platform

Firewalls serve as a security platform by integrating different security mechanisms into a unified system. They combine packet filtering, stateful inspection, application-level gateways, and other security technologies to protect against cyber threats. By functioning as a consolidated security platform, firewalls offer a layered defense strategy against potential attacks.

4. Flexible Security Policies

Firewalls offer flexible security policy implementation, allowing organizations to define and enforce customized rules and access controls. These policies can be based on various factors, including source/destination IP addresses, ports, protocols, user identities, and time of day.

With the ability to tailor security policies to specific requirements, organizations can effectively manage network traffic and adapt to evolving security needs.

5. Access Handler

A firewall acts as an access handler by controlling and managing network access permissions. It determines what connections are allowed or denied using predefined rules and policies. By regulating access to network resources, a firewall ensures that only authorized users and devices can establish connections, reducing the risk of unauthorized access and potential data breaches.

Firewall Design Principles

It is important to remember certain principles when designing a firewall to ensure its effectiveness in safeguarding network security. These principles serve as guidelines for architects and administrators, helping them design robust firewall architectures that protect against unauthorized access and potential threats.

  • Defense-in-Depth Approach: A fundamental principle in firewall design is adopting a defense-in-depth strategy. Rather than relying solely on a single firewall, organizations should deploy multiple firewalls, intrusion detection/prevention systems, and other security measures to create a layered defense architecture. 
  • Least Privilege Principle: The principle of least privilege is crucial in firewall design to minimize the potential attack surface. It advocates granting the minimum level of privileges and access necessary for users and systems to perform their required functions. This minimizes exposure to potential threats and reduces the risk of unauthorized access or malicious activities.
  • Rule Set Optimization: Firewall rule set optimization is another important design principle. As firewalls employ rule-based filtering mechanisms, regularly reviewing and optimizing the rule sets is essential. This involves removing unnecessary or redundant rules, consolidating overlapping rules, and organizing rules logically and efficiently. 
  • Secure Default Configurations: Firewall design should prioritize secure default configurations to ensure a strong foundation for network security. Default settings often allow all traffic, leaving the network vulnerable to attacks. Secure defaults are a starting point for designing effective firewall policies and help prevent misconfigurations that may lead to security gaps.
  • Regular Monitoring and Updates: Monitoring and updating firewalls are critical principles in firewall design. Regular monitoring allows organizations to promptly detect and respond to security incidents, identify unauthorized access attempts, and analyze network traffic patterns. 

7 Steps to Designing the Perfect Firewall For Your Business

Designing an effective firewall for your business requires careful planning and consideration of specific requirements. This section presents a step-by-step approach to creating the perfect firewall. 

1. Identify Requirements

The first step in designing a firewall is to identify the specific requirements of your business. This involves understanding the network topology, the types of applications and services in use, the security objectives, and any regulatory or compliance requirements.

2. Outline Policies

The next step is to outline the firewall policies based on the requirements. You can decide which traffic is allowed or denied for each source and destination address, port, protocol, and role using rules and access controls.

3. Set Restrictions

Setting restrictions involves configuring the firewall to enforce the outlined policies. This may include blocking certain types of traffic, implementing intrusion prevention mechanisms, enabling VPN connectivity, or configuring content filtering rules.

4. Identify the Deployment Location

This involves determining whether the firewall will be placed at the network perimeter, between internal segments, or within a demilitarized zone (DMZ), depending on the network architecture and security requirements.

5. Identify Firewall Enforcement Points

Identifying firewall enforcement points involves determining where the firewall will be implemented within the network topology. This includes considering factors such as the location of critical assets, the flow of network traffic, and the points where the firewall can effectively inspect and control the traffic.

6. Identify Permitted Communications

As part of the design process, it is important to identify the permitted communications the firewall will allow. This includes identifying the necessary communication channels for business-critical applications, remote access requirements, and any specific exceptions to the firewall policies.

7. Launch

Lastly, launch the firewall and ensure all configurations are correct. This includes testing the firewall’s functionality, monitoring its performance, and conducting regular audits to ensure compliance with security policies and industry best practices.

Safeguarding Networks with Strong Firewall Design – Protect Your Business Today

Take charge of your network security today and safeguard your business from cyber threats. Don’t wait for a security breach to occur—proactively design and deploy a powerful firewall that acts as a shield, protecting your network and ensuring the continuity of your operations.

Take the first step towards a secure network—consult with experts, assess your requirements, and design a robust firewall solution that suits your business needs. Protect your valuable assets, preserve customer trust, and stay one step ahead of potential threats with a well-designed firewall architecture. Safeguard your network and fortify your business with Perimeter 81’s Firewall as a Service.

FAQs

What are 3 common firewall designs?

– Packet Filtering Firewalls: They inspect packets based on rules, operating at Layer 3 of the OSI model.
– Stateful Inspection Firewalls: These track network connections and analyze entire network packets.
– Next-Generation Firewalls (NGFW): NGFWs combine traditional firewall features with intrusion prevention, application awareness, and deep packet inspection.

What are the four basic types of firewall rules?

1. Allow: This rule permits specific traffic to pass through the firewall based on defined criteria, such as source/destination IP addresses, ports, and protocols.
2. Deny: This rule blocks specific traffic from passing through the firewall based on defined criteria. Denied traffic is typically dropped or rejected.
3. NAT (Network Address Translation): NAT rules modify network packets’ source or destination IP addresses.
4. Session Control: These rules define how the firewall handles and manages sessions.

What are the 4 common architectural implementations of firewalls?

1. Network-based Firewalls: Positioned at the network’s edge, they offer centralized security, filtering and monitoring all inbound and outbound traffic.
2. Host-based Firewalls: These are installed directly on devices like servers or workstations, providing tailored protection and control over device-specific traffic.
3. Virtual Firewalls: They ensure security within virtualized environments. Apart from protecting virtual machines, they control and isolate network traffic between VMs.
4. Cloud-based Firewalls: Positioned within cloud environments, they ensure robust security for cloud-based applications and infrastructure, balancing scalability and centralized control.

Source :
https://www.perimeter81.com/blog/network/firewall-design

Exploring Firewall Design Principles for Secure Networks

27.07.2023

Firewall design principles are the bedrock of network security, providing a robust defense mechanism against both internal and external threats. These principles help in developing a security policy that can enforce stringent rulesets and offer layered protection for your private network.

Firewall design principles are crucial for maintaining a secure network. There are different types of firewalls like packet filter firewalls, stateful inspection firewalls, and proxy firewalls along with their unique features.

If you want to be able to design your firewall the right way you need to master the different key components in firewall design such as policies, rulesets, and interfaces, and learn the advanced features like Intrusion Prevention Systems (IPS) and Deep Packet Inspection (DPI) and be aware of best practices to implement these designs effectively. 

This comprehensive understanding of firewall design principles will empower you to make informed decisions about your organization’s network security infrastructure.

What are Firewall Design Principles?

The realm of network security is complex and vast, with firewalls serving as the critical line of defense against cyber threats. They’re like the bouncers of the internet, keeping the bad guys out and letting the good guys in.

The basic concept behind firewall design principles

A firewall’s primary role is to be the gatekeeper of your network, deciding who gets in and who stays out. It’s like having a very selective doorman at an exclusive venue, only allowing those with the right credentials to enter.

The fundamental principle behind firewall design is simple: filter, filter, filter. The firewall looks at things like IP addresses, domain names, and protocols to decide if a data packet is worthy of entering your network.

Why understanding firewall design principles is essential for network security

In today’s digital age, where cyber threats are increasingly common, having a solid firewall is a must. 

Understanding firewall design principles is like having a secret weapon in your security arsenal. It’s like knowing all the tricks of the trade, so you can configure your firewall to be a fortress against cyber attacks. 

Staying ahead of malicious actors is possible if you understand their strategies and configure your firewall in a way that best protects against cyber threats.

No single approach will suffice when it comes to firewalls; you need to tailor yours to suit your individual needs. Take the time to understand the core firewall design principles and make your firewall the ultimate defender of your network.

Five Principles of Firewall Design

Firewall design principles are critical to protect your private network and to maximize your network security. Here are five principles you can use when establishing your firewall and implementing security policies.

1. Develop a Solid Security Policy

Having a proper security policy is an essential part of designing your firewall. Without it in place, it’s a headache to allow users to navigate the company network and restrict intruders. This proper security policy will also help you know the proper protocol if there is a security breach.

A properly developed security policy can protect you. A solid security policy includes guidance on proper internet protocol, preventing users from using devices on public networks, and recognizing external threats.

Don’t overlook a properly developed security policy! Also, remember that simply having a security policy is only the first step. In addition to establishing security policies, you should have frequent training and refreshers for all employees. Have policies in place for reporting security threats and hold everyone in the organization accountable. 

2. Use a Simple Design

Keep it simple. If you have a complex design, you’ll need to find complex solutions anytime a problem arises. A simple design helps alleviate some of the pain you may feel when a problem comes up (and it inevitably will at some point). Also, complex designs are more prone to configuration errors that can open paths for external attacks.

3. Choose the Right Device

You need to have the right tools to do the job. If you use the wrong device, you have the wrong tools and are at a disadvantage from the start. Using the right part that fits your design will help you create the best firewall for your network.

4. Build a Layered Defense

Firewalls should have layers to properly protect your network. A multi-layered defense creates a complicated protection system that hackers can’t easily break through. Creating layers builds an effective defense and will keep your network safe.

5. Build Protection Against Internal Threats

Don’t just focus on attacks from external sources. A large percentage of data breaches are the result of internal threats and carelessness. Mistakes made by those internally can open your network to attacks from outside sources. Implementing proper security solutions for your internal network can help prevent this from happening.

Something as simple as accessing a web server can expose your network if you aren’t protected internally as well as you are externally.

As you design your firewall, remember these firewall design principles: have a properly developed security policy, keep it simple, use the right tools, build a layered defense, and protect yourself from internal threats.

Types of Firewalls

Different firewalls have varying characteristics and applications, so it’s essential to understand them in order to select the most suitable firewall for your network. Knowing these differences is crucial for picking the right firewall for your network’s needs.

Packet-Filtering Firewalls: Basic but Effective

A packet-filtering or packet-filter firewall does what it says—filters data packets based on predetermined rules. It checks packet headers to see what’s allowed in. 

Simple, but not enough against fancy cyber threats.

Circuit-level Gateways

A circuit-level gateway can be a stand-alone system or it can be a function performed as a gateway for certain applications. A circuit-level gateway does not allow for end-to-end connection but rather sets up two connections with an inner host and a user with an outer host. 

Stateful Inspection Firewalls

Stateful inspection firewalls go beyond packet headers. They keep track of active connections and use that info to validate packets. It remembers who and what is allowed – efficient and effective.

Application-level Gateways (a.k.a. Proxy Firewalls)

Proxy firewalls (also known as application-level gateways) act as intermediaries between internal networks and the Internet. They hide internal IP addresses and offer content filtering. 

The choice among these types depends on your network’s needs relating to size, complexity, and sensitivity. Remember, they often work together in layers; just make sure they’re properly configured and regularly updated. 

Next-Gen Firewalls

Next-gen firewalls are the next step in firewall security. These can protect against advanced malware and application-layer attacks. They typically include:

  • Firewall capabilities like stateful inspection.
  • Integrated intrusion prevention.
  • Application awareness and control to see risky apps.
  • Threat intelligence sources.
  • Upgrade paths to include future information feeds.
  • Techniques to continue evolving.

Now, we’ll explore constructing an efficient firewall.

Key Components in Firewall Design

When it comes to designing a firewall, there are certain key components that should be taken into account. Let’s break it down:

Importance of Policies

Security policies are like the rulebook for your firewall. They decide what traffic gets in and what gets blocked. You want to make sure only the right traffic makes it through.

A proper security policy will help you in both the short term and long term. Make sure to enforce security policies to keep yourself protected.

Rulesets – Defining What Gets Through

Rulesets are like the enforcers of the policies. They make sure the regulations are met. Visualize a vigilant sentry, patrolling your network for any untoward activity and taking swift action when needed. Rulesets often include elements like source address, source port, destination address, and destination port.

Interfaces – Connecting Networks Securely

Interfaces are the gateways between networks. They’re like the bridges that connect different parts of your network. Make sure these bridges are secure, so no unwanted guests can sneak in.

To recap, when it comes to firewall design, policies, rulesets, and interfaces are the key players. They work together to keep your network safe and sound.

Advanced Features in Modern Firewall Designs

In the ever-evolving world of cybersecurity, firewalls have leveled up to tackle sophisticated threats. 

Let’s dive into two cool advancements: Intrusion Prevention Systems (IPS) and Deep Packet Inspection (DPI).

Intrusion Prevention Systems (IPS): Proactive Defense Mechanism

An Intrusion Prevention System (IPS) is like a superhero embedded in modern firewalls. It doesn’t just detect and block known threats; it goes the extra mile.

IPS keeps a watchful eye on network traffic, sniffing out any suspicious activity or weird anomalies. When it spots trouble, it swiftly shuts it down.

Deep Packet Inspection (DPI): Detailed Threat Analysis

Deep Packet Inspection (DPI) adds an extra layer of security by giving data packets a thorough check-up.

  • DPI looks at both the header info and the payload content of each packet.
  • It’s like a detective, figuring out the nature of incoming traffic.
  • If it finds anything fishy, like malware or protocol non-compliance, it sounds the alarm so you can take action.

These advanced features make modern firewalls tougher than traditional ones. But remember, no single solution can guarantee complete security. 

They’re advanced elements of your security squad, but they need backup from a solid information security policy management strategy.

Four Types of Access Control

There are four techniques that firewalls generally use to control access and security policy. 

  • User Control: Control access to a service according to which user is attempting to access the service.
  • Service Control: Determines what services can be accessed to keep your network secure.
  • Direction Control: Determines in which direction a service can be accessed, both inbound and outbound.
  • Behavior Control: Controls how services are accessed and used.

Advantages of Firewalls

There are several advantages of implementing a firewall to protect your network. Here are some of the biggest benefits you’ll see:

Block Infected Files

You come across threats when you browse the internet, or you might even have them delivered to your mailbox. Firewalls help block those files from breaking through your system.

Stop Unwanted Visitors

You don’t want anyone snooping through your system. This can lead to long-term security problems. Your firewall will detect unwanted visitors and keep them out.

Accessing public networks can put you at a higher risk of security breaches, but having a firewall can block access to your sensitive data.

Safeguards Your IP Address

This will protect your network as you browse the internet on a web server so you aren’t exposed to those who want to cause problems for your network. This can be set up with a virtual private network (or VPN) which acts as a network security device to keep your network secure.

Prevents Email Spamming

Security policies should help protect the employees on your network from malware or phishing attempts, but in case a mistake is made, a proper firewall can help prevent spam emails from getting through your system.

Stops Spyware

When using a web server, you can come across files that will install spyware on your system. A firewall will easily block access so you don’t have to worry about being exposed to outside threats.

Limitations of Firewalls

For as many advantages as you gain from having a firewall, there are still some limitations it will create on your server.

Internal Loose Ends

As a firewall can easily block access to external threats, it can struggle to prevent internal attacks. If you have an employee who accidentally cooperates with an attacker, you may still be exposed internally.

Infected Files

Because of the sheer number of files your network may come across, it’s impossible for every file to be reviewed by your network security device. 

Cost

It can be expensive to set up a firewall that protects your system, and the bigger your network gets, the more expensive it can become. That said, even a single large data breach could cost your company dearly, so having the proper protection in place is an investment worth making.

User Restriction

Sometimes firewalls can make it more difficult for users to access the systems they need to do their work. This can impact productivity when certain users need to access multiple applications.

System Performance

Implementing a firewall takes up a lot of bandwidth and using the RAM and power supply that may need to go to other devices can impact your system’s performance.

Firewall Delivery Methods

There are several different delivery methods for a firewall. Here are some of the most common delivery methods that are used:

  • Software firewalls: A software firewall is a type of software that runs on your computer. It is mainly used to protect your specific device.
  • Hardware firewalls: This is a device that is specifically used to implement a firewall. This can protect your entire network.
  • Cloud firewalls: These firewalls are hosted in the cloud and are also called firewall-as-a-service (FWaaS).

Boost Your Firewall Design with Perimeter 81

Understanding firewall design principles is crucial for network security. Different types of firewalls and their key components help create a strong defense against cyber threats. 

Packet filtering firewalls provide a basic yet effective approach, while stateful inspection firewalls consider the context of network traffic. Proxy firewalls bridge the gap between internal and external networks.

When implementing firewall designs, follow best practices like applying the least privilege principle and regularly updating configurations. Advanced features like intrusion prevention systems (IPS) and deep packet inspection (DPI) enhance your proactive defense mechanism. 

Incorporating these firewall design principles protects networks from unauthorized access and potential security breaches. Learn more about Perimeter 81’s Firewall as a Service.

FAQs

What are the four characteristics used by firewalls?

The four basic types of firewall rules include – allow all (permissive), block all (restrictive), specific permission-based access controls, and content filters

What are the 5 steps of firewall protection?

The five steps of firewall protection include – securing your firewall, building firewall zones & IP addresses, configuring access, configuring firewall services, testing the configuration.

What is the architecture of a firewall?

The four most commonly implemented architectures in firewall design principles include packet-filtering routers, application gateways, circuit-level gateways, and multilayer inspection firewalls. 

How do you design firewall architecture?

The principles of firewall design include clear policies, traffic control rulesets, secure network connections, and advanced features like Intrusion Prevention Systems (IPS) and Deep Packet Inspection (DPI). 

How many layers do firewalls have?

It’s common to see 3-layer or 7-layer firewalls. A 3-layer firewall is used for a network while a 7-layer firewall is used for applications.

Source :
https://www.perimeter81.com/blog/network/firewall-design-principles

What is a Cloud Firewall?

27.07.2023

In the past when fires were fought, people used traditional means like fire extinguishers and water hoses.

Translating this to the virtual world of computing — a cloud firewall is akin to the digital ‘fire extinguisher’ and ‘hose.’ It is a tool designed to stopslow, or prevent unauthorized access to or from a private network.

It inspects incoming and outgoing traffic, based on predetermined security rules. They can be a standalone system or incorporated into other network components.

In technical words, it acts as a barrier between on-premises networks and external networks.

Cloud firewalls are often deployed in a ‘perimeter’ security model — where they act as the first line of defense against cyber threats. This includes protection against DDoS attacks, SQL injections, and cross-site scripting.

The Benefits of Using a Cloud Firewall

In this section, we’ll discuss the benefits of using a cloud firewall over traditional ones.

Scalability

Traditional firewalls can’t keep pace as your network grows — their hardware limitations bound them.

On the other hand, a cloud firewall can easily adapt and expand in line with your business needs. Because it’s cloud-based, scaling does not require any additional hardware investment or complex configurations.

Be it on-site installation, maintenance, or upgrading, cloud firewalls wipe out all those physical processes, saving you time and resources.

Availability

Unlike traditional firewalls that rely on singular hardware systems and can fail, cloud firewalls are designed for high availability. Their decentralization means that even if one part fails, the rest continue to operate, ensuring constant protection.

Being cloud-based, they can also balance the load during peak traffic times to prevent slowdowns or outages.

For instance — during an attack like DDoS when the traffic dramatically increases, a cloud firewall can distribute the traffic across multiple servers. This ensures that your systems remain accessible and functional.

Extensibility

Cloud-based firewalls are not just scalable and highly available — they are also highly extensible.

This means that you can easily integrate them with other security features or services — such as Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), and Secure Web Gateways (SWG) — to create a solid security system.

Release updates and patches can be applied automatically, ensuring that the security is always up-to-date.

Identity Protection

When it comes to identity protection, cloud firewalls reign supreme.

They can identify and control application access on a per-user basis. This means that if unauthorized access is attempted, it can be immediately identified and blocked, providing extra security to your sensitive information.

Along with that, they can also provide an audit trail so that attempted breaches can be traced back to their origins. This info is beneficial for investigating cyber crimes and strengthening your cybersecurity strategy in the long run.

Performance Management

Sometimes, it’s not just about blocking harmful traffic, but also about prioritizing useful traffic.

Cloud firewalls enable performance management by prioritizing network traffic and providing quality of service (QoS) capabilities.

This can be handy during peak usage times or when certain services require higher bandwidth.

For instance, a cloud firewall can prioritize the traffic for certain high-demand resources, ensuring uninterrupted access and excellent performance. As a result, end users experience less lag and appreciate better service.

Moreover, the firewall can be programmed to give a higher priority to certain types of workloads or specific applications, like Voice over Internet Protocol (VoIP) or video streaming services.

Secure Access Parity

Remote work is another area where cloud firewalls shine.

Cloud firewalls enable a consistent security policy across all locations and users, no matter where they’re accessing from. This ensures that remote workers are just as protected as on-site ones.

Also, you get comprehensive visibility and control over all network traffic, and thanks to their cloud nature — updates can be pushed globally.

Migration Security

Migration — in particular to the cloud — can be a risky process in terms of security. The necessity to move data from one place to another can expose it to potential threats. Cloud firewalls eliminate these concerns.

Due to their inherent design, they provide end-to-end security during data migration. The data is protected at the source, during transit, and at the destination. This ensures a secure and seamless cloud migration process.

It’s like having a secure convoy for your data as it travels.

Types of Cloud Firewalls

There are four major types of cloud firewalls which can be broadly categorized as — SaaS Firewalls/Firewall as a service (FWaaS), Next-generation Firewall (NGFW), Public Cloud Firewall, and Web Application Firewall (WAF).

SaaS Firewalls/Firewall as a Service (FWaaS)

SaaS Firewalls, or Firewall as a Service, operate directly in the cloud. Offering security as a service — they are a scalable, flexible, and cost-effective solution.

  • Flexibility: Being cloud-based, these firewalls can rapidly adapt to changes in network traffic and configuration.
  • Scalability: FWaaS can comfortably scale up or down based on the needs without harming performance.
  • Cost-effective: As a subscription-based service, FWaaS can be adjusted to fit any budget and eliminates the need for expensive hardware and software maintenance.
  • Integrated approach: FWaaS offers a comprehensive, integrated approach to security, so you have complete visibility and control over network traffic and user activity.
  • Ease of deployment: Require less administrative effort and minimize human error.

Next-Generation Firewall (NGFW)

Next-Generation Firewalls represent the evolution in firewall technology, designed to go beyond traditional firewall functions.

  • Deep packet inspection: NGFWs are capable of examining the payload of a packet, crucial for detecting advanced threats within seemingly legitimate traffic.
  • Application awareness: NGFWs offer application-level control, significantly enhancing the granularity of security policies.
  • Threat detection: Their advanced threat detection capabilities protect organizations from a broad range of attacks, including zero-day vulnerabilities.
  • Integrated IPS: They feature an integrated Intrusion Prevention System that can identify and block potential security breaches, adding a layer of protection.
  • User identification: Unlike traditional firewalls, NGFWs can identify users and devices, not just IP addresses. This helps in creating more targeted, effective security policies.

Public Cloud Firewall

Public cloud firewalls are built within public cloud infrastructures like AWS, Google Cloud, and Azure to provide a layer of security control.

  • Seamless integration: These firewalls integrate seamlessly with other cloud services, infrastructure, and applications.
  • Autoscaling: Being cloud-native, they can scale dynamically with the workload, managing a substantial increase in network traffic without compromising performance.
  • Cloud-specific rulesets: These firewalls enable cloud-specific packet filtering, applying rules to cloud-native as well as hybrid and multi-cloud environments.
  • Compatibility: Public Cloud Firewalls are compatible with the automatic deployment mechanisms of their respective cloud platforms. This compatibility reduces the overhead of manual configurations.
  • Resilience: With a distributed, highly available architecture, they provide resilience — ensuring that the firewall is operational even if individual components fail.

Web Application Firewall (WAF)

A Web Application Firewall specifically protects web applications by filtering, monitoring, and blocking HTTP traffic that could exploit vulnerabilities in these applications.

  • Web app protection: WAFs stop attacks targeting web applications, including SQL injection, cross-site scripting (XSS), and others.
  • Custom policies: Customizable Policies in WAFs allow for tailored protection suited to the individual needs of every web application.
  • Inspection: They offer a thorough inspection of HTTP/S traffic, ensuring no harmful requests reach the web applications.
  • Bot control: WAFs can discern harmful bots from legitimate traffic, granting access only to authorized users and services.
  • API security: Security for APIs against attacks such as DDoS, improving overall protection.

Using Cloud Firewall vs Other Network Security Approaches

How do cloud firewalls compare to other network security approaches? See how they compare to virtual firewall appliances, IP-based network security policies, and security groups.

Virtual Firewall Appliances

Despite brands like Cisco, Juniper, and Fortinet making a strong push for them, virtual firewall appliances don’t fit in a work environment that is heavily cloud-based.

  • Not scalable: Virtual appliances have limitations in scaling. When traffic increases, they struggle to keep pace, affecting performance.
  • Operational inefficiency: They require manual configurations and adjustments, which can lead to operational inefficiencies and potential mistakes.
  • Limited visibility: They usually provide limited visibility into network traffic and, in some cases, can’t even offer granular control at the application level.
  • Architectural complexity: These appliances often introduce architectural complexity, as they need to intercept and secure network traffic at different points.
  • High cost: Acquiring, maintaining, and upgrading a virtual firewall appliance can be expensive, especially when compared to subscription-based cloud firewalls.
  • Limited extensibility: Be it AWS transit gateways, Gateway Load Balancers, or VPC/VNet peering — virtual appliances usually struggle to integrate with these advanced cloud-native services.

IP-Based Network Security Policy

IP-based network security policies have traditionally been used in many organizations. However, they also have shortcomings when compared to cloud firewalls.

  • Dynamic IP difficulties: These policies are primarily based on static IP addresses, triggering issues when dealing with dynamic IPs — such as those used in today’s highly scalable, distributed infrastructures.
  • Granularity problems: IP-based policies offer less granular control over access to applications and data, compared to cloud firewalls.
  • Security loopholes: Because they rely heavily on IP addresses for identification, they can be vulnerable to IP spoofing, creating potential security loopholes.
  • Inefficient management: IP-based policies can be tedious to manage, especially when dealing with larger, more complex network infrastructures.
  • Limited scalability: Like virtual appliances, IP-based policies struggle when it comes to handling a significant increase in network traffic.
  • Dependency on IP reputation: These policies depend on the reputation of IP addresses, which can be unreliable and manipulated. Also, legitimate IP addresses can be compromised, creating a potential avenue for attacks.

Security Groups

Lastly, security groups, while being a crucial part of network security in a cloud-based environment, fall short compared to cloud firewalls on several fronts.

  • Scope limitation: Security groups usually have a limited scope — often only applicable within a single instance or VPC. This might not be adequate for enterprises with large-scale or diverse cloud deployments.
  • Manual administration: This can lead to potential errors and security risks, more so in large and complex environments.
  • Lack of visibility: Security groups don’t provide comprehensive visibility into network traffic or robust logging and audit capabilities — both of which are fundamental for troubleshooting and regulatory compliance.
  • Limited flexibility: Security groups lack the flexibility to adapt quickly to changes in network configuration or traffic patterns. This can hinder performance and affect user experience.
  • Dependencies: Security groups are dependent on the underlying cloud service. This means that they can be impacted by any disruptions or changes to that service. So, the level of independence and control tends to be on the lower end.

It’s evident, compared to the other network security approaches, cloud firewalls provide superior flexibility, scalability, visibility, and control.

How does a Cloud-Based Firewall Fit into a SASE Framework?

SASE is a concept introduced by Gartner that stands for Secure Access Service Edge. It combines network security and wide area networking (WAN) capabilities in a single cloud-based service.

Cloud-based firewalls fit wonderfully into this framework as they provide network security enforcement. Below’s how.

  • Unified security and networking: By integrating with other SASE components, cloud-based firewalls facilitate unified security and networking. They ensure that security controls and networking capabilities are not siloed but work together seamlessly.
  • Location-agnostic: Being cloud-based, these firewalls offer location-agnostic security. This is important in a SASE framework which is designed to support securely connected, geographically-dispersed endpoints.
  • Dynamic scaling: The dynamism of cloud-based firewalls aligns with the scalable nature of SASE. So, the security scales with network requirements.
  • Policy enforcement: They provide efficient enforcement of security policies across a distributed network, aiding in consistent security compliance.
  • Visibility and control: In a SASE framework, cloud-based firewalls offer enriched visibility and control over network traffic and user activity. This aids in improved threat detection and response times.
  • Data protection: They provide encryption and decryption, protecting sensitive data transmitted across the network. This capability is pivotal for data protection in a SASE architecture.
  • Fast deployment: Enjoy operational simplicity as they can be seamlessly deployed across multiple locations.
  • Easier management: Management becomes easier as there is a single point of control allowing for unified threat management.
  • Lower costs: Reduced capital expenditure as the need for on-premise hardware decreases significantly.
  • Highly available: These firewalls offer high availability and resilience, adhering to the SASE principle of continual access and service regardless of location. Thus, enhancing the overall security posture in an ever-increasing remote work landscape.

Secure your network with firewall-as-a-service today!

Organizations across the globe are transitioning to a cloud-first strategy. Perimeter 81 can assist you in this journey. Our Firewall-as-a-Service model provides security, scalability, and simplicity that is unmatched in the industry. Learn more here!

FAQs

What is the disadvantage of cloud firewall?

Reliance on the availability of the FaaS provider is a potential disadvantage of cloud firewalls.

Why do you need a cloud firewall?

Just like you need a security gate to prevent unauthorized entry into your house, a cloud firewall acts as a barrier to block malicious traffic from entering your network. It provides real-time protection and security monitoring — making it crucial in today’s world where cyber threats are rampant.

What is the main reason to operate a public cloud firewall?

Application visibility and control is the primary reason to operate a public cloud firewall. And unlike traditional firewalls, cloud firewalls allow for extensive network traffic logging and reporting, providing a thorough overview of your application’s security status.

What is cloud vs hardware firewall?

A cloud firewall, also known as a Firewall-as-a-Service (FaaS), is a firewall hosted in the cloud, providing scalability, cost efficiency, and real-time updates. Hardware firewalls, on the other hand, are physical devices installed in the infrastructure of a network. While cloud firewall is software-based, traditional ones can be both software and hardware-based.

Is a cloud-based firewall more secure?

Cloud-based firewall comes with the same level of security as a traditional or on-premises firewall but with advanced access policy, encryption, connection management, and filtering between servers.

What is the difference between a next-generation firewall and a cloud firewall?

While next-generation firewalls (NGFWs) offer advanced security capabilities such as intrusion prevention systems (IPS), deep packet inspection, and application awareness— they can be limiting when it comes to scalability and flexibility, especially in a dynamic, cloud-based environment. That’s where cloud firewalls excel.

Source :
https://www.perimeter81.com/blog/network/cloud-based-firewall

HIPAA LAW: What Does It Protect?

27.07.2023

What is HIPPA?

HIPAA stands for the Health Insurance Portability and Accountability Act, a federal law enacted in 1996 in the United States. HIPAA’s primary aim is to safeguard the privacy, security, and confidentiality of individuals’ protected health information (PHI) by establishing a set of standards and regulations for healthcare providers, health plans, and other entities that maintain PHI. 

HIPAA Privacy Rule, Explained

The HIPAA Privacy Rule grants patients’ rights over their PHI, including the right to access, request amendments, and control the sharing of their health information. It also imposes obligations on covered entities to implement safeguards to protect PHI, train their workforce on privacy practices, and obtain individual consent for certain uses and disclosures. 

The Privacy Rule plays a vital role in keeping the confidentiality and security of personal health information, ensuring patients have control over their own data while allowing appropriate access for healthcare purposes.

HIPAA Security Rule, Explained

The HIPAA Security Rule is an essential part of the Health Insurance Portability and Accountability Act (HIPAA). The Security Rule sets forth administrative, physical, and technical safeguards that covered entities must implement to protect the confidentiality, integrity, and availability of ePHI. 

These safeguards include measures such as risk assessments, workforce training, access controls, encryption, and contingency planning to prevent unauthorized access, use, or disclosure of ePHI. Compliance with the HIPAA Security Rule is crucial for ensuring the secure handling of electronic health information, reducing the risk of data breaches, and maintaining the trust and confidentiality of sensitive patient data.

HIPAA Covered Entities

HIPAA defines specific entities that are subject to its regulations, known as covered entities. 

Covered entities include:

Healthcare Providers

Healthcare providers, such as doctors, hospitals, clinics, psychologists, and pharmacies, are considered covered entities under HIPAA. They play a vital role in the delivery of healthcare services and are responsible for maintaining the privacy and security of patients’ protected health information (PHI).

Healthcare providers must follow HIPAA regulations when electronically transmitting and overseeing PHI, implementing safeguards to protect patient data, and ensuring appropriate access and disclosures.

Health Plans

Health plans, including health insurance companies, HMOs, employer-sponsored health plans, Medicare, Medicaid, and government health programs, fall under the category of covered entities. These entities are responsible for managing health insurance coverage and must comply with HIPAA to protect the privacy of individuals’ health information.

Health plans have obligations to implement privacy policies, provide individuals with notice of their privacy practices, and set up safeguards to secure PHI against unauthorized access or disclosures.

Healthcare Clearinghouses 

Healthcare clearinghouses are entities that process nonstandard health information into standardized formats. They function as intermediaries between healthcare providers and health plans, facilitating the electronic exchange of health information.

Covered healthcare clearinghouses must adhere to HIPAA’s regulations, implementing security measures and safeguards to protect the confidentiality, integrity, and availability of electronic protected health information (ePHI). They play a critical role in ensuring the secure transmission and conversion of health data, contributing to the interoperability and efficiency of electronic healthcare transactions.

Business Associates

Business associates are external entities or individuals that provide services or perform functions involving PHI, such as third-party administrators, billing companies, IT providers, and certain consultants. 

Covered entities must have written agreements in place with their business associates, outlining the responsibilities and obligations regarding the protection of PHI. These agreements should address issues such as the permissible uses and disclosures of PHI, safeguards for data security, breach notification requirements, and compliance with HIPAA’s Privacy Rule.

Who is Not Required to Follow HIPAA Regulations? 

Entities not required to follow HIPAA laws include:

Life Insurers

Since life insurers primarily deal with underwriting life insurance policies, they do not manage or maintain protected health information (PHI) as defined by HIPAA.

Employers

Employers, in their role as employers, are not covered by HIPAA regulations because they manage employee health information for employment-related purposes only, rather than for healthcare operations.

Workers’ Compensation Carriers

Workers’ compensation carriers are exempt from HIPAA because the health information they handle is typically related to work-related injuries or illnesses, which falls outside the scope of HIPAA’s regulations.

Most Schools and School Districts

Schools and school districts, except for those that run healthcare facilities or have specific health programs, are generally not subject to HIPAA as they primarily handle educational records and student information.

Many State Agencies

State agencies, such as child protective service agencies, often deal with sensitive information related to child welfare or social services, which are typically regulated under state-specific privacy laws rather than HIPAA.

Most Law Enforcement Agencies

Law enforcement agencies, while involved in protecting public safety, are generally exempt from HIPAA as they primarily focus on law enforcement activities rather than the provision of healthcare services.

Many Municipal Offices

Municipal offices that do not function as healthcare providers or healthcare clearinghouses are not subject to HIPAA regulations. They primarily manage administrative and governmental functions rather than healthcare-related activities.

What Information is Protected Under HIPAA? 

HIPAA protects a broad range of health information, primarily focusing on individually identifiable health information known as Protected Health Information (PHI). 

Under HIPAA, PHI is subject to strict privacy and security safeguards, and covered entities must obtain individual consent or authorization before using or disclosing PHI, except in certain permitted circumstances. HIPAA also allows the use and disclosure of de-identified health information, which is health information that does not identify an individual and has undergone a process to remove specific identifiers.

De-identified health information is not subject to HIPAA’s privacy and security requirements because it does not contain identifiable information that could be used to link it back to an individual. However, covered entities must follow specific guidelines and methods outlined by HIPAA to ensure that information is properly de-identified and cannot be re-identified.

Overall, HIPAA provides protection and safeguards for a wide range of health information, with a specific focus on safeguarding individually identifiable health information (PHI) and allowing for the use and disclosure of de-identified health information under certain circumstances.

When Can PHI Be Disclosed? 

Under HIPAA, Protected Health Information (PHI) can be disclosed in a variety of situations, including:

General Principle for Uses and Disclosure

PHI can be disclosed for treatment, payment, and healthcare operations without explicit authorization, following the general principle that PHI should be used or disclosed based on the minimum necessary information needed to accomplish the intended purpose.

Permitted Uses and Disclosures

PHI can be shared without individual authorization for activities such as public health activities, healthcare oversight, research (with privacy safeguards), law enforcement purposes, and when required by law, including reporting certain diseases and vital events.

Authorized Uses and Disclosures

PHI can be disclosed based on the individual’s written authorization, allowing specific uses and disclosures beyond what is permitted without authorization, such as sharing PHI for marketing purposes or with third-party organizations.

PHI Uses and Disclosures Limited to the Minimum Necessary

Covered entities are required to make reasonable efforts to limit PHI uses and disclosures to the minimum necessary to accomplish the intended purpose. This means sharing only the information necessary for the specific situation, whether it is for treatment, payment, healthcare operations, or other permitted purposes.

Notice and Individual Rights

Covered entities must provide individuals with a Notice of Privacy Practices, explaining how their PHI may be used and disclosing their rights regarding their health information. Individuals have rights such as accessing their PHI, requesting amendments, and requesting restrictions on certain uses or disclosures. 

Privacy Practices Notice

Covered entities must respect these rights and enable individuals to exercise them. 

Notice distribution

Covered entities must make efforts to distribute the Notice of Privacy Practices to individuals, including posting it prominently in their facilities and providing a copy to individuals upon request. They should also make reasonable attempts to obtain written acknowledgment of receipt.

Acknowledgment of Notice Receipt

Covered entities should document individuals’ acknowledgment of receiving the Notice of Privacy Practices. This acknowledgment can be obtained through various means, such as a signed form or electronic confirmation, ensuring that individuals have been made aware of their rights and the entity’s privacy practices.

Access

Individuals have the right to access their PHI and obtain copies of their health records upon request, with certain exceptions and reasonable fees.

Amendment

Individuals can request amendments or corrections to their PHI if they believe it is incomplete, inaccurate, or requires updating.

Disclosure Accounting

Covered entities must provide individuals with an accounting of certain disclosures of their PHI, upon request, excluding disclosures for treatment, payment, healthcare operations, and other exceptions.

Restriction Request

Individuals have the right to request restrictions on the use or disclosure of their PHI, although covered entities are not required to agree to all requested restrictions.

Confidential Communications Requirement

Covered entities must accommodate reasonable requests from individuals to receive communications of their PHI through alternative means or at alternative locations to protect privacy.

Administrative Requirements

Covered entities must establish and implement privacy policies and procedures to ensure compliance with HIPAA’s Privacy Rule, including designating a Privacy Officer responsible for overseeing privacy practices.

Privacy Personnel

Covered entities should have designated privacy personnel responsible for developing and implementing privacy policies, handling privacy inquiries, and ensuring compliance.

Workforce Training and Management

Covered entities must provide training to their workforce members regarding privacy policies, procedures, and the protection of PHI. They should also have mechanisms in place to manage workforce members’ compliance with privacy practices.

Mitigation

Covered entities must take reasonable steps to mitigate any harmful effects resulting from the use or disclosure of PHI in violation of the Privacy Rule.

Data Safeguards

Covered entities are required to implement reasonable safeguards to protect PHI from unauthorized access, disclosure, or use.

Complaints

Covered entities must have a process in place for individuals to file complaints regarding privacy practices, and they must not retaliate against individuals who exercise their privacy rights.

Retaliation and Waiver

Covered entities cannot retaliate against individuals for exercising their privacy rights, and individuals cannot be required to waive their rights as a condition for receiving treatment or benefits.

Documentation and Record Retention

Covered entities must retain documentation related to their privacy practices and policies for at least six years.

Fully Insured Group Health Plan Exception

The Privacy Rule does not apply directly to fully insured group health plans, although the plans must follow other federal and state laws governing the privacy of health information.

These various requirements and provisions ensure that covered entities adhere to privacy practices, protect individuals’ rights, and keep the security and confidentiality of PHI.

How is PHI Protected?

PHI is protected through various measures to safeguard its confidentiality, integrity, and security:

  1. Safeguards – Safeguards can include physical, technical, and administrative measures such as secure storage, encryption, access controls, and firewalls.
  2. Minimum Necessary – This means that only the information needed for a particular task or situation should be accessed or shared.
  3. Access and Authorization Controls – Covered entities must have procedures in place to control and limit who can view and access PHI. This includes implementing access controls, user authentication, and authorization processes to ensure that only authorized individuals can access and handle PHI.
  4. Employee Training – Training ensures that employees understand their responsibilities, know how to handle PHI securely, and are aware of potential risks and safeguards.
  5. Business Associates – Business associates, who handle PHI on behalf of covered entities, are also obligated to implement safeguards to protect PHI and comply with HIPAA regulations. This ensures that third-party entities involved in healthcare operations support the same level of privacy and security standards when handling PHI.

Get HIPAA Compliant With Our Checklist

By implementing the above-mentioned HIPAA safeguards, limiting the use and disclosure of PHI, and supplying employee training, covered entities and their business associates can work together to protect the privacy and security of individuals’ health information, and prevent improper use or disclosure. Want more tips to stay compliant? Check out our HIPAA Compliance Checklist.

Source :
https://www.perimeter81.com/blog/compliance/hipaa-law

The HIPAA Enforcement Rule – A Comprehensive Guide

28.07.2023

The HIPAA Enforcement Rule is a critical component of the Health Insurance Portability and Accountability Act (HIPAA).  It is designed to ensure both the privacy and security of individuals’ protected health information (PHI). 

Enforced by the Office for Civil Rights (OCR), the HIPAA Enforcement Rule empowers them to investigate and impose penalties on covered entities and business associates for non-compliance with HIPAA’s privacy and security provisions. Understanding the HIPAA Enforcement Rule is essential for healthcare organizations and their partners to avoid severe consequences and maintain the trust and confidentiality of patient data. 

Read on to discover everything you need to know about the HIPAA Enforcement Rule so that you can ensure compliance. 

What is the HIPAA Enforcement Rule?

The HIPAA Enforcement Rule encompasses regulations concerning adherence to HIPAA guidelines, inquiries, and examinations, in addition to guidelines outlining the specifics of a Civil Monetary Penalty (CMP) that can be enforced in response to violations of HIPAA regulations. 

Additionally, the rule establishes procedures for conducting hearings related to such penalties. This essential component of the Health Insurance Portability and Accountability Act aims to maintain compliance, ensuring the safeguarding of protected health information and setting forth measures for investigating and penalizing non-compliant entities.

How Does the HIPAA Enforcement Rule Work?

The HIPAA Enforcement Rule operates on both Federal and State Government levels. 

The Office for Civil Rights, part of the Department of Health and Human Services, handles complaints and conducts investigations. Based on the findings, enforcement actions can be taken, and penalties or fines may be imposed. In some cases, entities may voluntarily improve compliance during the OCR investigation, and the OCR may offer guidance on resolving the violations and ensuring compliance.

Elements of the HIPAA Enforcement Rule

The HIPAA Enforcement Rule comprises four essential elements: the Privacy Rule, Security Rule, Breach Notification Rule, and Omnibus Rule. These components work collectively to safeguard patient privacy and ensure compliance with stringent regulations governing PHI in the healthcare industry, as follows:

The Privacy Rule

The Privacy Rule governs the use and disclosure of individuals’ PHI by covered entities and their business associates. It sets standards to ensure patients’ privacy rights are respected and protected.

The Security Rule

The Security Rule outlines requirements for implementing safeguards to protect electronic PHI (ePHI) and ensure the confidentiality, integrity, and availability of health information. Covered entities must implement administrative, physical, and technical safeguards to prevent unauthorized access and data breaches.

The Breach Notification Rule

This rule mandates that covered entities and their business associates promptly notify affected individuals, the Department of Health and Human Services (HHS), and the media (in certain cases) in the event of a breach of unsecured PHI. The Breach Notification Rule ensures transparency and timely action to mitigate the impact of breaches on individuals’ privacy.

The Omnibus Rule

The Omnibus Rule introduced several modifications and additions to strengthen patient privacy protections. It expanded the scope of liability to business associates, increased penalties for non-compliance, and aligned HIPAA with the Health Information Technology for Economic and Clinical Health (HITECH) Act’s requirements.

How the Rule Affects Covered Entities

The HIPAA Enforcement Rule significantly impacts covered entities, such as healthcare providers, health plans, and healthcare clearinghouses, by imposing strict obligations to protect patient data and maintain compliance with HIPAA regulations. 

Non-compliance may result in penalties, fines, and reputational damage, making it imperative for these entities to prioritize privacy and security measures to ensure the trust and confidentiality of patient information.

The Main HIPAA Enforcement Rule Penalties

HIPAA penalties serve as a crucial deterrent and ensure the protection of individuals’ PHI in the healthcare industry as follows:

Civil Money Penalties

Civil money penalties hold covered entities and business associates accountable for non-compliance with HIPAA regulations. These penalties are imposed by the Department of Health and Human Services’ Office for Civil Rights and can be significant, depending on the severity of the violation. The amount of the penalty is determined based on several factors, including the nature and extent of the violation, the entity’s level of culpability, and the efforts made to correct the violation promptly.

The OCR has the authority to impose civil money penalties for violations related to the Privacy, Security, and Breach Notification Rules. The penalties aim to promote compliance and encourage covered entities to implement robust safeguards and measures to protect patients’ PHI.

Criminal Penalties

In addition to civil money penalties, the HIPAA Enforcement Rule includes provisions for criminal penalties for certain egregious violations of HIPAA regulations. Criminal penalties are typically reserved for deliberate and willful violations of HIPAA rules. Individuals, such as employees or officers of covered entities, can face criminal charges and prosecution for knowingly obtaining or disclosing PHI without authorization.

The penalties can include fines and imprisonment, depending on the severity of the offense. Criminal penalties serve as a powerful deterrent against intentional breaches and underscore the seriousness of safeguarding patients’ sensitive health information.

The Most Common HIPAA Rule Violations

Identifying and addressing the most common HIPAA rule violations is crucial for healthcare organizations to maintain compliance and protect patients’ sensitive information. Violations may include:

No or Insufficient Employee Training

Covered entities must ensure that all employees, including staff, volunteers, and contractors, receive comprehensive training on HIPAA regulations. Without adequate training, employees may unintentionally mishandle or disclose PHI, putting patient privacy at risk.

Regular training sessions and updates are essential to keep staff informed of the latest HIPAA requirements and reinforce the importance of safeguarding PHI.

No Secure Technology

Likewise, covered entities must employ robust technical safeguards to protect ePHI from unauthorized access or disclosure. This includes encryption, access controls, audit logs, and secure transmission methods. Neglecting to adopt these measures can leave patient data vulnerable to cyberattacks and breaches, potentially leading to severe penalties and damage to the organization’s reputation.

Improper Disposal of PHI

This can occur when covered entities fail to implement proper procedures for disposing of physical documents containing sensitive patient information. Discarding PHI in regular trash bins or recycling containers without appropriate shredding or destruction can lead to unauthorized access and disclosure.

Covered entities must have clear policies in place for the secure disposal of PHI to prevent data breaches and protect patient privacy.

No Risk Analysis

Covered entities must conduct regular risk assessments to identify and address potential vulnerabilities in their systems and processes. The lack of a thorough risk analysis can result in undetected weaknesses, leaving patient data at risk of unauthorized access or breaches.

Performing regular risk assessments helps organizations proactively address security gaps and ensures compliance with HIPAA’s security rule requirements.

The HIPAA Enforcement Process 

The HIPAA Enforcement Process involves a series of steps carried out by the OCR to address complaints and investigate potential violations, leading to resolution and, if necessary, the imposition of penalties. It involves:

Intake and Review

Complaints can be filed by individuals, patients, or even whistleblowers, reporting alleged violations of HIPAA regulations by covered entities or business associates. During the review process, the OCR evaluates the validity and scope of the complaint to determine if it falls within the jurisdiction of the HIPAA Enforcement Rule. If the complaint is deemed valid, it moves forward to the investigation stage.

Investigation

This involves gathering evidence, conducting interviews, reviewing documentation, and assessing the covered entity’s or business associate’s compliance with relevant HIPAA rules, such as the Privacy Rule, Security Rule, and Breach Notification Rule.

The OCR aims to determine the extent of the violation and assess its impact on patient privacy and security. During the investigation, the OCR may request corrective action and evidence of compliance efforts from the covered entity or business associate.

Resolution

This is the final stage of the HIPAA Enforcement Process and it involves reaching a resolution based on the investigation’s findings. If the OCR identifies violations, it may engage in informal negotiations with the covered entity or business associate to achieve voluntary compliance and implement corrective actions.

If the entity fails to comply or the violation is particularly severe, the OCR may impose civil monetary penalties. The resolution process aims to address the issues identified during the investigation, promote adherence to HIPAA regulations, and ultimately protect patients’ PHI.

Throughout the process, the OCR focuses on education, guidance, and enforcement to uphold the standards of the HIPAA Enforcement Rule.

HIPAA Enforcement: Strengthening Compliance and Safeguarding Privacy

In conclusion, the HIPAA Enforcement Process plays a crucial role in upholding the principles of the Health Insurance Portability and Accountability Act and safeguarding the confidentiality and security of patients’ PHI. 

Most importantly, The HIPAA Enforcement Process fosters a culture of accountability and responsibility, contributing to a stronger healthcare system that respects patient privacy and maintains trust in the handling of sensitive health information.

By understanding and adhering to the enforcement process, healthcare organizations can strive for continuous compliance, providing patients with the confidence that their PHI remains confidential and secure in all circumstances.

Want to improve your compliance? Check out our HIPAA Compliance Checklist.

FAQs

Why was the enforcement rule introduced for HIPAA?

The HIPAA Enforcement Rule was introduced to ensure compliance with the Health Insurance Portability and Accountability Act (HIPAA) and strengthen the protection of individuals’ protected health information (PHI). It empowers the Office for Civil Rights (OCR) to investigate complaints and violations, impose penalties, and hold covered entities and business associates accountable for safeguarding patient privacy and data security.

Who is responsible for the enforcement of the HIPAA Privacy Rule?

The Office for Civil Rights (OCR), which operates under the Department of Health and Human Services (HHS), is responsible for enforcing the HIPAA Privacy Rule. The OCR conducts investigations, responds to complaints, and takes necessary enforcement actions to ensure covered entities comply with the Privacy Rule’s regulations, which pertain to the use and disclosure of PHI.

What rule was designed to enhance enforcement of the original HIPAA rules?

The Health Information Technology for Economic and Clinical Health (HITECH) Act, passed in 2009, was designed to enhance the enforcement of the original HIPAA rules. HITECH introduced the HIPAA Breach Notification Rule, expanded HIPAA requirements to business associates, and increased the penalties for non-compliance, thereby strengthening the overall enforcement process.

What is a typical reason for disclosing PHI to law enforcement?

A typical reason for disclosing PHI to law enforcement is related to situations involving victims of crimes, reporting of crimes, or identifying suspects. Covered entities may disclose PHI to law enforcement authorities when required by law or pursuant to a court order, subpoena, or other lawful process.

What are the exceptions to HIPAA for law enforcement?

While HIPAA allows for the disclosure of PHI to law enforcement under specific circumstances, there are exceptions where PHI disclosure is not required. For instance, disclosure is not mandatory when law enforcement requests the information for investigative purposes, or if the request does not fall within the scope of HIPAA’s permitted disclosures.

What is the definition of law enforcement under HIPAA?

Under HIPAA, the term “law enforcement” refers to any government agency or authority that has the responsibility to enforce laws relating to criminal conduct or violations. This includes federal, state, and local law enforcement agencies that have the legal authority to investigate and enforce criminal laws.

Source :
https://www.perimeter81.com/blog/compliance/hipaa-enforcement-rule

18 Tips to Improve the Remote Network Security of Your Business

30.07.2023

Post-COVID-19, with the rise of remote work, business network security has become paramount. The rapid shift to remote work unveiled numerous network vulnerabilities, risking data breaches, financial losses, and reputational harm. 

No longer is a simple firewall enough; today’s remote security includes technologies from VPNs to cloud measures and the zero-trust model. Besides these tools, it’s crucial to recognize risks, such as shared passwords, outdated software, and insecure personal devices. 

Here are some of the best tips to enhance your business’s remote security, guaranteeing safe and streamlined operations.

What is Business Remote Network Security? 

Business remote network security encompasses measures safeguarding a company’s digital assets accessed from remote locations. Securing these connections has become paramount with the growth of remote work and evolving digital landscapes.

Who is Responsible for Remote Network Security?

The responsibility for ensuring that your remote network stays secure primarily rests with SecOps. They can combat cybersecurity risks via strong access controls, monitor remote access, update rules, and test remote access operations.

Cybersecurity teams now lead and manage secure remote access policies, processes, and technologies, though traditionally, it’s a network team’s role.

SecOps has gained prominence amid increasing cyber threats and a remote workforce. Their roles include:

  • Sharing passwords
  • Usage of software that breaches an organization’s security standards
  • Personal devices without encryption 
  • Negligible or absent patching practices

Key attributes of a proficient SecOps team include:

  1. Diverse expertise: SecOps teams boast a mix of professionals.
  2. Advanced tools: They use cutting-edge tools for real-time monitoring and quick threat detection and response.
  3. Cloud security managementSecure and manage cloud resources.
  4. Automation and AI integration: Use automation and AI to address modern threats quickly.
  5. Adherence to best practices: SecOps teams follow best practices, staying proactive against emerging threats.

How Does Remote Network Security Work? 

Remote network security allows users to access resources anywhere without risking data or network integrity. 

  1. The basics of remote access: Users must install the remote software on the target devices. Once active, users log in, choose the target device, and its screen gets mirrored.
  2. Securing endpoints: Secure all endpoints (PCs, smartphones) on networks with updated antivirus and adherence to security guidelines. Equip employees with tools and knowledge for protection.
  3. Minimizing attack surfaces: Remote access, while convenient, introduces vulnerabilities. Ransomware, for example, frequently targets remote desktop protocols (RDP). It’s essential to configure firewalls to respond only to known IP addresses.
  4. Implementing multi-factor authentication (MFA): MFA enhances security with multiple identifiers like passwords and tokens, granting access to verified users only.
  5. Using VPNs: VPNs secure connections on public Wi-Fi but update software to prevent vulnerabilities.
  6. Monitoring and logging: For remote work, update SIEM and firewall to handle home logins. Record and monitor all remote sessions in real-time, triggering alerts for suspicious activity.
  7. User education: Informed users significantly bolster cyber defenses. Employees require training to spot threats.
  8. Policy updates and role-based access control (RBAC): Updating policies across all devices is vital. Also, it’s important to grant access based on roles.

Why is Remote Network Security Important?

Robust remote network security is essential as businesses embrace remote work’s benefits, like flexibility and cost savings, while facing significant cybersecurity challenges. 

Protecting data and operations in remote work is vital for business continuity and reputation. Companies must prioritize safeguarding digital assets and networks from threats and breaches.

  1. Unprecedented growth in remote work: Over the last 5 years, remote work has grown by 44%, challenging traditional corporate network security perimeters as operations expand online.
  2. Vulnerability to data breaches: Remote work surge led to more data breaches. Proxyrack found healthcare breaches costing $9.23 million and the finance sector averaging $5.27 million.
  3. Targeted attacks: The U.S. faces 7,221,177 incidents per million people, the highest globally. The average breach cost for U.S. companies is $9,050,000.
  4. More than just financial loss: Data breaches inflict enduring financial and reputational harm, eroding customer trust. To preserve brand integrity and loyalty, companies must prioritize cybersecurity.
  5. The human element: Remote employees are vulnerable to cyberattacks due to personal devices and unsecured networks. Mistakes like phishing or weak passwords risk breaches.
  6. The need for proactive defense: Businesses need a proactive approach to tackle remote data breaches: train employees, use secure clouds, and update technology and systems.

Advantages of Remote Network Security

Securing your remote networks offers significant advantages to businesses, particularly in an era marked by escalating cyber crimes and the rise of remote work. Let’s explore the four main benefits of implementing robust security measures.

Secure Your Network Everywhere, on Any Device

Remote network security protects data and systems, blocking unauthorized access from the company or personal devices.

Improved Endpoint Protection

Vulnerable endpoints, such as laptops and smartphones, attract cybercriminals. Maintaining the security of your networks ensures all endpoints remain protected. We use VPNs, multi-factor authentication, and security tools to reinforce endpoint safety.

Secure Web Access for All Employees

Employees frequently access online company resources. This security encrypts online interactions, granting access only to authorized users.

Raise Awareness of Security Issues

Empowering employees with remote security fosters cyber awareness. Training, updates, and drills cultivate a vigilant defense against threats.

18 Tips to Improve Your Remote Network Security

The digital shift has propelled many businesses towards a remote work model. With this evolution comes a heightened need to prioritize the security of your remote networks. 

Here are 18 strategies to bolster your defenses:

Protect Endpoints for All Remote Users

Secure all devices connecting to the network to reduce breach risks.

Reduce Attack Surface in Remote Work

Frequently update and patch software. Also, practice access limitation.

Use Multi-Factor Authentication

Strengthen security by mandating multiple identification forms before granting access.

Use Password Managers

Urge employees to adopt password managers.

Implement Single Sign-on Technology

Streamline login: utilize a single set of credentials for multiple applications.

Use VPNs

By encrypting internet traffic, Virtual Private Networks ensure confidential data transmission.

Adjust Logs and Security Information Tracking

Consistently revise and refresh logs to pinpoint and address anomalous or unauthorized actions.

Educate Your Employees and Contractors

Equip everyone with knowledge on contemporary cybersecurity threats and best practices to foster an informed, watchful team.

Create Clear Remote Work Policies

Craft clear-cut rules guiding employees’ interaction with company resources during remote work.

Build Intrusion Prevention and Detection Systems

Set up systems to check the network for malevolent activities. This ensures you’re using preventive measures against detected threats.

Use Firewalls

Position firewalls as protective barriers, scrutinizing incoming and outgoing traffic to safeguard against potential risks.

Encrypt and Back-up Data

Prioritize encryption of sensitive data and consistently back up crucial information to avert data loss.

Use Secure Software

Opt for reputable software that aligns with the organizational security benchmarks.

Implement an Identity Access and Management (Iam) Framework

With IAM, manage user identities and their access rights, ensuring that only vetted individuals can tap into particular resources.

Build Service-Level Agreements With Third-Party Vendors

Hold third-party associates to the same security standards as your company.

Ensure Mobile Security

Prioritize mobile device security as usage rises, safeguarding organizational data access.

Implement Direct Application Access Processes

Let users directly access applications without jeopardizing the security of the primary network.

Secure Specific Remote Work Devices

Ensuring the security of devices designated for remote work goes beyond the hardware; it’s about integrating sound policies, technologies, and procedures. 

Here’s a concise breakdown:

  • Criteria: Establish straightforward criteria for determining which employees are eligible for remote access.
  • Technologies & features: Opt for secure technologies offering valuable features like encryption.
  • IT resource access: Deploy specific IT assets.
  • Network resources: Guarantees a secure connection.
  • IT personnel: Assign dedicated staff.
  • Emergency protocols: Have a quick response strategy for emergencies like security breaches.
  • Integration: Integrate remote access security with other data protection measures.

Technologies Used for Business Remote Network Security

In the evolving landscape of remote work, businesses leverage advanced technologies to fortify their network security. These technologies protect sensitive data and ensure seamless operations across distributed teams. 

Here’s a closer look at some of the pivotal technologies in use:

Endpoint Security

Endpoint security safeguards all user devices in a network, which is crucial for remote work and personal device use. It defends against cyber threats, ensuring data integrity.

Virtual Private Networks (VPN)

Business VPNs safeguard data between user devices and the company’s network, which is vital for remote workers accessing company resources securely.

Zero Trust Network Access (ZTNA)

ZTNA: “Never trust, always verify” principle replaces perimeters. Every user and device is verified for network access. It’s not a VPN alternative, the two work hand in hand to secure your assets.

Network Access Control

The technology assesses and enforces network access policies based on device health, update status, and more for compliance.

Single Sign-on

SSO simplifies login across apps, enhances convenience, saves time, and reduces password-related breaches.

Secure Access Service Edge (SASE)

SASE: Cloud-based service combining network and security functions for modern businesses.

The Future of Business Security in a Remote World

The digital age demands remote network security for businesses. Global events shift to remote work and expose traditional vulnerabilities. This article provides insights and actionable tips on securing your networks to bolster your business operations. 

With evolving technology come evolving threats. To keep your business secure and efficient, stay informed, proactive, and adaptable to emerging challenges. By adopting these tools and strategies, you’ll confidently navigate the future of remote work securely.

Looking for a secure and seamless digital future for your business? Click here to book a consultation and enjoy strengthened security, tailor-made remote work solutions, and a robust digital infrastructure.

Source :
https://www.perimeter81.com/blog/network/business-remote-network-security

Cloud VPN vs. Traditional VPN: Which One’s Best for Your Business?

16.08.2023

Are you struggling to decide between a cloud VPN vs. traditional VPN for your business? 

You’re not alone. Many companies grapple with this decision, still determining which option best meets their needs.

The pain of making the wrong choice is real. Opt for a solution that doesn’t align with your business needs, and you could face slow connection speeds, increased security risks, or even inflated costs. Worse, you might be locked into a solution that doesn’t scale with your business, leading to even more headaches.

The world of VPNs can be complex and confusing, with each type boasting its features, benefits, and drawbacks. It’s easy to feel overwhelmed, unsure of which path to take.

In this article, we’ll demystify the differences between cloud VPN vs. traditional VPN, providing you with the information you need to make an informed decision. We’ll explore how each type works, its advantages, and its key differences. 

What is a Cloud VPN? 

Cloud VPN is a service that provides secure and private internet access to users. Cloud VPNs are hosted in the cloud, meaning they can be accessed from anywhere worldwide, making them an ideal choice for businesses with a remote workforce or multiple office locations.

Cloud VPNs are more scalable, flexible, and efficient than their traditional counterparts. They can quickly adapt to the needs of businesses, whether it’s accommodating growth, supporting mobile devices, or providing global accessibility. 

This adaptability makes Cloud VPNs popular for companies looking to secure their data without sacrificing convenience or performance.

How Do Cloud VPNs Work?

Cloud VPNs create a secure pathway, an encrypted tunnel, between the user’s device and the internet. This tunnel acts as a safe conduit for data to travel, ensuring that all information passing through it’s protected from external threats such as hackers or malware.

When users connect to a Cloud VPN, their device communicates with the VPN server in the cloud. The server then encrypts the user’s data before it’s sent over the internet. This encryption makes the data unreadable to anyone who might intercept it, ensuring its security.

A Cloud VPN also masks the user’s IP address, replacing it with the IP address of the VPN server. This provides an additional layer of privacy, preventing third parties from tracking the user’s online activities or determining their physical location.

Types of Cloud VPNs

Businesses come in all shapes and sizes, and so do their networking needs. That’s why Cloud VPNs are versatile, offering different types to suit various requirements. Here are the two main types of Cloud VPNs:

Remote Access VPNs 

Designed for the modern workforce, these VPNs allow individual users to securely access a private network from anywhere. Ideal for remote workers or teams spread across multiple locations, they ensure secure access to company resources.

Site-to-Site Connection VPNs

Site-to-site connection VPNs connect entire networks, providing a secure bridge for data to travel between different office locations or between a business and its partners or clients. Ideal for companies with multiple office locations.

The Main Benefits of Cloud VPNs 

Cloud VPNs offer several advantages over traditional VPNs. These include:

Direct Cloud Access

Cloud VPNs provide direct access to cloud services, reducing latency and improving performance.

Global Accessibility

They are hosted in the cloud and can be accessed from anywhere worldwide.

Flexibility 

They can be easily scaled up or down based on the needs of the business.

Scalability 

They can support many users without the need for significant hardware investment.

Mobile Support

They are designed to work well with mobile devices, supporting the modern mobile workforce.

Cost Efficiency 

They eliminate the need for expensive hardware and maintenance costs associated with traditional VPNs.

What is a Traditional VPN (remote VPN)?

A traditional VPN, also known as a remote VPN, is a technology that creates a secure connection over a less secure network between the user’s computer and a private network. 

Remote workers widely use this technology to access company resources they wouldn’t otherwise be able to reach. It’s also used by individuals who want to ensure their online activity is private and secure.

How Do Remote VPNs Work?

A cloud VPN vs. traditional VPN comparison reveals how remote VPNs function. These systems create a secure tunnel between the user’s device and the VPN server. The data traveling through this tunnel is encrypted, offering a safe method for transmitting information between the remote user and the company network.

The VPN server, acting as a go-between, conceals your IP address and gives the impression that your traffic originates from its IP address. This covers your online activities from your ISP and creates the illusion that you’re located where the VPN server is. This can be particularly useful for accessing content that is region-restricted.

In a hosted VPN service, the server is maintained by a third-party provider, reducing the burden on your IT resources.

Advantages of Traditional VPNs

Traditional VPNs offer several benefits, including:

  • Security: Traditional VPNs use advanced encryption protocols to secure your data, protecting your information from hackers and other cyber threats.
  • Privacy: By masking your IP address, a VPN ensures that your online activities remain private.
  • Remote access: VPNs allow remote workers to securely access their company’s network from anywhere in the world.
  • Bypassing geo-restrictions: VPNs can make it appear as though you’re browsing from a different location, allowing you to access content that may be region-locked.
  • Cost-effective: Many VPN services are available at a relatively low cost, and the security benefits they provide can save businesses money in the long run by preventing data breaches.

Cloud VPN vs. Traditional VPN: the Main Differences

Regarding cloud VPN vs. traditional VPN, it’s essential to understand that both have strengths and weaknesses. However, the transition from traditional VPN to cloud VPN has really underscored how good the cloud is at addressing the limitations of traditional VPN technologies.

Cloud VPNs eliminate network choke points by allowing users to connect directly to the required network, whether cloud-based or on-premises. This direct connection reduces bandwidth consumption and latency, enhancing user experience. 

Also, cloud VPNs centralize remote access security, simplifying setting up and maintaining security policies across all cloud platforms.

Unlike traditional VPNs, which have hard limits on bandwidth and user numbers, cloud VPNs can scale to meet changing business requirements. Still, as we delve deeper into the differences, you’ll see that the choice between cloud and traditional VPNs depends on your business’s needs.

Features 

Cloud VPNs are known for their scalability, cost-efficiency, and enhanced security features. They’re implemented as cloud-based services, making them more flexible and globally accessible. On the other hand, traditional VPNs are network appliances that provide secure, remote access to company networks but may lack the flexibility and scalability of their cloud counterparts.

Performance

Performance is a key differentiator. Cloud VPNs, running in data centers, offer high-speed connections not limited by network speed, unlike hardware VPNs. They also eliminate backhaul, allowing users to connect directly to cloud-based networks, improving network performance and reducing latency.

Support

In terms of support, Cloud VPNs have an edge. They can quickly adopt new security features and vulnerability patches, making them more secure than on-premise VPNs. Traditional VPNs, however, may require more time and resources to implement such updates.

Pricing 

Pricing is a significant factor in cloud VPN vs. traditional VPN. Cloud VPNs are generally more affordable, with usage-based VPN-as-a-Service (VPNaaS) fees being more cost-effective than the expenses associated with deploying, maintaining, and upgrading VPN hardware.

So, Which Should You Choose: A Cloud Vpn or a Traditional Vpn?

Choosing between a cloud VPN vs. a traditional VPN for your business largely depends on your specific needs and circumstances. However, it’s crucial to consider the evolution of technology and the increasing demand for robust, flexible, and secure networking solutions.

Cloud VPNs offer a more flexible and scalable solution than traditional VPNs. On the other hand, traditional VPNs have been a staple in the security landscape for decades.

However, as businesses adapt to an increasingly digital landscape, the demand for secure, remote access to resources is rising. This has led to the emergence of alternatives to both cloud VPN and traditional VPN. 

Two such alternatives are:

  • Zero Trust Network Access (ZTNA)This modern approach to network access enhances security by verifying every connection attempt and limiting access privileges to only what users need to perform their tasks. This reduces the risk of data breaches and ensures a secure network environment.
  • Software-Defined Perimeter (SDP): Offering a flexible, scalable, and secure solution, the SDP model creates a dynamic, individualized perimeter for each user. This adaptability ensures robust security without compromising user experience, making it an attractive business option.

We offer a comprehensive solution that implements the Zero Trust model, providing businesses with a secure, flexible, and scalable alternative to both Cloud VPN and Traditional VPN. This solution combines the strengths of both ZTNA and SDP, ensuring that your business is equipped with the most robust and adaptable network security measures available today.

Ready to secure your business’s digital infrastructure and enhance your network’s performance? Want to benefit from a solution that aligns with your specific needs? Book a demo today!

Source :
https://www.perimeter81.com/blog/network/cloud-vpn-vs-traditional-vpn

The five-day job: A BlackByte ransomware intrusion case study

July 6, 2023

As ransomware attacks continue to grow in number and sophistication, threat actors can quickly impact business operations if organizations are not well prepared. In a recent investigation by Microsoft Incident Response (previously known as Microsoft Detection and Response Team – DART) of an intrusion, we found that the threat actor progressed through the full attack chain, from initial access to impact, in less than five days, causing significant business disruption for the victim organization.

Our investigation found that within those five days, the threat actor employed a range of tools and techniques, culminating in the deployment of BlackByte 2.0 ransomware, to achieve their objectives. These techniques included:

  • Exploitation of unpatched internet-exposed Microsoft Exchange Servers
  • Web shell deployment facilitating remote access
  • Use of living-off-the-land tools for persistence and reconnaissance
  • Deployment of Cobalt Strike beacons for command and control (C2)
  • Process hollowing and the use of vulnerable drivers for defense evasion
  • Deployment of custom-developed backdoors to facilitate persistence
  • Deployment of a custom-developed data collection and exfiltration tool
BlackByte 2.0 ransomware attack chain by order of stages: initial access and privilege escalation, persistence and command and control, reconnaissance, credential access, lateral movement, data staging and exfiltration, and impact.
Figure 1. BlackByte 2.0 ransomware attack chain

In this blog, we share details of our investigation into the end-to-end attack chain, exposing security weaknesses that the threat actor exploited to advance their attack. As we learned from Microsoft’s tracking of ransomware attacks and the cybercriminal economy that enables them, disrupting common attack patterns could stop many of the attacker activities that precede ransomware deployment. This case highlights that common security hygiene practices go a long way in preventing, identifying, and responding to malicious activity as early as possible to mitigate the impact of ransomware attacks. We encourage organizations to follow the outlined mitigation steps, including ensuring that internet-facing assets are up to date and configured securely. We also share indicators of compromise, detection details, and hunting guidance to help organizations identify and respond to these attacks in their environments.  

Forensic analysis

Initial access and privilege escalation

To obtain initial access into the victim’s environment, the threat actor was observed exploiting the ProxyShell vulnerabilities CVE-2021-34473, CVE-2021-34523, and CVE-2021-31207 on unpatched Microsoft Exchange Servers. The exploitation of these vulnerabilities allowed the threat actor to:

  • Attain system-level privileges on the compromised Exchange host
  • Enumerate LegacyDN of users by sending Autodiscover requests, including SIDs of users
  • Construct a valid authentication token and use it against the Exchange PowerShell backend
  • Impersonate domain admin users and create a web shell by using the New-MailboxExportRequest cmdlet
  • Create web shells to obtain remote control on affected servers

The threat actor was observed operating from the following IP to exploit ProxyShell and access the web shell:

  • 185.225.73[.]244

Persistence

Backdoor

After gaining access to a device, the threat actor created the following registry run keys to run a payload each time a user signs in:

Registry keyValue nameValue data
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run  MsEdgeMsErundll32 C:\Users\user\Downloads\api-msvc.dll,Default  
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run  MsEdgeMsErundll32 C:\temp\api-msvc.dll,Default  
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run  MsEdgeMsErundll32 C:\systemtest\api-system.png,Default

The file api-msvc.dll (SHA-256: 4a066569113a569a6feb8f44257ac8764ee8f2011765009fdfd82fe3f4b92d3e) was determined to be a backdoor capable of collecting system information, such as the installed antivirus products, device name, and IP address. This information is then sent via HTTP POST request to the following C2 channel:

  • hxxps://myvisit[.]alteksecurity[.]org/t

The organization was not using Microsoft Defender Antivirus, which detects this malware as Trojan:Win32/Kovter!MSR, as the primary antivirus solution, and the backdoor was allowed to run.

An additional file, api-system.png, was identified to have similarities to api-msvc.dll. This file behaved like a DLL, had the same default export function, and also leveraged run keys for persistence.

Cobalt Strike Beacon

The threat actor leveraged Cobalt Strike to achieve persistence. The file sys.exe (SHA-256: 5f37b85687780c089607670040dbb3da2749b91b8adc0aa411fd6280b5fa7103), detected by Microsoft Defender Antivirus as Trojan:Win64/CobaltStrike!MSR, was determined to be a Cobalt Strike Beacon and was downloaded directly from the file sharing service temp[.]sh:

  • hxxps://temp[.]sh/szAyn/sys.exe

This beacon was configured to communicate with the following C2 channel:

  • 109.206.243[.]59:443

AnyDesk

Threat actors leverage legitimate remote access tools during intrusions to blend into a victim network. In this case, the threat actor utilized the remote administration tool AnyDesk, to maintain persistence and move laterally within the network. AnyDesk was installed as a service and was run from the following paths:

  • C:\systemtest\anydesk\AnyDesk.exe
  • C:\Program Files (x86)\AnyDesk\AnyDesk.exe
  • C:\Scripts\AnyDesk.exe

Successful connections were observed in the AnyDesk log file ad_svc.trace involving anonymizer service IP addresses linked to TOR and MULLVAD VPN, a common technique that threat actors employ to obscure their source IP ranges.

Reconnaissance

We found the presence and execution of the network discovery tool NetScan being used by the threat actor to perform network enumeration using the following file names:

  • netscan.exe (SHA-256:1b9badb1c646a19cdf101ac4f6fdd23bc61eaab8c9f925eb41848cea9fd0738e)
  • netapp.exe (SHA-256:1b9badb1c646a19cdf101ac4f6fdd23bc61eaab8c9f925eb41848cea9fd0738e)

Additionally, execution of AdFind (SHA-256: f157090fd3ccd4220298c06ce8734361b724d80459592b10ac632acc624f455e), an Active Directory reconnaissance tool, was observed in the environment.

Credential access

Evidence of likely usage of the credential theft tool Mimikatzwas also uncovered through the presence of a related log file mimikatz.log. Microsoft IR assesses that Mimikatz was likely used to attain credentials for privileged accounts.

Lateral movement

Using compromised domain admin credentials, the threat actor used Remote Desktop Protocol (RDP) and PowerShell remoting to obtain access to other servers in the environment, including domain controllers.

Data staging and exfiltration

In one server where Microsoft Defender Antivirus was installed, a suspicious file named explorer.exe was identified, detected as Trojan:Win64/WinGoObfusc.LK!MT, and quarantined. However, because tamper protection wasn’t enabled on this server, the threat actor was able to disable the Microsoft Defender Antivirus service, enabling the threat actor to run the file using the following command:

explorer.exe P@$$w0rd

After reverse engineering explorer.exe, we determined it to be ExByte, a GoLang-based tool developed and commonly used in BlackByte ransomware attacks for collection and exfiltration of files from victim networks. This tool is capable of enumerating files of interest across the network and, upon execution, creates a log file containing a list of files and associated metadata. Multiple log files were uncovered during the investigation in the path:

  • C:\Exchange\MSExchLog.log

Analysis of the binary revealed a list of file extensions that are targeted for enumeration.

Figure-2.-Binary-analysis-showing-file-extensions-enumerated-by-explorer.exe_
Figure 2. Binary analysis showing file extensions enumerated by explorer.exe

Forensic analysis identified a file named data.txt that was created and later deleted after ExByte execution. This file contained obfuscated credentials that ExByte leveraged to authenticate to the popular file sharing platform Mega NZ using the platform’s API at:

  • hxxps://g.api.mega.co[.]nz
Figure 3. Binary analysis showing explorer.exe functionality for connecting to file sharing service MEGA NZ

We also determined that this version of Exbyte was crafted specifically for the victim, as it contained a hardcoded device name belonging to the victim and an internal IP address.

ExByte execution flow

Upon execution, ExByte decodes several strings and checks if the process is running with privileged access by reading \\.\PHYSICALDRIVE0:

  • If this check fails, ShellExecuteW is invoked with the IpOperation parameter RunAs, which runs explorer.exe with elevated privileges.

After this access check, explorer.exe attempts to read the data.txt file in the current location:

  • If the text file doesn’t exist, it invokes a command for self-deletion and exits from memory:
C:\Windows\system32\cmd.exe /c ping 1.1.1.1 -n 10 > nul & Del <PATH>\explorer.exe /F /Q
  • If data.txt exists, explorer.exe reads the file, passes the buffer to Base64 decode function, and then decrypts the data using the key provided in the command line. The decrypted data is then parsed as JSON below and fed for login function:
{    “a”:”us0”,    “user”:”<CONTENT FROM data.txt>”}

Finally, it forms a URL for sign-in to the API of the service MEGA NZ:

  • hxxps://g.api.mega.co[.]nz/cs?id=1674017543

Data encryption and destruction

On devices where files were successfully encrypted, we identified suspicious executables, detected by Microsoft Defender Antivirus as Trojan:Win64/BlackByte!MSR, with the following names:

  • wEFT.exe
  • schillerized.exe

The files were analyzed and determined to be BlackByte 2.0 binaries responsible for encryption across the environment. The binaries require an 8-digit key number to encrypt files.

Two modes of execution were identified:

  • When the -s parameter is provided, the ransomware self-deletes and encrypts the machine it was executed on.
  • When the -a parameter is provided, the ransomware conducts enumeration and uses an Ultimate Packer Executable (UPX) packed version of PsExec to deploy across the network. Several domain admin credentials were hardcoded in the binary, facilitating the deployment of the binary across the network.

Depending on the switch (-s or -a), execution may create the following files:

  • C:\SystemData\M8yl89s7.exe (UPX-packed PsExec with a random name; SHA-256: ba3ec3f445683d0d0407157fda0c26fd669c0b8cc03f21770285a20b3133098f)
  • C:\SystemData\wEFT.exe (Additional BlackByte binary)
  • C:\SystemData\MsExchangeLog1.log (Log file)
  • C:\SystemData\rENEgOtiAtES (A vulnerable (CVE-2019-16098) driver RtCore64.sys used to evade detection by installed antivirus software; SHA-256: 01aa278b07b58dc46c84bd0b1b5c8e9ee4e62ea0bf7a695862444af32e87f1fd)
  • C:\SystemData\iHu6c4.ico (Random name – BlackBytes icon)
  • C:\SystemData\BB_Readme_file.txt (BlackByte ReadMe file)
  • C:\SystemData\skip_bypass.txt (Unknown)

BlackByte 2.0 ransomware capabilities

Some capabilities identified for the BlackByte 2.0 ransomware were:

  • Antivirus bypass
    • The file rENEgOtiAtES created matches RTCore64.sys, a vulnerable driver (CVE-2049-16098) that allows any authenticated user to read or write to arbitrary memory
    • The BlackByte binary then creates and starts a service named RABAsSaa calling rENEgOtiAtES, and exploits this service to evade detection by installed antivirus software
  • Process hollowing
    • Invokes svchost.exe, injects to it to complete device encryption, and self-deletes by executing the following command:
      • cmd.exe /c ping 1.1.1.1 -n 10 > Nul & Del “PATH_TO_BLACKBYTE” /F /Q
  • Modification / disabling of Windows Firewall
    • The following commands are executed to either modify existing Windows Firewall rules, or to disable Windows Firewall entirely:
      • cmd /c netsh advfirewall set allprofiles state off
      • cmd /c netsh advfirewall firewall set rule group=”File and Printer Sharing” new enable=Yes
      • cmd /c netsh advfirewall firewall set rule group=”Network Discovery” new enable=Yes
  • Modification of volume shadow copies
    • The following commands are executed to destroy volume shadow copies on the machine:
      • cmd /c vssadmin Resize ShadowStorge /For=B:\ /On=B:\ /MaxSize=401MB
      • cmd /c vssadmin Resize ShadowStorage /For=B:\ /On=B:\ /MaxSize=UNBOUNDED
  • Modification of registry keys/values
    • The following commands are executed to modify the registry, facilitating elevated execution on the device:
      • cmd /c reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System /v LocalAccountTokenFilterPolicy /t REG_DWORD /d 1 /f
      • cmd /c reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System /v EnableLinkedConnections /t REG_DWORD /d 1 /f
      • cmd /c reg add HKLM\\SYSTEM\\CurrentControlSet\\Control\\FileSystem /v LongPathsEnabled /t REG_DWORD /d 1 /f
  • Additional functionality
    • Ability to terminate running services and processes
    • Ability to enumerate and mount volumes and network shares for encryption
    • Perform anti-forensics technique timestomping (sets the file time of encrypted and ReadMe file to 2000-01-01 00:00:00)
    • Ability to perform anti-debugging techniques

Recommendations

To guard against BlackByte ransomware attacks, Microsoft recommends the following:

  • Ensure that you have a patch management process in place and that patching for internet-exposed devices is prioritized; Understand and assess your cyber exposure with advanced vulnerability and configuration assessment tools like Microsoft Defender Vulnerability Management
  • Implement an endpoint detection and response (EDR) solution like Microsoft Defender for Endpoint to gain visibility into malicious activity in real time across your network
  • Ensure antivirus protections are updated regularly by turning on cloud-based protection and that your antivirus solution is configured to block threats
  • Enable tamper protection to prevent components of Microsoft Defender Antivirus from being disabled
  • Block inbound traffic from IPs specified in the indicators of compromise section of this report
  • Block inbound traffic from TOR exit nodes
  • Block inbound access from unauthorized public VPN services
  • Restrict administrative privileges to prevent authorized system changes

Conclusion

BlackByte ransomware attacks target organizations that have infrastructure with unpatched vulnerabilities.  As outlined in the Microsoft Digital Defense Report, common security hygiene practices, including keeping systems up to date, could protect against 98% of attacks.

As new tools are being developed by threat actors, a modern threat protection solution like Microsoft 365 Defender is necessary to prevent and detect the multiple techniques used in the attack chain, especially where the threat actor attempts to evade or disable specific defense mechanisms. Hunting for malicious behavior should be performed regularly in order to detect potential attacks that could evade detections, as a complementary activity for continuous monitoring from security tools alerts and incidents.

To understand how Microsoft can help you secure your network and respond to network compromise, visit https://aka.ms/MicrosoftIR.

Microsoft 365 Defender detections

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects this threat as the following malware:

  • Trojan:Win32/Kovter!MSR
  • Trojan:Win64/WinGoObfusc.LK!MT
  • Trojan:Win64/BlackByte!MSR
  • HackTool:Win32/AdFind!MSR
  • Trojan:Win64/CobaltStrike!MSR

Microsoft Defender for Endpoint

The following alerts might indicate threat activity related to this threat. Note, however, that these alerts can be also triggered by unrelated threat activity.

  • ‘CVE-2021-31207’ exploit malware was detected
  • An active ‘NetShDisableFireWall’ malware in a command line was prevented from executing.
  • Suspicious registry modification.
  • ‘Rtcore64’ hacktool was detected
  • Possible ongoing hands-on-keyboard activity (Cobalt Strike)
  • A file or network connection related to a ransomware-linked emerging threat activity group detected
  • Suspicious sequence of exploration activities
  • A process was injected with potentially malicious code
  • Suspicious behavior by cmd.exe was observed
  • ‘Blackbyte’ ransomware was detected

Microsoft Defender Vulnerability Management

Microsoft Defender Vulnerability Management surfaces devices that may be affected by the following vulnerabilities used in this threat:

  • CVE-2021-34473
  • CVE-2021-34523
  • CVE-2021-31207
  • CVE-2019-16098

Hunting queries

Microsoft 365 Defender

Microsoft 365 Defender customers can run the following query to find related activity in their networks:

ProxyShell web shell creation events

DeviceProcessEvents| where ProcessCommandLine has_any ("ExcludeDumpster","New-ExchangeCertificate") and ProcessCommandLine has_any ("-RequestFile","-FilePath")

Suspicious vssadmin events

DeviceProcessEvents| where ProcessCommandLine has_any ("vssadmin","vssadmin.exe") and ProcessCommandLine has "Resize ShadowStorage" and ProcessCommandLine has_any ("MaxSize=401MB"," MaxSize=UNBOUNDED")

Detection for persistence creation using Registry Run keys

DeviceRegistryEvents | where ActionType == "RegistryValueSet" | where (RegistryKey has @"Microsoft\Windows\CurrentVersion\RunOnce" and RegistryValueName == "MsEdgeMsE")      or (RegistryKey has @"Microsoft\Windows\CurrentVersion\RunOnceEx" and RegistryValueName == "MsEdgeMsE")    or (RegistryKey has @"Microsoft\Windows\CurrentVersion\Run" and RegistryValueName == "MsEdgeMsE")| where RegistryValueData startswith @"rundll32"| where RegistryValueData endswith @".dll,Default"| project Timestamp,DeviceId,DeviceName,ActionType,RegistryKey,RegistryValueName,RegistryValueData

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace. More details on the Content Hub can be found here:  https://learn.microsoft.com/azure/sentinel/sentinel-solutions-deploy

Microsoft Sentinel also has a range of detection and threat hunting content that customers can use to detect the post exploitation activity detailed in this blog in addition to Microsoft 365 Defender detections list above.

Indicators of compromise

The table below shows IOCs observed during our investigation. We encourage our customers to investigate these indicators in their environments and implement detections and protections to identify past related activity and prevent future attacks against their systems.

IndicatorTypeDescription
4a066569113a569a6feb8f44257ac8764ee8f2011765009fdfd82fe3f4b92d3eSHA-256api-msvc.dll (Backdoor installed through RunKeys)
5f37b85687780c089607670040dbb3da2749b91b8adc0aa411fd6280b5fa7103SHA-256sys.exe (Cobalt Strike Beacon)
01aa278b07b58dc46c84bd0b1b5c8e9ee4e62ea0bf7a695862444af32e87f1fdSHA-256rENEgOtiAtES (Vulnerable driver RtCore64.sys created by BlackByte binary)
ba3ec3f445683d0d0407157fda0c26fd669c0b8cc03f21770285a20b3133098fSHA-256[RANDOM_NAME].exe (UPX Packed PsExec created by BlackByte binary)
1b9badb1c646a19cdf101ac4f6fdd23bc61eaab8c9f925eb41848cea9fd0738eSHA-256“netscan.exe”, “netapp.exe (Netscan network discovery tool)
f157090fd3ccd4220298c06ce8734361b724d80459592b10ac632acc624f455eSHA-256AdFind.exe (Active Directory information gathering tool)
hxxps://myvisit[.]alteksecurity[.]org/tURLC2 for backdoor api-msvc.dll
hxxps://temp[.]sh/szAyn/sys.exeURLDownload URL for sys.exe
109.206.243[.]59IP AddressC2 for Cobalt Strike Beacon sys.exe
185.225.73[.]244IP AddressOriginating IP address for ProxyShell exploitation and web shell interaction

NOTE: These indicators should not be considered exhaustive for this observed activity.

Appendix

File extensions targeted by BlackByte binary for encryption:

.4dd.4dl.accdb.accdc.accde.accdr.accdt.accft
.adb.ade.adf.adp.arc.ora.alf.ask
.btr.bdf.cat.cdb.ckp.cma.cpd.dacpac
.dad.dadiagrams.daschema.db.db-shm.db-wal.db3.dbc
.dbf.dbs.dbt.dbv. dbx. dcb. dct. dcx
. ddl. dlis. dp1. dqy. dsk. dsn. dtsx. dxl
. eco. ecx. edb. epim. exb. fcd. fdb. fic
. fmp. fmp12. fmpsl. fol.fp3. fp4. fp5. fp7
. fpt. frm. gdb. grdb. gwi. hdb. his. ib
. idb. ihx. itdb. itw. jet. jtx. kdb. kexi
. kexic. kexis. lgc. lwx. maf. maq. mar. masmav
. mdb. mpd. mrg. mud. mwb. myd. ndf. nnt
. nrmlib. ns2. ns3. ns4. nsf. nv. nv2. nwdb
. nyf. odb. ogy. orx. owc. p96. p97. pan
. pdb. pdm. pnz. qry. qvd. rbf. rctd. rod
. rodx. rpd. rsd. sas7bdat. sbf. scx. sdb. sdc
. sdf. sis. spg. sql. sqlite. sqlite3. sqlitedb. te
. temx. tmd. tps. trc. trm. udb. udl. usr
. v12. vis. vpd. vvv. wdb. wmdb. wrk. xdb
. xld. xmlff. abcddb. abs. abx. accdw. and. db2
. fm5. hjt. icg. icr. kdb. lut. maw. mdn
. mdt       

Shared folders targeted for encryption (Example: \\[IP address]\Downloads):

UsersBackupVeeamhomeshome
mediacommonStorage ServerPublicWeb
ImagesDownloadsBackupDataActiveBackupForBusinessBackups
NAS-DCDCBACKUPDirectorFilesshare 

File extensions ignored:

.ini.url.msilog.log.ldf.lock.theme.msi
.sys.wpx.cpl.adv.msc.scr.key.ico
.dll.hta.deskthemepack.nomedia.msu.rtp.msp.idx
.ani.386.diagcfg.bin.mod.ics.com.hlp
 .spl.nls.cab.exe.diagpkg.icl.ocx.rom
.prf.thempack.msstyles.icns.mpa.drv.cur.diagcab
.cmd.shs      

Folders ignored:

windowsbootprogram files (x86)windows.oldprogramdata
intelbitdefendertrend microwindowsappsappdata
application datasystem volume informationperflogsmsocache 

Files ignored:

bootnxtntldrbootmgrthumbs.db
ntuser.datbootsect.bakautoexec.baticoncache.db
bootfont.bin   

Processes terminated:

teracopyteamviewernsservicensctrluranium
processhackerprocmonpestudioprocmon64x32dbg
x64dbgcff explorerprocexppslisttcpview
tcpvcondbgviewrammaprammap64vmmap
ollydbgautorunsautorunsscfilemonregmon
idaqidaq64immunitydebuggerwiresharkdumpcap
hookexplorerimportrecpetoolslordpesysinspector
proc_analyzersysanalyzersniff_hitwindbgjoeboxcontrol
joeboxserverresourcehackerfiddlerhttpdebuggerdumpit
rammaprammap64vmmapagntsvccntaosmgr
dbeng50dbsnmpencsvcinfopathisqlplussvc
mbamtraymsaccessmsftesqlmspubmydesktopqos
mydesktopservicemysqldmysqld-ntmysqld-optNtrtscan
ocautoupdsocommocssdonenoteoracle
outlookPccNTMonpowerpntsqbcoreservicesql
sqlagentsqlbrowsersqlservrsqlwritersteam
synctimetbirdconfigthebatthebat64thunderbird
tmlistenvisiowinwordwordpadxfssvccon
zoolz    

Services terminated:

CybereasonRansomFreevnetdbpcdSamSsTeraCopyService
msftesqlnsServiceklvssbridge64vapiendpointShMonitor
SmcinstSmcServiceSntpServicesvcGenericHostSwi_
TmCCSFtmlistenTrueKeyTrueKeySchedulerTrueKeyServiceHelper
WRSVCMcTaskManagerOracleClientCache80mfefirewbengine
mfemmsRESvcmfevtpsacsvrSAVAdminService
SepMasterServicePDVFSServiceESHASRVSDRSVCFA_Scheduler
KAVFSKAVFS_KAVFSGTkavfsslpklnagentmacmnsvc
masvcMBAMServiceMBEndpointAgentMcShieldaudioendpointbuilder
AntivirusAVPDCAgentbedbgEhttpSrv
MMSekrnEPSecurityServiceEPUpdateServicentrtscan
EsgShKernelmsexchangeadtopologyAcrSch2SvcMSOLAP$TPSAMAIntel(R) PROSet Monitoring
msexchangeimap4ARSMunistoresvc_1af40aReportServer$TPSMSOLAP$SYSTEM_BGC
W3SvcMSExchangeSRSReportServer$TPSAMAZoolz 2 ServiceMSOLAP$TPS
aphidmonitorserviceSstpSvcMSExchangeMTAReportServer$SYSTEM_BGCSymantec System Recovery
UI0DetectMSExchangeSAMSExchangeISReportServerMsDtsServer110
POP3SvcMSExchangeMGMTSMTPSvcMsDtsServerIisAdmin
MSExchangeESEraserSvc11710Enterprise Client ServiceMsDtsServer100NetMsmqActivator
stc_raw_agentVSNAPVSSPDVFSServiceAcrSch2SvcAcronis
CASAD2DWebSvcCAARCUpdateSvcMcAfeeavpsusDLPAgentService
mfewcBMR Boot ServiceDefWatchccEvtMgrccSetMgr
SavRoamRTVsc screenconnectransomsqltelemetrymsexch
vncteamviewermsolapveeambackup
sqlmemtasvsssophossvc$
mepocswuauserv   

Drivers that Blackbyte can bypass:

360avflt.sys360box.sys360fsflt.sys360qpesv.sys5nine.cbt.sys
a2acc.sysa2acc64.sysa2ertpx64.sysa2ertpx86.sysa2gffi64.sys
a2gffx64.sysa2gffx86.sysaaf.sysaalprotect.sysabrpmon.sys
accessvalidator.sysacdriver.sysacdrv.sysadaptivaclientcache32.sysadaptivaclientcache64.sys
adcvcsnt.sysadspiderdoc.sysaefilter.sysagentrtm64.sysagfsmon.sys
agseclock.sysagsyslock.sysahkamflt.sysahksvpro.sysahkusbfw.sys
ahnrghlh.sysaictracedrv_am.sysairship-filter.sysajfsprot.sysalcapture.sys
alfaff.sysaltcbt.sysamfd.sysamfsm.sysamm6460.sys
amm8660.sysamsfilter.sysamznmon.sysantileakfilter.sysantispyfilter.sys
anvfsm.sysapexsqlfilterdriver.sysappcheckd.sysappguard.sysappvmon.sys
arfmonnt.sysarta.sysarwflt.sysasgard.sysashavscan.sys
asiofms.sysaswfsblk.sysaswmonflt.sysaswsnx.sysaswsp.sys
aszfltnt.sysatamptnt.sysatc.sysatdragent.sysatdragent64.sys
aternityregistryhook.sysatflt.sysatrsdfw.sysauditflt.sysaupdrv.sys
avapsfd.sysavc3.sysavckf.sysavfsmn.sysavgmfi64.sys
avgmfrs.sysavgmfx64.sysavgmfx86.sysavgntflt.sysavgtpx64.sys
avgtpx86.sysavipbb.sysavkmgr.sysavmf.sysawarecore.sys
axfltdrv.sysaxfsysmon.sysayfilter.sysb9kernel.sysbackupreader.sys
bamfltr.sysbapfecpt.sysbbfilter.sysbd0003.sysbddevflt.sys
bdfiledefend.sysbdfilespy.sysbdfm.sysbdfsfltr.sysbdprivmon.sys
bdrdfolder.sysbdsdkit.sysbdsfilter.sysbdsflt.sysbdsvm.sys
bdsysmon.sysbedaisy.sysbemk.sysbfaccess.sysbfilter.sys
bfmon.sysbhdrvx64.sysbhdrvx86.sysbhkavka.sysbhkavki.sys
bkavautoflt.sysbkavsdflt.sysblackbirdfsa.sysblackcat.sysbmfsdrv.sys
bmregdrv.sysboscmflt.sysbosfsfltr.sysbouncer.sysboxifier.sys
brcow_x_x_x_x.sysbrfilter.sysbrnfilelock.sysbrnseclock.sysbrowsermon.sys
bsrfsflt.sysbssaudit.sysbsyaed.sysbsyar.sysbsydf.sys
bsyirmf.sysbsyrtm.sysbsysp.sysbsywl.sysbwfsdrv.sys
bzsenspdrv.sysbzsenth.sysbzsenyaradrv.syscaadflt.syscaavfltr.sys
cancelsafe.syscarbonblackk.syscatflt.syscatmf.syscbelam.sys
cbfilter20.syscbfltfs4.syscbfsfilter2017.syscbfsfilter2020.syscbsampledrv.sys
cdo.syscdrrsflt.syscdsgfsfilter.syscentrifyfsf.syscfrmd.sys
cfsfdrvcgwmf.syschange.syschangelog.syschemometecfilter.sys
ciscoampcefwdriver.sysciscoampheurdriver.sysciscosam.sysclumiochangeblockmf.syscmdccav.sys
cmdcwagt.syscmdguard.syscmdmnefs.syscmflt.syscode42filter.sys
codex.sysconduantfsfltr.syscontainermonitor.syscpavfilter.syscpavkernel.sys
cpepmon.syscrexecprev.syscrncache32.syscrncache64.syscrnsysm.sys
cruncopy.syscsaam.syscsaav.syscsacentr.syscsaenh.sys
csagent.syscsareg.syscsascr.syscsbfilter.syscsdevicecontrol.sys
csfirmwareanalysis.syscsflt.syscsmon.syscssdlp.sysctamflt.sys
ctifile.sysctinet.sysctrpamon.sysctx.syscvcbt.sys
cvofflineflt32.syscvofflineflt64.syscvsflt.syscwdriver.syscwmem2k64.sys
cybkerneltracker.syscylancedrv64.syscyoptics.syscyprotectdrv32.syscyprotectdrv64.sys
cytmon.syscyverak.syscyvrfsfd.syscyvrlpc.syscyvrmtgn.sys
datanow_driver.sysdattofsf.sysda_ctl.sysdcfafilter.sysdcfsgrd.sys
dcsnaprestore.sysdeepinsfs.sysdelete_flt.sysdevmonminifilter.sysdfmfilter.sys
dgedriver.sysdgfilter.sysdgsafe.sysdhwatchdog.sysdiflt.sys
diskactmon.sysdkdrv.sysdkrtwrt.sysdktlfsmf.sysdnafsmonitor.sys
docvmonk.sysdocvmonk64.sysdpmfilter.sysdrbdlock.sysdrivesentryfilterdriver2lite.sys
drsfile.sysdrvhookcsmf.sysdrvhookcsmf_amd64.sysdrwebfwflt.sysdrwebfwft.sys
dsark.sysdsdriver.sysdsfemon.sysdsflt.sysdsfltfs.sys
dskmn.sysdtdsel.sysdtpl.sysdwprot.sysdwshield.sys
dwshield64.syseamonm.syseaseflt.syseasyanticheat.syseaw.sys
ecatdriver.sysedevmon.sysednemfsfilter.sysedrdrv.sysedrsensor.sys
edsigk.syseectrl.syseetd32.syseetd64.syseeyehv.sys
eeyehv64.sysegambit.sysegfilterk.sysegminflt.sysegnfsflt.sys
ehdrv.syselock2fsctldriver.sysemxdrv2.sysenigmafilemondriver.sysenmon.sys
epdrv.sysepfw.sysepfwwfp.sysepicfilter.sysepklib.sys
epp64.sysepregflt.syseps.sysepsmn.sysequ8_helper.sys
eraser.sysesensor.sysesprobe.sysestprmon.sysestprp.sys
estregmon.sysestregp.sysestrkmon.sysestrkr.syseventmon.sys
evmf.sysevscase.sysexcfs.sysexprevdriver.sysfailattach.sys
failmount.sysfam.sysfangcloud_autolock_driver.sysfapmonitor.sysfarflt.sys
farwflt.sysfasdriverfcnotify.sysfcontrol.sysfdrtrace.sys
fekern.sysfencry.sysffcfilt.sysffdriver.sysfildds.sys
filefilter.sysfileflt.sysfileguard.sysfilehubagent.sysfilemon.sys
filemonitor.sysfilenamevalidator.sysfilescan.sysfilesharemon.sysfilesightmf.sys
filesystemcbt.sysfiletrace.sysfile_monitor.sysfile_protector.sysfile_tracker.sys
filrdriver.sysfim.sysfiometer.sysfiopolicyfilter.sysfjgsdis2.sys
fjseparettifilterredirect.sysflashaccelfs.sysflightrecorder.sysfltrs329.sysflyfs.sys
fmdrive.sysfmkkc.sysfmm.sysfortiaptfilter.sysfortimon2.sys
fortirmon.sysfortishield.sysfpav_rtp.sysfpepflt.sysfsafilter.sys
fsatp.sysfsfilter.sysfsgk.sysfshs.sysfsmon.sys
fsmonitor.sysfsnk.sysfsrfilter.sysfstrace.sysfsulgk.sys
fsw31rj1.sysgagsecurity.sysgbpkm.sysgcffilter.sysgddcv.sys
gefcmp.sysgemma.sysgeprotection.sysggc.sysgibepcore.sys
gkff.sysgkff64.sysgkpfcb.sysgkpfcb64.sysgofsmf.sys
gpminifilter.sysgroundling32.sysgroundling64.sysgtkdrv.sysgumhfilter.sys
gzflt.syshafsnk.syshbflt.syshbfsfltr.syshcp_kernel_acq.sys
hdcorrelatefdrv.syshdfilemon.syshdransomoffdrv.syshdrfs.sysheimdall.sys
hexisfsmonitor.syshfileflt.syshiofs.syshmpalert.syshookcentre.sys
hooksys.syshpreg.syshsmltmon.syshsmltwhl.syshssfwhl.sys
hvlminifilter.sysibr2fsk.sysiccfileioad.sysiccfilteraudit.sysiccfiltersc.sys
icfclientflt.sysicrlmonitor.sysiderafilterdriver.sysielcp.sysieslp.sys
ifs64.sysignis.sysiguard.sysiiscache.sysikfilesec.sys
im.sysimffilter.sysimfilter.sysimgguard.sysimmflex.sys
immunetprotect.sysimmunetselfprotect.sysinisbdrv64.sysino_fltr.sysintelcas.sys
intmfs.sysinuse.sysinvprotectdrv.sysinvprotectdrv64.sysionmonwdrv.sys
iothorfs.sysipcomfltr.sysipfilter.sysiprotect.sysiridiumswitch.sys
irongatefd.sysisafekrnl.sysisafekrnlmon.sysisafermonisecureflt.sys
isedrv.sysisfpdrv.sysisirmfmon.sysisregflt.sysisregflt64.sys
issfltr.sysissregistry.sysit2drv.sysit2reg.sysivappmon.sys
iwdmfs.sysiwhlp.sysiwhlp2.sysiwhlpxp.sysjdppsf.sys
jdppwf.sysjkppob.sysjkppok.sysjkpppf.sysjkppxk.sys
k7sentry.syskavnsi.syskawachfsminifilter.syskc3.syskconv.sys
kernelagent32.syskewf.syskfac.syskfileflt.syskisknl.sys
klam.sysklbg.sysklboot.syskldback.syskldlinf.sys
kldtool.sysklfdefsf.sysklflt.sysklgse.sysklhk.sys
klif.sysklifaa.sysklifks.sysklifsm.sysklrsps.sys
klsnsr.sysklupd_klif_arkmon.syskmkuflt.syskmnwch.syskmxagent.sys
kmxfile.syskmxsbx.sysksfsflt.sysktfsfilter.sysktsyncfsflt.sys
kubwksp.syslafs.syslbd.syslbprotect.syslcgadmon.sys
lcgfile.syslcgfilemon.syslcmadmon.syslcmfile.syslcmfilemon.sys
lcmprintmon.sysldsecdrv.syslibwamf.syslivedrivefilter.sysllfilter.sys
lmdriver.syslnvscenter.syslocksmith.syslragentmf.syslrtp.sys
magicbackupmonitor.sysmagicprotect.sysmajoradvapi.sysmarspy.sysmaxcryptmon.sys
maxproc64.sysmaxprotector.sysmbae64.sysmbam.sysmbamchameleon.sys
mbamshuriken.sysmbamswissarmy.sysmbamwatchdog.sysmblmon.sysmcfilemon32.sys
mcfilemon64.sysmcstrg.sysmearwfltdriver.sysmessage.sysmfdriver.sys
mfeaack.sysmfeaskm.sysmfeavfk.sysmfeclnrk.sysmfeelamk.sys
mfefirek.sysmfehidk.sysmfencbdc.sysmfencfilter.sysmfencoas.sys
mfencrk.sysmfeplk.sysmfewfpk.sysminiicpt.sysminispy.sys
minitrc.sysmlsaff.sysmmpsy32.sysmmpsy64.sysmonsterk.sys
mozycorpfilter.sysmozyenterprisefilter.sysmozyentfilter.sysmozyhomefilter.sysmozynextfilter.sys
mozyoemfilter.sysmozyprofilter.sysmpfilter.sysmpkernel.sysmpksldrv.sys
mpxmon.sysmracdrv.sysmrxgoogle.sysmscan-rt.sysmsiodrv4.sys
msixpackagingtoolmonitor.sysmsnfsflt.sysmspy.sysmssecflt.sysmtsvcdf.sys
mumdi.sysmwac.sysmwatcher.sysmwfsmfltr.sysmydlpmf.sys
namechanger.sysnanoavmf.sysnaswsp.sysndgdmk.sysneokerbyfilter
netaccctrl.sysnetaccctrl64.sysnetguard.sysnetpeeker.sysngscan.sys
nlcbhelpi64.sysnlcbhelpx64.sysnlcbhelpx86.sysnlxff.sysnmlhssrv01.sys
nmpfilter.sysnntinfo.sysnovashield.sysnowonmf.sysnpetw.sys
nprosec.sysnpxgd.sysnpxgd64.sysnravwka.sysnrcomgrdka.sys
nrcomgrdki.sysnregsec.sysnrpmonka.sysnrpmonki.sysnsminflt.sys
nsminflt64.sysntest.sysntfsf.sysntguard.sysntps_fa.sys
nullfilter.sysnvcmflt.sysnvmon.sysnwedriver.sysnxfsmon.sys
nxrmflt.sysoadevice.sysoavfm.sysoczminifilter.sysodfsfilter.sys
odfsfimfilter.sysodfstokenfilter.sysoffsm.sysomfltlh.sysosiris.sys
ospfile_mini.sysospmon.sysparity.syspassthrough.syspath8flt.sys
pavdrv.syspcpifd.syspctcore.syspctcore64.syspdgenfam.sys
pecfilter.sysperfectworldanticheatsys.syspervac.syspfkrnl.syspfracdrv.sys
pgpfs.syspgpwdefs.sysphantomd.sysphdcbtdrv.syspkgfilter.sys
pkticpt.sysplgfltr.sysplpoffdrv.syspointguardvista64f.syspointguardvistaf.sys
pointguardvistar32.syspointguardvistar64.sysprocmon11.sysproggerdriver.syspsacfileaccessfilter.sys
pscff.syspsgdflt.syspsgfoctrl.syspsinfile.syspsinproc.sys
psisolator.syspwipf6.syspwprotect.syspzdrvxp.sysqdocumentref.sys
qfapflt.sysqfilter.sysqfimdvr.sysqfmon.sysqminspec.sys
qmon.sysqqprotect.sysqqprotectx64.sysqqsysmon.sysqqsysmonx64.sys
qutmdrv.sysranpodfs.sysransomdefensexxx.sysransomdetect.sysreaqtor.sys
redlight.sysregguard.sysreghook.sysregmonex.sysrepdrv.sys
repmon.sysrevefltmgr.sysreveprocprotection.sysrevonetdriver.sysrflog.sys
rgnt.sysrmdiskmon.sysrmphvmonitor.sysrpwatcher.sysrrmon32.sys
rrmon64.sysrsfdrv.sysrsflt.sysrspcrtw.sysrsrtw.sys
rswctrl.sysrswmon.sysrtologon.sysrtw.sysruaff.sys
rubrikfileaudit.sysruidiskfs.sysruieye.sysruifileaccess.sysruimachine.sys
ruiminispy.sysrvsavd.sysrvsmon.sysrw7fsflt.sysrwchangedrv.sys
ryfilter.sysryguard.syssafe-agent.syssafsfilter.syssagntflt.sys
sahara.syssakfile.syssakmfile.syssamflt.syssamsungrapidfsfltr.sys
sanddriver.syssanta.syssascan.syssavant.syssavonaccess.sys
scaegis.sysscauthfsflt.sysscauthiodrv.sysscensemon.sysscfltr.sys
scifsflt.syssciptflt.syssconnect.sysscred.syssdactmon.sys
sddrvldr.syssdvfilter.sysse46filter.syssecdodriver.syssecone_filemon10.sys
secone_proc10.syssecone_reg10.syssecone_usb.syssecrmm.syssecufile.sys
secure_os.syssecure_os_mf.syssecurofsd_x64.syssefo.syssegf.sys
segiraflt.syssegmd.syssegmp.syssentinelmonitor.sysserdr.sys
serfs.syssfac.syssfavflt.syssfdfilter.syssfpmonitor.sys
sgresflt.sysshdlpmedia.sysshdlpsf.syssheedantivirusfilterdriver.syssheedselfprotection.sys
shldflt.syssi32_file.syssi64_file.syssieflt.syssimrep.sys
sisipsfilefiltersk.sysskyamdrv.sysskyrgdrv.sysskywpdrv.sys
slb_guard.syssld.syssmbresilfilter.syssmdrvnt.syssndacs.sys
snexequota.syssnilog.syssnimg.syssnscore.syssnsrflt.sys
sodatpfl.syssoftfilterxxx.syssoidriver.syssolitkm.syssonar.sys
sophosdt2.syssophosed.syssophosntplwf.syssophossupport.sysspbbcdrv.sys
spellmon.sysspider3g.sysspiderg3.sysspiminifilter.sysspotlight.sys
sprtdrv.syssqlsafefilterdriver.syssrminifilterdrv.syssrtsp.syssrtsp64.sys
srtspit.sysssfmonm.sysssrfsf.sysssvhook.sysstcvsm.sys
stegoprotect.sysstest.sysstflt.sysstkrnl64.sysstoragedrv.sys
strapvista.sysstrapvista64.syssvcbt.sysswcommfltr.sysswfsfltr.sys
swfsfltrv2.sysswin.syssymafr.syssymefa.syssymefa64.sys
symefasi.syssymevent.syssymevent64x86.syssymevnt.syssymevnt32.sys
symhsm.syssymrg.syssysdiag.syssysmon.syssysmondrv.sys
sysplant.sysszardrv.sysszdfmdrv.sysszdfmdrv_usb.sysszedrdrv.sys
szpcmdrv.systaniumrecorderdrv.systaobserveflt.systbfsfilt.systbmninifilter.sys
tbrdrv.systdevflt.systedrdrv.systenrsafe2.systesmon.sys
tesxnginx.systesxporter.systffregnt.systfsflt.systgfsmf.sys
thetta.systhfilter.systhreatstackfim.systkdac2k.systkdacxp.sys
tkdacxp64.systkfsavxp.systkfsavxp64.systkfsft.systkfsft64.sys
tkpcftcb.systkpcftcb64.systkpl2k.systkpl2k64.systksp2k.sys
tkspxp.systkspxp64.systmactmon.systmcomm.systmesflt.sys
tmevtmgr.systmeyes.systmfsdrv2.systmkmsnsr.systmnciesc.sys
tmpreflt.systmumh.systmums.systmusa.systmxpflt.sys
topdogfsfilt.systrace.systrfsfilter.systritiumfltr.systrpmnflt.sys
trufos.systrustededgeffd.systsifilemon.systss.syststfilter.sys
tstfsredir.syststregredir.systsyscare.systvdriver.systvfiltr.sys
tvmfltr.systvptfile.systvspfltr.systwbdcfilter.systxfilefilter.sys
txregmon.sysuamflt.sysucafltdriver.sysufdfilter.sysuncheater.sys
upguardrealtime.sysusbl_ifsfltr.sysusbpdh.sysusbtest.sysuvmcifsf.sys
uwfreg.sysuwfs.sysv3flt2k.sysv3flu2k.sysv3ift2k.sys
v3iftmnt.sysv3mifint.sysvarpffmon.sysvast.sysvcdriv.sys
vchle.sysvcmfilter.sysvcreg.sysveeamfct.sysvfdrv.sys
vfilefilter.sysvfpd.sysvfsenc.sysvhddelta.sysvhdtrack.sys
vidderfs.sysvintmfs.sysvirtfile.sysvirtualagent.sysvk_fsf.sys
vlflt.sysvmwvvpfsd.sysvollock.sysvpdrvnt.sysvradfil2.sys
vraptdef.sysvraptflt.sysvrarnflt.sysvrbbdflt.sysvrexpdrv.sys
vrfsftm.sysvrfsftmx.sysvrnsfilter.sysvrsdam.sysvrsdcore.sys
vrsdetri.sysvrsdetrix.sysvrsdfmx.sysvrvbrfsfilter.sysvsepflt.sys
vsscanner.sysvtsysflt.sysvxfsrep.syswats_se.syswbfilter.sys
wcsdriver.syswdcfilter.syswdfilter.syswdocsafe.syswfp_mrt.sys
wgfile.syswhiteshield.syswindbdrv.syswindd.syswinfladrv.sys
winflahdrv.syswinfldrv.syswinfpdrv.syswinload.syswinteonminifilter.sys
wiper.syswlminisecmod.syswntgpdrv.syswraekernel.syswrcore.sys
wrcore.x64.syswrdwizfileprot.syswrdwizregprot.syswrdwizscanner.syswrdwizsecure64.sys
wrkrn.syswrpfv.syswsafefilter.syswscm.sysxcpl.sys
xendowflt.sysxfsgk.sysxhunter1.sysxhunter64.sysxiaobaifs.sys
xiaobaifsr.sysxkfsfd.sysxoiv8x64.sysxomfcbt8x64.sysyahoostorage.sys
yfsd.sysyfsd2.sysyfsdr.sysyfsrd.syszampit_ml.sys
zesfsmf.syszqfilter.syszsfprt.syszwasatom.syszwpxesvr.sys
zxfsfilt.syszyfm.syszzpensys.sys  

Further reading

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on Twitter at https://twitter.com/MsftSecIntel.

Source :
https://www.microsoft.com/en-us/security/blog/2023/07/06/the-five-day-job-a-blackbyte-ransomware-intrusion-case-study/

8 Essential Tips for Data Protection and Cybersecurity in Small Businesses

Michelle Quill — June 6, 2023

Small businesses are often targeted by cybercriminals due to their lack of resources and security measures. Protecting your business from cyber threats is crucial to avoid data breaches and financial losses.

Why is cyber security so important for small businesses?

Small businesses are particularly in danger of cyberattacks, which can result in financial loss, data breaches, and damage to IT equipment. To protect your business, it’s important to implement strong cybersecurity measures.

Here are some tips to help you get started:

One important aspect of data protection and cybersecurity for small businesses is controlling access to customer lists. It’s important to limit access to this sensitive information to only those employees who need it to perform their job duties. Additionally, implementing strong password policies and regularly updating software and security measures can help prevent unauthorized access and protect against cyber attacks. Regular employee training on cybersecurity best practices can also help ensure that everyone in the organization is aware of potential threats and knows how to respond in the event of a breach.

When it comes to protecting customer credit card information in small businesses, there are a few key tips to keep in mind. First and foremost, it’s important to use secure payment processing systems that encrypt sensitive data. Additionally, it’s crucial to regularly update software and security measures to stay ahead of potential threats. Employee training and education on cybersecurity best practices can also go a long way in preventing data breaches. Finally, having a plan in place for responding to a breach can help minimize the damage and protect both your business and your customers.

Small businesses are often exposed to cyber attacks, making data protection and cybersecurity crucial. One area of particular concern is your company’s banking details. To protect this sensitive information, consider implementing strong passwords, two-factor authentication, and regular monitoring of your accounts. Additionally, educate your employees on safe online practices and limit access to financial information to only those who need it. Regularly backing up your data and investing in cybersecurity software can also help prevent data breaches.

Small businesses are often at high risk of cyber attacks due to their limited resources and lack of expertise in cybersecurity. To protect sensitive data, it is important to implement strong passwords, regularly update software and antivirus programs, and limit access to confidential information.

It is also important to have a plan in place in case of a security breach, including steps to contain the breach and notify affected parties. By taking these steps, small businesses can better protect themselves from cyber threats and ensure the safety of their data.

Tips for protecting your small business from cyber threats and data breaches are crucial in today’s digital age. One of the most important steps is to educate your employees on cybersecurity best practices, such as using strong passwords and avoiding suspicious emails or links.

It’s also important to regularly update your software and systems to ensure they are secure and protected against the latest threats. Additionally, implementing multi-factor authentication and encrypting sensitive data can add an extra layer of protection. Finally, having a plan in place for responding to a cyber-attack or data breach can help minimize the damage and get your business back on track as quickly as possible.

Small businesses are attackable to cyber-attacks and data breaches, which can have devastating consequences. To protect your business, it’s important to implement strong cybersecurity measures. This includes using strong passwords, regularly updating software and systems, and training employees on how to identify and avoid phishing scams.

It’s also important to have a data backup plan in place and to regularly test your security measures to ensure they are effective. By taking these steps, you can help protect your business from cyber threats and safeguard your valuable data.

To protect against cyber threats, it’s important to implement strong data protection and cybersecurity measures. This can include regularly updating software and passwords, using firewalls and antivirus software, and providing employee training on safe online practices. Additionally, it’s important to have a plan in place for responding to a cyber attack, including backing up data and having a designated point person for handling the situation.

In today’s digital age, small businesses must prioritize data protection and cybersecurity to safeguard their operations and reputation. With the rise of remote work and cloud-based technology, businesses are more vulnerable to cyber attacks than ever before. To mitigate these risks, it’s crucial to implement strong security measures for online meetings, advertising, transactions, and communication with customers and suppliers. By prioritizing cybersecurity, small businesses can protect their data and prevent unauthorized access or breaches.

Here are 8 essential tips for data protection and cybersecurity in small businesses.

8 Essential Tips for Data Protection and Cybersecurity in Small Businesses

1. Train Your Employees on Cybersecurity Best Practices

Your employees are the first line of defense against cyber threats. It’s important to train them on cybersecurity best practices to ensure they understand the risks and how to prevent them. This includes creating strong passwords, avoiding suspicious emails and links, and regularly updating software and security systems. Consider providing regular training sessions and resources to keep your employees informed and prepared.

2. Use Strong Passwords and Two-Factor Authentication

One of the most basic yet effective ways to protect your business from cyber threats is to use strong passwords and two-factor authentication. Encourage your employees to use complex passwords that include a mix of letters, numbers, and symbols, and to avoid using the same password for multiple accounts. Two-factor authentication adds an extra layer of security by requiring a second form of verification, such as a code sent to a mobile device, before granting access to an account. This can help prevent unauthorized access even if a password is compromised.

3. Keep Your Software and Systems Up to Date

One of the easiest ways for cybercriminals to gain access to your business’s data is through outdated software and systems. Hackers are constantly looking for vulnerabilities in software and operating systems, and if they find one, they can exploit it to gain access to your data. To prevent this, make sure all software and systems are kept up-to-date with the latest security patches and updates. This includes not only your computers and servers but also any mobile devices and other connected devices used in your business. Set up automatic updates whenever possible to ensure that you don’t miss any critical security updates.

4. Use Antivirus and Anti-Malware Software

Antivirus and anti-malware software are essential tools for protecting your small business from cyber threats. These programs can detect and remove malicious software, such as viruses, spyware, and ransomware before they can cause damage to your systems or steal your data. Make sure to install reputable antivirus and anti-malware software on all devices used in your business, including computers, servers, and mobile devices. Keep the software up-to-date and run regular scans to ensure that your systems are free from malware.

5. Backup Your Data Regularly

One of the most important steps you can take to protect your small business from data loss is to back up your data regularly. This means creating copies of your important files and storing them in a secure location, such as an external hard drive or cloud storage service. In the event of a cyber-attack or other disaster, having a backup of your data can help you quickly recover and minimize the impact on your business. Make sure to test your backups regularly to ensure that they are working properly and that you can restore your data if needed.

6. Carry out a risk assessment

Small businesses are especially in peril of cyber attacks, making it crucial to prioritize data protection and cybersecurity. One important step is to assess potential risks that could compromise your company’s networks, systems, and information. By identifying and analyzing possible threats, you can develop a plan to address security gaps and protect your business from harm.

For Small businesses making data protection and cybersecurity is a crucial part. To start, conduct a thorough risk assessment to identify where and how your data is stored, who has access to it, and potential threats. If you use cloud storage, consult with your provider to assess risks. Determine the potential impact of breaches and establish risk levels for different events. By taking these steps, you can better protect your business from cyber threats

7. Limit access to sensitive data

One effective strategy is to limit access to critical data to only those who need it. This reduces the risk of a data breach and makes it harder for malicious insiders to gain unauthorized access. To ensure accountability and clarity, create a plan that outlines who has access to what information and what their roles and responsibilities are. By taking these steps, you can help safeguard your business against cyber threats.

8. Use a firewall

For Small businesses, it’s important to protect the system from cyber attacks by making data protection and reducing cybersecurity risk. One effective measure is implementing a firewall, which not only protects hardware but also software. By blocking or deterring viruses from entering the network, a firewall provides an added layer of security. It’s important to note that a firewall differs from an antivirus, which targets software affected by a virus that has already infiltrated the system.

Small businesses can take steps to protect their data and ensure cybersecurity. One important step is to install a firewall and keep it updated with the latest software or firmware. Regularly checking for updates can help prevent potential security breaches.

Conclusion

Small businesses are particularly vulnerable to cyber attacks, so it’s important to take steps to protect your data. One key tip is to be cautious when granting access to your systems, especially to partners or suppliers. Before granting access, make sure they have similar cybersecurity practices in place. Don’t hesitate to ask for proof or to conduct a security audit to ensure your data is safe.

Source :
https://onlinecomputertips.com/support-categories/networking/tips-for-cybersecurity-in-small-businesses/